首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 608 毫秒
1.
Jung SY  Kim JM  Min SK  Kim OB  Jang da H  Kang HK  Min BM 《Biomaterials》2012,33(15):3967-3979
Laminin α2 chain plays an important role in basement membrane assembly and peripheral myelinogenesis; however, the integrin binding motif within human laminin α2 chain and the signaling pathways downstream of this ligand-receptor interaction are poorly understood. We identified a motif, RNIPPFEGCIWN (Ln2-LG3-P2), within LG3 domain of human laminin α2 chain as a major site for both α3β1 integrin and cellular activities such as cell adhesion, spreading, and migration. Binding of α3β1 integrin with Ln2-LG3-P2 induced the membrane recruitment of protein kinase Cδ (PKCδ) and stimulated its tyrosine phosphorylation. The cellular activities induced by Ln2-LG3-P2 and the phosphorylation of focal adhesion kinase (FAK) were inhibited by rottlerin, a PKCδ inhibitor, but not by G?6976, a PKCα/β inhibitor. These results indicate that RNIPPFEGCIWN motif within human laminin α2 chain is a major ligand for α3β1 integrin, and that binding of α3β1 integrin mediates cellular activities through membrane recruitment and tyrosine phosphorylation of PKCδ and FAK phosphorylation.  相似文献   

2.
Integrin-mediated cell adhesion to proteins adsorbed onto synthetic surfaces anchors cells and triggers signals that direct cell function. In the case of fibronectin (Fn), adsorption onto substrates of varying properties alters its conformation/structure and its ability to support cell adhesion. In the present study, self-assembled monolayers (SAMs) of alkanethiols on gold were used as model surfaces to investigate the effects of surface chemistry on Fn adsorption, integrin binding, and cell adhesion. SAMs presenting terminal CH(3), OH, COOH, and NH(2) functionalities modulated adsorbed Fn conformation as determined through differences in the binding affinities of monoclonal antibodies raised against the central cell-binding domain (OH > COOH = NH(2) > CH(3)). Binding of alpha(5)beta(1) integrin to adsorbed Fn was controlled by SAM surface chemistry in a manner consistent with antibody binding (OH > COOH = NH(2) > CH(3)), whereas alpha(V) integrin binding followed the trend: COOH > OH = NH(2) = CH(3), demonstrating alpha(5)beta(1) integrin specificity for Fn adsorbed onto the NH(2) and OH SAMs. Cell adhesion strength to Fn-coated SAMs correlated with alpha(5)beta(1) integrin binding (OH > COOH = NH(2) > CH(3)), and experiments with function-perturbing antibodies demonstrated that this receptor provides the dominant adhesion mechanism in this cell model. This work establishes an experimental framework to analyze adhesive mechanisms controlling cell-surface interactions and provides a general strategy of surface-directed control of adsorbed protein activity to manipulate cell function in biomaterial and biotechnological applications.  相似文献   

3.
Integrin binding and focal adhesion assembly are critical to cellular responses to biomaterial surfaces in biomedical and biotechnological applications. While immunostaining techniques to study focal adhesion assembly are well established, a crucial need remains for quantitative methods for analyzing adhesive structures. We present simple yet robust approaches to quantify integrin binding and focal adhesion assembly on biomaterial surfaces. Integrin binding to fibronectin and a RGD-containing synthetic peptide was quantified by sequentially cross-linking integrin-ligand complexes via a water-soluble homo-bifunctional cross-linker, extracting bulk cellular components in detergent, and detecting bound integrins by ELISA. Focal adhesion components (vinculin, talin, alpha-actinin) localized to adhesion plaques were isolated from bulk cytoskeletal and cytoplasmic components by mechanical rupture at a plane close to the basal cell surface and quantified by Western blotting. These approaches represent simple and efficient methodologies to analyze structure-function relationships in cell-material interactions.  相似文献   

4.
Cleft formation is the initial step of branching morphogenesis in many organs. We previously demonstrated that ROCK 1 regulates a nonmuscle myosin II-dependent mechanochemical checkpoint to transition initiated clefts to progressing clefts in developing submandibular salivary glands. Here, we report that ROCK-mediated integrin activation and subsequent formation of focal adhesion complexes comprise this mechanochemical checkpoint. Inhibition of ROCK1 and nonmuscle myosin II activity decreased integrin β1 activation in the cleft region and interfered with localization and activation of focal adhesion complex proteins, such as focal adhesion kinase (FAK). Inhibition of FAK activity also prevented cleft progression, by disrupting recruitment of the focal adhesion proteins talin and vinculin and subsequent fibronectin assembly in the cleft region while decreasing ERK1/2 activation. These results demonstrate that inside-out integrin signaling leading to a localized recruitment of active FAK-containing focal adhesion protein complexes generates a mechanochemical checkpoint that facilitates progression of branching morphogenesis.  相似文献   

