首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
BackgroundMethotrexate (MTX) is used commonly in the treatment of various cancers and inflammatory diseases; nevertheless, the associated hepatotoxicity has limited its clinical application. Crocin (CRO) is described as a natural carotenoid with analgesic, antioxidant, and antiinflammatory properties. This study aimed to determine the effects of CRO on MTX-induced hepatotoxicity.MethodsFor pretreatment, CRO at doses of 25 and 50 mg/kg (po), as well as 20 mg/kg (ip) of MTX, was injected in rats.ResultsMTX led to hepatotoxicity, as confirmed by the significant increase in liver markers, histopathological changes, decreased GSH content, and reduced antioxidant enzyme activity (i.e., CAT, SOD, and GPx). It increased TNF-α, IL-1β, lipid peroxidation, and nitric oxide levels. Nevertheless, by increasing antioxidant defense in hepatic tissues and reducing oxidative stress and proinflammatory mediators, pretreatment with CRO could alleviate hepatotoxicity.ConclusionCRO can inhibit MTX-induced hepatotoxicity through improving antioxidant defense and reducing oxidative stress and inflammation.  相似文献   

2.
Paracetamol has a reasonable safety profile when taken in therapeutic doses. However, it could induce hepatotoxicity and even more severe fatal acute hepatic damage when taken in an overdose. The green alga, Dunaliella salina was investigated for hepatoprotective and antioxidant activity against paracetamol-induced liver damage in rats. Male albino Wistar rats overdosed with paracetamol showed liver damage and oxidative stress as indicated by significantly (P<0.05) increased serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total and direct bilirubin, malondialdehyde, cholesterol and nitric oxide. At the same time, there were decreased activities of serum superoxide dismutase and total antioxidant capacity compared with the control group. Treatment with D. salina methanol extract at doses of 500 and 1000 mg/kg body weight or silymarin could significantly (P<0.05) decrease the liver damage marker enzymes, total and direct bilirubin, malondialdehyde, cholesterol and nitric oxide levels and increase the activities of superoxide dismutase and total antioxidant capacity in serum when compared with paracetamol intoxicated group. Liver histopathology also showed that D. salina reduced the centrilobular necrosis, congestion and inflammatory cell infiltration evoked by paracetamol overdose. These results suggest that D. salina exhibits a potent hepatoprotective effect on paracetamol-induced liver damage in rats, which may be due to both the increase of antioxidant enzymes activity and inhibition of lipid peroxidation.  相似文献   

3.
Puerarin (PU), a natural flavonoid, has been reported to have many benefits and medicinal properties. The aim of this study was to investigate the effects of puerarin on hepatic oxidative stress and hyperlipidaemia in mice exposed to carbon tetrachloride (CCl4). Male ICR mice were injected with CCl4 with or without puerarin co‐administration (200 and 400 mg/kg intragastrically once‐daily) for 8 weeks. Our data showed that puerarin significantly prevented CCl4‐induced hepatotoxicity, indicated by both diagnostic indicators of the liver damage (serum aminotransferase levels) and histopathological analysis. Puerarin decreased the thiobarbituric acid reactive substances (TBARS) and the protein carbonyl content (PCO) in the liver of CCl4‐treated mice. Puerarin also restored the levels of reduced glutathione (GSH) and total antioxidant capacity (TAC) in the liver. Furthermore, the increase in serum cholesterol, triglycerides and low‐density lipoproteins (LDL) induced by CCl4 was effectively suppressed by puerarin. The high‐density lipoprotein (HDL) level in the CCl4 treatment mice was also increased by puerarin. Western blot analysis showed that puerarin remarkably inhibited hyperlipidaemia by regulating the expression of phosphorylated Jun N‐terminal kinases (JNK), phosphorylated c‐Jun protein and cholesterol 7a‐hydroxylase (CYP7A1) in the liver of CCl4‐treated mice. Altogether, these results suggest that puerarin could protect the CCl4‐induced liver injury and hyperlipidaemia by reducing reactive oxygen species S production, renewing the total antioxidant capacity and influencing expression of hepatic lipid biosynthesis and metabolism genes.  相似文献   

4.
《Pharmaceutical biology》2013,51(12):1592-1595
Context: Whole plant of Leucas aspera (LA) Willd. (Labiatae) is traditionally used in Siddha medicine for hepatic ailments.