5.
Biomaterial surface properties modulate protein adsorption and cell adhesion to elicit diverse cellular responses in biomedical and biotechnological applications. We used alkanethiol self-assembled monolayers presenting well-defined chemistries (OH, CH(3), NH(2), and COOH) to analyze the effects of surface chemistry on myoblast proliferation and differentiation. Surfaces were pre-coated with equivalent densities of fibronectin. C2C12 skeletal myoblasts exhibited surface-dependent differences in cell proliferation (COOH = NH(2) > CH(3) = OH). Myogenin and troponin T gene expression levels were up-regulated on CH(3) and OH surfaces compared to other chemistries. Furthermore, immunostaining for sarcomeric myosin revealed surface chemistry-dependent differences in myogenic differentiation following the pattern OH > CH(3) > NH(2) = COOH. Immunostaining analyses of integrin subunits demonstrated surface chemistry-dependent differences in integrin binding to adsorbed fibronectin. OH and CH(3) surfaces supported selective binding of alpha(5)beta(1) integrin while the COOH and NH(2) functionalities displayed binding of both alpha(5)beta(1) and alpha(V)beta(3) Myogenic differentiation correlated with differences in integrin binding; surface chemistries that supported selective binding of alpha(5)beta(1) displayed enhanced differentiation. Finally, blocking beta(1), but not beta(3), integrins inhibited differentiation, implicating specific integrins in the differentiation process. These results demonstrate that surface chemistry modulates myoblast proliferation and differentiation via differences in integrin binding to adsorbed fibronectin.  相似文献   

6.
The interaction of three cell types important to the wound repair process with collagen/glycosaminoglycan (GAG) dermal regeneration matrices covalently modified with an Arg-Gly-Asp (RGD)-containing peptide was characterized. Function-blocking monoclonal antibodies directed against various integrin subunits were used to demonstrate that human fibroblasts attached to the unmodified matrix through the integrin, 2β1. Human endothelial cells and human keratinocytes, however, attached minimally to the unmodified matrix. After modification of the collagen/GAG matrix with RGD-containing peptide, endothelial cells and keratinocytes attached and spread well on the matrix. This attachment was RGD dependent as evidenced by essentially complete inhibition with competing soluble peptide. In terms of overall cell number, fibroblast cell attachment remained unchanged on the RGD peptide-modified matrix compared to the unmodified material. Antibody and peptide inhibition studies demonstrate, however, that attachment to the modified matrix was mediated by both 2β1 and RGD-binding integrins. We have successfully introduced a specific RGD receptor-mediated attachment site on collagen/GAG dermal regeneration matrices, resulting in enhanced cell interaction of important wound healing cell types. This modification could have important implications for the performance of these matrices in promoting dermal regeneration.  相似文献   

7.
It has previously been shown that changes in the activity of focal adhesion kinase (FAK), and its binding to β-1-integrin, accompany genistein-induced adhesion of prostate cells. Consumption of genistein world wide is associated with a lower incidence of metastatic prostate cancer. Early human clinical trials of genistein are under way to evaluate genistein's potential causal role in this regard. Though an important cell adhesion-associated signaling molecule, FAK’s role in regulating prostate cell adhesion was not clear. Elucidation of this process would provide important information relating to both biology and potential clinical endpoints. It was hypothesized that FAK activation and complex formation are temporally related in prostate cells, and can thus be separated. Significant activation of FAK was demonstrated when cells adhered to fibronectin, as compared to poly-l-lysine, thus demonstrating that β-1-integrin plays a significant role in activating FAK. Neither FAK activation, nor FAK-integrin complex formation, required β-1-integrin ligand. However, disruption of the cellular cytoskeleton by cytochalasin D prevented FAK activation, but did not block genistein-induced complex formation. In the face of a disrupted cytoskeleton, signaling through FAK could not be restored through either integrin cross linking, or re-establishment of tensile forces via attachment to solid matrix. These studies demonstrate that FAK-β-1-integrin complex formation does not require FAK activation, suggesting that it is an early event in prostate cell adhesion. An intact cytoskeleton is necessary for FAK activation. The functional importance of β-1-integrin in prostate cells is demonstrated. Current findings support plans to test genistein in prostate cancer. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
An important consideration in developing physical biomimetic cell-stimulating cues is that the in vivo extracellular milieu includes nanoscale topographic interfaces. We investigated nanoscale topography regulation of cell functions using human fetal osteoblastic (hFOB) cell culture on poly(l-lactic acid) and polystyrene (50/50 w/w) demixed nanoscale pit textures (14, 29, and 45nm deep pits). Secondary ion mass spectroscopy revealed that these nanotopographic surfaces had similar surface chemistries to that of pure PLLA because of PLLA component surface segregation during spin casting. We observed that 14 and 29nm deep pit surfaces increased hFOB cell attachment, spreading, selective integrin subunit expression (e.g., alphav relative to alpha5, beta1, or beta3), focal adhesive paxillin protein synthesis and paxillin colocalization with cytoskeletal actin stress fibers, and focal adhesion kinase (FAK) and phosphorylated FAK (pY397) expression to a greater degree than did 45nm deep pits or flat PLLA surfaces. Considering the important role of integrin-mediated focal adhesion and intracellular signaling in anchorage-dependent cell function, our results suggest a mechanism by which nanostructured physical signals regulate cell function. Modulation of integrin-mediated focal adhesion and related cell signaling by altering nanoscale substrate topography will have powerful applications in biomaterials science and tissue engineering.  相似文献   

9.
The ability of fibronectin (Fn) to mediate cell adhesion through binding to alpha(5)beta(1) integrins is dependent on the conditions of its adsorption to the surface. Using a model system of alkylsilane SAMs with different functional groups (X=OH, COOH, NH(2) and CH(3)) and an erythroleukemia cell line expressing a single integrin (alpha(5)beta(1)), the effect of surface properties on the cellular adhesion with adsorbed Fn layers was investigated. (125)I-labeled Fn, a modified biochemical cross-linking/extraction technique and a spinning disc apparatus were combined to quantify the Fn adsorption, integrin binding and adhesion strength, respectively. This methodology allows for a binding equilibrium analysis that more closely reflects cellular adhesion found in stable tissue constructs in vivo. Differences in detachment strength and integrin binding were explained in terms of changes in the adhesion constant (psi, related to affinity) and binding efficiency of the adsorbed Fn for the alpha(5)beta(1) integrins (CH(3) approximately NH(2)相似文献   

10.
Many important matrix proteins involved in bone remodeling contain separate domains that orient the protein on hydroxyapatite and interact with target cell receptors, respectively. We have designed two synthetic peptides that mimic the dual activities of these large, complex proteins by binding to calcium phosphate minerals and by engaging integrin-dependent signaling pathways in osteoblasts. The addition of either PGRGDS from osteopontin or PDGEA from collagen type I to the HAP-binding domain of statherin (N15 domain) did not alter its alpha-helical structure or diminish its affinity for hydroxyapatite. Immobilized N15-PGRGDS bound MC3T3-E1 osteoblasts predominantly via the alpha v beta 3 integrin and induced focal adhesion kinase (FAK) phosphorylation at comparable levels to immobilized osteopontin. Immobilized N15-PDGEA bound MC3T3-E1 osteoblasts predominantly through the alpha 2 beta 1 integrin and induced similar levels of FAK phosphorylation. Although both peptides induced FAK phosphorylation with similar time courses, only the N15-PDGEA peptide induced ERK1/2 phosphorylation, showing that these peptides are also capable of engaging integrin-specific signaling pathways. This peptide system can be used to study adhesion-dependent control of signaling in the context of the relevant biomineral surface and may also be useful in biomaterial and tissue engineering applications.  相似文献   