Objective: LA was investigated for its hepatoprotective, antioxidant, and protective effect on microsomal drug metabolizing enzymes (MDMEs).

Materials and methods: LA aqueous extract (200 and 400 mg/kg, p.o.) was evaluated for its hepatoprotective and antioxidant activity in d-galactosamine (d-GalN)-induced hepatotoxicity in rats. Biochemical and histopathological studies were performed to assess hepatoprotective activity. Hexobarbitone-induced sleeping time model was used to study the protective effect of LA on MDMEs.

Results: d-GalN administration induced hepatotoxicity in rats which was manifested by increased levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total cholesterol, triglycerides, total bilirubin and oxidative stress. Pretreatment with LA extract significantly protected the liver in d-GalN administered rats. LA extract significantly elevated antioxidant enzymes like superoxide dismutase, catalase, glutathione peroxidase and decreased lipid peroxidation levels in liver. The total phenolic and flavonoid content in LA aqueous extract was found to be 28.33 ± 0.19 gallic acid equivalents mg/g of extract and 3.96 ± 0.57 rutin equivalent mg/g of extract, respectively. LA extract (200 and 400 mg/Kg) treatment with CCl4 decreased the hexobarbitone-induced sleeping time in mice by 56.67 and 71.30%, respectively, which indicated the protective effect of LA on hepatic MDMEs. Histological studies showed that LA at 400 mg/kg attenuated the hepatocellular necrosis in d-GalN intoxicated rats.

Conclusion: Our results contribute towards validation of the traditional use of LA in hepatic disorders.  相似文献   

5.
Oxidative stress is closely associated with acetaminophen (APAP)-induced toxicity. Heme oxygenase-1 (HO-1), an antioxidant defense enzyme, has been shown to protect against oxidant-induced tissue injury. This study investigated whether sulforaphane (SFN), as a HO-1 inducer, plays a protective role against APAP hepatotoxicity in vitro and in vivo. Pretreatment of primary hepatocyte with SFN induced nuclear factor E2-factor related factor (Nrf2) target gene expression, especially HO-1 mRNA and protein expression, and suppressed APAP-induced glutathione (GSH) depletion and lipid peroxidation, which eventually leads to hepatocyte cell death. A comparable effect was observed in mice treated with APAP. Mice were treated with 300 mg/kg APAP 30 min after SFN (5 mg/kg) administration and were then sacrificed after 6 h. APAP alone caused severe liver injuries as characterized by increased plasma AST and ALT levels, GSH depletion, apoptosis, and 4-hydroxynonenal (4-HNE) formations. This APAP-induced liver damage was significantly attenuated by pretreatment with SFN. Furthermore, while hepatic reactive oxygen species (ROS) levels were increased by APAP exposure, pretreatment with SFN completely blocked ROS formation. These results suggest that SFN plays a protective role against APAP-mediated hepatotoxicity through antioxidant effects mediated by HO-1 induction. SFN has preventive action in oxidative stress-mediated liver injury.  相似文献   

6.
BackgroundCisplatin is an effective and extensively used chemotherapeutic agent to treat range of malignancies, but its therapeutic use is limited because of dose-dependent nephrotoxicity and hepatotoxicity. Several published reports advocate that supplementation with antioxidant can influence cisplatin induced hepatic damage.MethodIn the present study the Wistar rats were subjected to concurrent prophylactic oral treatment of chrysin (25 and 50 mg/kg b.wt.) against the hepatotoxicity induced by intraperitoneal administration of cisplatin (7.5 mg/kg b.wt.). Efficacy of chrysin against the hepatotoxicity was evaluated in terms of biochemical estimation of antioxidant enzyme activities, histopathological changes and expression levels of molecular markers of inflammation.ResultsChrysin ameliorated cisplatin-induced lipid peroxidation, xanthine oxidase activity, glutathione depletion, decrease in antioxidant (catalase, glutathione reductase, superoxide dismutase, glutathione peroxidase and glucose-6 phosphate dehydrogenase) and phase-II detoxifying (glutathione-S-transferase and quinone reductase) enzyme activities. Chrysin also attenuated expression of COX-2, iNOS and levels of NFκB and TNF-α, and hepatic tissue damage which were induced by cisplatin. Histological findings further supported the protective effects of chrysin against cisplatin-induced hepatic damage.ConclusionThe results of the present study demonstrate that oxidative stress and inflammation are closely associated with cisplatin-induced toxicity and chrysin shows the protective efficacy against cisplatin-induced hepatotoxicity possibly via attenuating the oxidative stress and inflammatory response.  相似文献   

7.
Clozapine (CLZ) was reported to be associated with hepatotoxicity. Glycyrrhetinic acid (GA) has a liver protective effect. Our preliminary experiments showed that GA aggravated rather than attenuated CLZ-induced hepatotoxicity in primary cultured rat hepatocytes. The study aimed to describe the enhancing effect of GA on CLZ-induced hepatotoxicity in vivo and in vitro. Data from primary cultured rat hepatocytes showed the decreased formation of metabolites demethylclozapine (nor-CLZ) and clozapine N-oxide (CLZ N-oxide). The results in vivo showed that 7-day CLZ treatment led to marked accumulation of triglyceride (TG) and increase in γ-glutamyl transpeptidase (γ-GT) activity, liver weight, and serum AST in rats. Co-administration of GA enhanced the increases in hepatic TG, γ-GT, liver weight, and serum total cholesterol induced by CLZ. GA decreased plasma concentrations of nor-CLZ and CLZ N-oxide. Compared with control rats, hepatic microsomes of GA rats exhibited the decreased formations of nor-CLZ and CLZ N-oxide, accompanied by decreases in activities of CYP2C11 and CYP2C19 and increased activity of CYP1A2. QT-PCR analysis demonstrated that GA enhanced expression of CYP1A2, but suppressed expression of CYP2C11 and CYP2C13. All these results support the conclusion that GA aggravated CLZ-induced hepatotoxicity, which was partly via inhibiting CYP2C11 and CYP2C13 or inducing CYP1A2.  相似文献   

8.
Although tert-butyl hydroperoxide (t-BHP) is commonly used to induce oxidative stress, little is known about the time- or dose-dependence of its oxidative effects. In this study, we examined hepatotoxicity and oxidative stress in male rats at various times (0–24 h) after t-BHP (0, 0.2, 0.5, 1 or 3 mmol/kg, ip) treatment. Serum hepatotoxicity parameters were increased from 2 h following 1 mmol/kg t-BHP and reached their maximum values at 8 h. Plasma malondialdehyde levels were maximally elevated by 62% at 0.5 h and returned to control levels by 4 h. Hepatic glutathione levels were decreased between 0.5 and 2 h, and hepatic glutathione disulfide levels were increased at 2 h. Interestingly, hepatic glutathione levels were increased at 24 h, which may be attributed to up-regulation of glutathione synthesis through induction of gamma-glutamylcysteine ligase expression. The elevation of hepatotoxic parameters and plasma MDA was observed from 0.5 to 1 mmol/kg t-BHP, respectively, in a dose-dependent manner. Considering that the maximal dose resulted in 20% lethality, 1 mmol/kg of t-BHP may be suitable for evaluating antioxidant activity of tested compounds. Our results provide essential information to characterize the t-BHP-induced oxidative stress and hepatotoxicity.  相似文献   

9.
The metabolism, hepatotoxicity, and hepatic DNA damage of 1,2-dibromoethane (EDB) and tetradeutero-1,2-dibromoethane (d4EDB) were compared in male Swiss-Webster mice. In vitro studies that measured bromide ion released from the substrate to monitor the rate of metabolism showed that the hepatic microsomal metabolism of EDB was significantly reduced by deuterium substitution, while metabolism by the hepatic glutathione S-transferases was unaffected. Three hours after ip administration of EDB or d4EDB (50 mg/kg), there was 42% less bromide in the plasma of d4EDB-treated mice than in the plasm of EDB-treated mice. This difference demonstrates a significant deuterium isotope effect on the metabolism of EDB in vivo. Although the metabolism of d4EDB was less than that of EDB 3 hr after exposure, the DNA damage caused by both analogs was not significantly different at this time point. At later time points (8, 24, and 72 hr), d4EDB caused significantly greater DNA damage than EDB. Since the decreased metabolism of d4EDB was apparently due to a reduced rate of microsomal oxidation, these data support the hypothesis that conjugation with GSH is responsible for the genotoxic effects of EDB.  相似文献   