11.
Hepatocyte growth factor (HGF) plays a definitive role in invasive, angiogenic, and metastatic activities of tumor cells by binding to the c-Met receptor. NK4, a competitive antagonist for HGF and the c-Met receptor, prevents tumor cell growth and metastasis via its bifunctional properties to act as an HGF antagonist and angiogenesis inhibitor. In the present study, we investigated the inhibitory effectiveness of NK4 on hematogenous pulmonary metastasis of the CT26 murine colon cancer cell line, focusing on tumor cell adhesion to endothelial cells. In an in vitro adhesion assay, HGF facilitated adhesion of CT26 cells to a murine endothelial cell line (F-2) in a dose-dependent manner. Furthermore, the enhancing effect of HGF on CT26-F-2 cell interaction was blocked by NK4 as well as by anti-HGF antibody. Similarly, HGF-induced phosphorylation of focal adhesion kinase (FAK), downstream of integrin signaling, was reduced by NK4 and by anti-HGF antibody. However, distinct integrin expression on the surface of CT26 cells was not altered by HGF. In an in vivo experimental pulmonary metastasis assay, stable NK4 expression potently decreased the number of pulmonary metastatic foci. The NK4-induced suppression of pulmonary metastasis was partially reversed when HGF was intraperitoneally administered in an adhesive phase. These results suggest that NK4 could act on tumor cells to inhibit CT26 adhesion to endothelial cells by reducing FAK phosphorylation, which is regulated by inside-out HGF/c-Met signaling, and thereby suppress hematogenous pulmonary metastasis.  相似文献   

12.
Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase (PTK) that can localize indirectly to sites of clustering integrin family of heterodimeric receptors. As an important structure and signaling molecule in the adhesive complexes, which are large and stable referred as ‘focal adhesions‘ or relatively small and transient within filopodia and lamellipodia named ‘focal complexes‘, FAK is closely related with cell death, proliferation and migration. In this review, we discuss the function of FAK in the regulation of endothelial cell migration based on current data.  相似文献   

13.
Deregulated integrin signaling is common in cancers, including glioblastoma. Integrin binding and growth factor receptor signaling activate focal adhesion kinase (FAK) and subsequently up-regulate extracellular regulated kinases (ERK-1/2), leading to cell-cycle progression and cell migration. Most studies of this pathway have used in vitro systems or tumor lysate-based approaches. We examined these pathways primarily in situ using a panel of 30 glioblastomas and gene expression arrays, immunohistochemistry, and fluorescence in situ hybridization, emphasizing the histological distribution of molecular changes. Within individual tumors, increased expression of FAK, p-FAK, paxillin, ERK-1/2, and p-ERK-1/2 occurred in regions of elevated EGFR and/or PDGFRA expression. Moreover, FAK activation levels correlated with EGFR and PDGFRA expression, and p-FAK and EGFR expression co-localized at the single-cell level. In addition, integrin expression was enriched in EGFR/PDGFRA-overexpressing areas but was more regionally confined than FAK, p-FAK, and paxillin. Integrins beta8 and alpha5beta1 were most commonly expressed, often in a perinecrotic or perivascular pattern. Taken together, our data suggest that growth factor receptor overexpression facilitates alterations in the integrin signaling pathway. Thus, FAK may act in glioblastoma as a downstream target of growth factor signaling, with integrins enhancing the impact of such signaling in the tumor microenvironment.  相似文献   

14.
p130Cas (Cas, C rk- a ssociated s ubstrate) is an adaptor molecule composed of a Src homology 3 (SH3) domain, a substrate domain (SD) and a Src binding domain (SBD). The SH3 domain of Cas associates with focal adhesion kinase (FAK), but its role in cellular function has not fully been understood. To address this issue, we established and analyzed primary fibroblasts derived from mice expressing a truncated Cas lacking exon 2, which encodes the SH3 domain (Cas Δexon 2). In comparison to wild-type cells, Cas exon 2Δ/Δ cells showed reduced motility, which could be due to impaired tyrosine-phosphorylation of FAK and Cas, reduced FAK/Cas/Src/CrkII binding, and also impaired localization of Cas Δexon 2 to focal adhesions on fibronectin. In addition, to analyze downstream signaling pathways regulated by Cas exon 2, we performed microarray analyses. Interestingly, we found that a deficiency of Cas exon 2 up-regulated expression of CXC Chemokine Receptor-4 and CC Chemokine Receptor-5, which may be regulated by IκBα phosphorylation. These results indicate that the SH3-encoding exon of Cas participates in cell motility, tyrosine-phosphorylation of FAK and Cas, FAK/Cas/Src/CrkII complex formation, recruitment of Cas to focal adhesions and regulation of cell motility-associated gene expression in primary fibroblasts.  相似文献   