10.
The objective of this study was to explicate the effects of feeding low trans structured fat from flaxseed oil (LF) on plasma and hepatic lipid metabolism involved in apo E−/− mice. The animals were fed a commercial shortening (CS), commercial low trans fat (CL) and LF diet based on AIN-76 diet (10% fat) for 12 weeks. LF supplementation exerted a significant suppression in hepatic lipid accumulation with the concomitant decrease in liver weight. The LF significantly lowered plasma total cholesterol and free fatty acid whereas it significantly increased HDL-C concentration and the HDL-C/total-C ratio compared to the CS group. Reduction of hepatic lipid levels in the LF group was related with the suppression of hepatic enzyme activities for fatty acid and triglyceride synthesis, and cholesterol regulating enzyme activity compared to the CS and CL groups. Accordingly, low trans structured fat from flaxseed oil is highly effective for improving hyperlipidemia and hepatic lipid accumulation in apo E−/− mice.  相似文献   

11.
12.
Exposure of hemodialysis patients to di-2-ethylhexyl phthalate   总被引:10,自引:0,他引:10  
The migration of di-2-ethylhexyl phthalate (DEHP) from dialyzers was studied in 21 patients with chronic renal failure undergoing maintenance hemodialysis. The circulating concentrations of DEHP were measured by high performance liquid chromatography in blood of patients obtained from the inlet and the outlet of the dialyzer during a 4-h dialysis session. During treatment of renal failure using plasticized tubing, the plasma level of DEHP increased. On average, an estimated 75.2 mg of DEHP was extracted from the dialyzer during a single dialysis session, with a range of 44.3-197. 1 mg. On the other hand, the total amount of DEHP retained by the patient during the dialysis session was evaluated by the difference between the AUCout and the AUCin and ranged from 3.6 to 59.6 mg. The rate of extraction of DEHP from the dialyzer was correlated (r=0.705, P<0.05) with serum lipid content (cholesterol and triglyceride).So, we confirmed that patients on hemodialysis are always regularly exposed to considerable amounts of DEHP. However, several metabolic effects have been reported in various animal species following treatment with DEHP, such as changes in lipid metabolism and in hepatic microsomal drug-metabolizing enzyme activities. DEHP is now a well-known hepatic peroxisomal proliferator in rodents and an inducer of many peroxisomal and non-peroxisomal enzymes. So, lipid metabolism modifications and hepatic changes observed in hemodialysis patients could be explained from chronic exposition to DEHP. In the coming years, it seems necessary to reconsider the use of DEHP as a plasticizer in medical devices. Highly unacceptable amounts of DEHP leached during the dialysis session could be easily avoided by careful selection of hemodialysis tubing.  相似文献   

13.
Maternal exposure to di(2-ethylhexyl)phthalate (DEHP) is associated with adverse effects on offspring, and the metabolites are agonists of peroxisome proliferator-activated receptor (PPAR) α, which exhibits species differences in expression and function. This study aimed to clarify the mechanism of DEHP-induced adverse effects on offspring in relation to maternal mouse and human PPARα. Male and female Sv/129 wild-type (mPPARα), Pparα-null and humanized PPARα (hPPARα) mice were treated with diets containing 0%, 0.01%, 0.05% (medium) or 0.1% (high) DEHP. After 4 weeks, males and females were mated. Dams were killed on gestational day 18 and postnatal day (PND) 2. High-dose DEHP decreased the number of total and live fetuses, and increased resorptions in mPPARα mice. In hPPARα mice, resorptions were increased above the medium dose, and the number of births was decreased at the high dose. The number of live pups on PND2 was decreased over the medium dose in mPPARα and at the high dose in hPPARα mice. No such findings were observed in Pparα-null mice. High-dose DEHP decreased plasma triglyceride in pregnant mPPARα mice, but not in Pparα-null and hPPARα ones. Above the medium dose in mPPARα mice significantly reduced hepatic microsomal triglyceride transfer protein (MTP) expression. Medium- and/or high-dose DEHP increased the levels of maternal PPARα target genes in mPPARα and hPPARα mice. Taken together, PPARα expression is required for the toxicity of DEHP in fetuses and pups and altered plasma triglyceride levels, through regulation of MTP may be important in mPPARα mice and not in hPPARα mice.  相似文献   