15.
Biomimetic strategies focusing on presenting short bioadhesive oligopeptides, including the arginine-glycine-aspartic acid (RGD) motif present in numerous adhesive proteins, on a non-fouling support have emerged as promising approaches to improve cellular activities and healing responses. Nevertheless, these bio-inspired strategies are limited by low activity of the oligopeptides compared to the native ligand due to the absence of complementary or modulatory domains. In the present analysis, we generated well-defined biointerfaces presenting RGD-based ligands of increasing complexity to directly compare their biological activities in terms of cell adhesion strength, integrin binding and signaling. Mixed self-assembled monolayers of alkanethiols on gold were optimized to engineer robust supports that present anchoring groups for ligand tethering within a non-fouling, protein adsorption-resistant background. Controlled bioadhesive interfaces were generated by tethering adhesive ligands via standard peptide chemistry. On a molar basis, biointerfaces functionalized with the FNIII7-10 recombinant fragment presenting the RGD and PHSRN adhesive motifs in the correct structural context exhibited significantly higher adhesion strength, FAK activation, and cell proliferation rate than supports presenting RGD ligand or RGD-PHSRN, an oligopeptide presenting these two sites separated by a polyglycine linker. Moreover, FNIII7-10-functionalized surfaces displayed specificity for alpha5beta1 integrin, while cell adhesion to supports presenting RGD or RGD-PHSRN was primarily mediated by alphavbeta3 integrin. These results are significant to the rational engineering of bioactive materials that convey integrin binding specificity for directed cellular and tissue responses in biomedical and biotechnological applications.  相似文献   

16.
Lu H  Ruan L  Xu X 《Virology》2011,419(2):84-89
WSSV interacts with integrin during infection of shrimps and modulate the focal adhesion kinase which is known as a regulator of several downstream signaling pathways. Viral protein kinases are thought to be important for virus infection by regulating the host signaling pathways. WSV083 is an immediate-early gene of white spot syndrome virus that contains a Ser/Thr protein kinase domain. So, does WSSV modulate FAK phosphorylation via the WSV083 molecule? In this study, co-transfection of WSV083 and MjFAK genes proceeded in insect cells revealed that the MjFAK phosphorylation and cell adhesion activity could be inhibited by the expression of WSV083. Kinase domain mutants of WSV083 lost its ability of inhibiting FAK phosphorylation. Moreover, silencing of FAK gene through RNAi accelerated the shrimp death rate upon WSSV challenge. These results demonstrate for the first time that modulation of FAK phosphorylation by WSV083 plays a critical role in the pathogenesis of WSSV infection.  相似文献   

17.
The beta1 integrins are a family of heterodimeric adhesion receptors involved in cell-to-cell contacts and cell-to-extracellular matrix interactions. Through their adhesive role, integrins participate in transduction of outside/inside signals and contribute to trigger a multitude of cellular events such as differentiation, cell activation, and motility. The fibronectin integrin receptors, alpha4beta1 and alpha5beta1, can function as costimulatory molecules in T-cell receptor (TCR)-dependent T-cell activation. In the current study the Jurkat T-cell line was used as a model system to investigate the TCR-independent role of cell adhesion to fibronectin in the activation of Zap-70, a central molecule in the signalling events in T cells. Upon adhesion to plastic immobilized fibronectin but not to bovine serum albumin (BSA) the phosphorylation of p125FAK, a protein kinase that localizes to focal adhesion sites, was induced. Moreover, clustering of fibronectin receptors led to the detection of a p125FAK/Zap-70 complex. Finally, while the complex between fak-B, another protein kinase localized to focal adhesion sites, and Zap-70 was detected in cells plated either on BSA or on fibronectin, the formation of the p125FAK/Zap-70 complex appeared specifically induced following fibronectin-mediated integrin clustering. These data suggest the existence of a high degree of specificity when the members of the beta1 integrin family mediate signalling pathways in T cells.  相似文献   

18.
Pharmacological inhibition of Hsp90 in tumor cells induces anticancer effects through the destabilization of several oncogenic signaling molecules. Although there were reports that Hsp90 inhibition compromises cellular integrity, how this affects the cell adhesion through extracellular matrix (ECM) and integrin signaling is not known. Using human neuroblastoma (IMR-32), cervical (HeLa) and breast (MCF-7) cancer cells, and mouse embryonic carcinoma (PCC-4) cells, and using different substratum, glass, plastic, fibronectin, and matrigel, we demonstrate 17AAG induced alterations in integrin cross-linking with the actin cytoskeleton. The 17AAG treatment of cells resulted in decreased mRNA levels and confined surface expression of three major beta1 family of integrins namely α2, α3, and α5 in IMR-32, HeLa and PCC-4 cells, but showed induced mRNA levels and surface expression in MCF-7 cells. Loss of surface expression of integrins correlated with inhibition of focal adhesion kinase (FAK) and mitogen regulated kinase (ERK1/2) activities, in contrast, induced integrin expression in MCF-7 correlated with activation of these kinases. Prolonged treatment but not the pretreatment (2 h) with 17AAG resulted in destabilized actin cytoskeleton, delayed wound repair, and limited colony forming ability of tumor cells on soft agar. Conclusively, we show that Hsp90 inhibition targets cell adhesion, which may relate to the inhibition of integrin signaling and inhibition of integrin-cytoskeleton crosslinking.  相似文献   

19.
The adhesive force generated by the interaction of integrin receptors with extracellular matrix (ECM) at the focal adhesion complex may regulate endothelial cell shape, and thereby the endothelial barrier function. We studied the role of focal adhesion kinase (FAK) activated by integrin signalling in regulating cell shape using cultured human pulmonary artery endothelial cells. We used FAK antisense oligonucleotide (targeted to the 3'-untranslated region of FAK mRNA (5'-CTCTGGTTGATGGGATTG-3') to determine the role of FAK in the mechanism of thrombin-induced increase in endothelial permeability. Reduction in FAK expression by the antisense augmented the thrombin-induced decrease in transendothelial electrical resistance (decrease in mock transfected cells of −43 ± 1 % and in sense-transfected cells of −40 ± 4 %, compared to the decrease in antisense-transfected cells of −60 ± 3 %). Reduction in FAK expression also prolonged the drop in electrical resistance and prevented the recovery seen in control endothelial cells. Thus, the thrombin-induced increase in permeability is both greater and attenuated in the absence of FAK expression. Inhibition of actin polymerization with latrunculin-A prevented the translocation of FAK to focal adhesion sites and tyrosine phosphorylation of FAK and paxillin, and concomitantly reduced the thrombin-induced decrease in electrical resistance by ∼50 %. Thus, the modulatory role of FAK on endothelial barrier function is dependent on actin polymerization. FAK translocation to focal adhesion complex in endothelial cells guided by actin cables and the consequent activation of FAK-associated proteins serve to reverse the decrease in endothelial barrier function caused by inflammatory mediators such as thrombin.  相似文献   

20.
Balb/c 3T3 cell adhesion on substrata coated with fibronectin's (FN) alternatively-spliced EDb, implicated in some tumor cell systems, and its neighboring type III repeats (III7 and III8) induced intracellular signaling coincident with morphological responses. These events were analysed using minigene-expressed proteins containing various permutations of type III repeats of FN. Cells adherent to the tri-repeat protein 7-EDb-8 were compared to those attached to the tri-repeat 8-9-10 which can interact with integrins through RGD and its synergistic sequences. Cell adhesion to 7-EDb-8 generated rapid tyrosine phosphorylation of several intra-cellular proteins (particularly the complex at 120-130 kD), with the overall phosphorylation level and its sensitivity to tyrosine kinase inhibitors similar to responses on the 8-9-10 tri-repeat. This similarity contrasted with the differential morphological responses of cells mediated by these proteins. Further analysis of the kinetics of pho sphorylation through immunoblotting of two focal adhesion proteins, p125FAK and p130cas, revealed a profile for Balb/c 3T3 adhesion to 7-EDb-8 distinct from that on 8-9-10. EDb mono-repeat was also more potent for inducing both limited cell spreading and FAK tyrosine phosphorylation than its neigh-boring repeats III7 or III8. Examination of cellular localization of FAK and vinculin showed that cells spread on the 7-EDb-8 substratum displayed vinculin-positive focal complex-like structures at the cell periphery, in contrast to the classical focal adhesions seen in 8-9-10-adherent cells. These results suggest that EDb induces cell signaling events, leading to tyrosine phosphorylation of focal adhesion proteins, through a mechanism different from that mediated by integrins recognizing sequences in III8-9-10. EDb-dependent signaling may have special significance in some tumor systems. © Rapid Science 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号