14.
Sorbic acid (SA) is one of the most commonly used food preservatives worldwide. Despite SA having no hepatotoxicity at legal dosages, its effect on hepatic lipid metabolism is still unclear. We investigated the effect of SA on hepatic lipid metabolism and its mechanism of action in C57BL/6 mice. Daily treatment with SA (1 g/kg in diet) for 4 weeks did not alter the body weight, organ weight, and blood lipids in mice. However, hepatic lipid accumulation, particularly that of triglycerides, fatty acids, and glycerol, but not cholesteryl ester and free cholesterol, was increased with SA treatment. Mechanistically, SA decreased the expression of proteins related to de novo fatty acid lipogenesis, fatty acid internalization, and very low-density lipoprotein (VLDL) secretion-related pathways, including sterol regulatory element-binding proteins, acetyl-coA carboxylase, fatty acid synthase, liver fatty acid-binding protein, CD36, and apolipoprotein E. In contrast, SA increased the expression of diacylglycerol O-acyltransferase 2, the key enzyme for triacylglycerol synthesis. Moreover, SA downregulated the protein expression of autophagy-related and β-oxidation-related pathways, the two major metabolic pathways for lipid metabolism, including LC-3, beclin-1, autophagy related protein 5 (ATG-5) and ATG-7, acyl-CoA synthetase long chain family member 1, carnitine palmitoyltransferase Iα, peroxisome proliferator-activated receptor α (PPARα), PPARγ, and PPARγ coactivator-1. Collectively, SA deregulates de novo lipogenesis and fatty acid internalization, VLDL secretion, autophagy, and β-oxidation in the liver, leading to impaired lipid clearance and ultimately, resulting in lipid accumulation in the liver.  相似文献   

15.
Effects on cholesterol biosynthesis of compounds known to alter hepatic microsomal drug metabolism were assessed in rats in vivo by measuring the simultaneous incorporation of tracer quantities of [1-14C]acetate and 3H2O into cholesterol. The incorporation of both substrates was increased with phenobarbital and decreased with CoCl2 treatment. No change in incorporation of either substrate was noted when rats were treated with metyrapone, piperonyl butoxide or pregnenolone-16α-carboni-trile (PCN). The effect of these compounds on the assessment in vivo of cholesterol biosynthesis may be accurately characterized by use of either precursor as substrate. Compounds which induce or inhibit rat hepatic microsomal drug metabolism do not necessarily alter hepatic cholesterol biosynthesis.  相似文献   

16.
BackgroundCisplatin is a major anti-cancer drug commonly used in the treatment of various cancers; nevertheless, the associated hepatotoxicity has limited its clinical application. The aim of this investigation is to test the impact of betaine supplementation on cisplatin-induced hepatotoxicity.MethodsAnimals were allocated into four groups; normal control group (control betaine group (250 mg/kg/day, po for twenty six days), cisplatin group (single injection of 7 mg/kg, ip) and betaine + cisplatin group (received betaine for twenty one days before cisplatin injection and daily after cisplatin for five days).ResultsCisplatin-induced liver injury was confirmed by increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Cisplatin elevated lipid peroxides, and reduced the concentrations of reduced glutathione (GSH), glutathione peroxidase (GSH-Px), catalase and superoxide dismutase (SOD) in hepatic tissues. Cisplatin increased the inflammatory mediators; nitrite and tumor necrosis factor-α (TNF- α) in hepatic tissues. Increased gene expressions of the apoptotic marker, caspase-3 and nuclear factor-kappa B (NF-κB) were observed in hepatic tissues of cisplatin-treated rats. All these changes were further confirmed by histopathological findings in cisplatin group. Pre-treatment with betaine reduced serum aminotransferases (ALT and AST), and lowered hepatic concentrations of lipid peroxides, nitrite and TNF-α while increased SOD, GSH, catalase, and GSH-Px concentrations. Moreover, the histological and immunohistochemical changes were improved.ConclusionThe suppression of NF-κβ-mediated inflammation, oxidative stress, and caspase-3 induced apoptosis are possible mechanisms to the observed hepatoprotective effect of betaine.  相似文献   

17.
Houttuynia cordata Thunb (Saururaceae) is a traditional medicinal herb used to treat several disease symptoms. The present study was focused on the hepatoprotective effects of H. cordata ethyl acetate extract in experimental mice. Further the antioxidant potential of the extract was also evaluated to substantiate its hepatoprotective properties. Carbon tetrachloride-induced hepatic damage in mice was used to measure the serum biochemical parameters. Morphological changes in hepatocyte architecture were studied by haematoxylin and eosin staining. In vitro alkyl and hydroxyl free radical scavenging assays were performed to evaluate the antioxidant effect. Administration of H. cordata extract significantly reduced the elevated serum levels and regulated the altered levels of serum cholesterol in carbon tetrachloride-treated mice (P<0.05). The morphological changes in hepatocyte architecture were also reversed by H. cordata treatment. Further, the extract showed significant antioxidant actions by scavenging the alkyl and hydroxyl free radicals. The concentration of the extract necessary for 50% scavenging of alkyl and hydroxyl radicals was 15.5 and 410 μg/ml, respectively. H. cordata extract exhibited significant hepatoprotective property in carbon tetrachloride-induced hepatotoxicity in mice. The strong antioxidant activities possessed by the extract might be responsible for such actions.  相似文献   

18.
Lead acetate (PbA) is one of the major environmental contaminants with grave toxicological consequences both in the developing and developed countries. The liver and erythrocyte antioxidant status and markers of oxidative were assessed. Exposure of rats to PbA led to significant decline (p < 0.05) in hepatic and erythrocyte glutathione peroxidase (GPx), glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), and reduced glutathione (GSH) content. Similarly, malondialdehyde (MDA) and H2O2 concentrations were significantly (p < 0.05) elevated. Histopathology and immunohistology of liver of rats exposed to PbA showed focal areas of necrosis and COX-2 expression after 6 weeks of PbA withdrawal. Taken together, hepatic and erythrocytes antioxidant defence system failed to recover after withdrawal of the exposed PbA for the period of the study. In conclusion, experimental animals exposed to PbA did not recover from hepatotoxicity and disruption of erythrocyte antioxidant defence system via free radical generation and oxidative stress.  相似文献   

19.
 The role of cytochrome P450 in the induction of hepatotoxicity by butyltin compounds such as tributyltin chloride (TBTC) and dibutyltin dichloride (DBTC) was investigated in vivo. The pretreatment of mice with SKF-525A, which decreased hepatic levels of cytochrome P450, suppressed TBTC-induced hepatotoxicity, as estimated by serum ornithine carbamyl transferase activity, whereas pretreatment with phenobarbital (PB), which increased the levels of cytochrome P450, enhanced the hepatotoxicity of TBTC. In the case of DBTC, PB pretreatment enhanced hepatotoxicity, while SKF-525A had no effect. Under these experimental conditions only PB pretreatment was found to increase hepatic levels of tin in mice treated with TBTC. These results suggest that hepatic metabolism of butyltin compounds by cytochrome P450 is more closely related to the induction of hepatotoxicity by TBTC than by DBTC. The active tin compounds formed during hepatic metabolism, which are responsible for induction of hepatotoxicity, will be discussed Received: 20 December 1994/Accepted: 20 April 1995  相似文献   

20.
Anthocyanins have been shown to exert anti-proliferative, anti-inflammatory effects and anti-carcinogenic activity. In the present work, we investigated the protective effects of anthocyanin fraction (AF) from purple sweet potato on tert-butyl hydroperoxide (t-BHP)-induced hepatotoxicity in HepG2 cell line and in rat liver. The result showed that the oral pretreatment of AF before t-BHP treatment significantly lowered the serum levels of the hepatic enzyme markers (ALT and AST) and reduced oxidative stress of the liver by evaluation of malondialdehyde and glutathione. Histopathological evaluation of the livers also revealed that AF reduced the incidence of liver lesions. The in vitro result showed that AF significantly reduced t-BHP-induced oxidative injury, as determined by cell cytotoxicity, intracellular glutathione content, lipid peroxidation, reactive oxygen species (ROS) levels, and caspases activation. Also, AF up-regulated antioxidant enzymes including heme oxygenase-1 (HO-1), NAD(P)H:quinone reductase, and glutathione S-transferase. Moreover, AF induced Nrf2 nuclear translocation and Akt and ERK1/2 activation, pathways that are involved in inducing Nrf2 nuclear translocation. Taken together, these results suggest that the protective effects of AF against t-BHP-induced hepatotoxicity may, at least in part, be due to its ability to scavenge ROS and to regulate the antioxidant enzyme HO-1 via the Akt and ERK1/2/Nrf2 signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号