首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is one of the most promising candidates for new cancer therapeutics. A current problem is that some cancers still remain resistant to TRAIL. We show for the first time that a naturally occurring flavonoid, baicalein, overcomes TRAIL resistance in cancer cells. The combination of baicalein and TRAIL effectively induced apoptosis in TRAIL-resistant colon cancer SW480 cells. Baicalein up-regulated the expression of death receptor 5 (DR5) among TRAIL receptors at the mRNA and protein levels. Suppression of this up-regulation with small interfering RNA (siRNA) efficiently reduced the apoptosis induced by TRAIL and baicalein, suggesting that the sensitization was mediated through DR5 induction. Moreover, baicalein also overcame TRAIL resistance with DR5 up-regulation in prostate cancer PC3 cells. Of note, the combination of TRAIL and baicalein hardly induced apoptosis in normal human cells, such as blood cells and hepatocytes. Baicalein increased DR5 promoter activity, and this enhanced activity was diminished by mutation of a CCAAT/enhancer-binding protein homologous protein (CHOP)-binding site in SW480 cells. In SW480 cells, CHOP siRNA blocked both functions of baicalein. CHOP expression was induced by baicalein in SW480 cells; however, in PC3 cells, baicalein scarcely induced CHOP and mutation of the CHOP-binding site did not abrogate the DR5 promoter activation by baicalein. Interestingly, baicalein induced reactive oxygen species (ROS) and a ROS scavenger prevented DR5 expression and TRAIL sensitization in PC3 but not SW480 cells. These results indicate that, using two different pathways, baicalein exposes cancer surveillance of TRAIL and overcomes TRAIL resistance in cancer cells.  相似文献   

2.
Qiu Y  Liu X  Zou W  Yue P  Lonial S  Khuri FR  Sun SY 《Cancer research》2007,67(10):4973-4980
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) preferentially induces apoptosis in transformed or malignant cells, thus exhibiting potential as a tumor-selective apoptosis-inducing cytokine for cancer treatment. Many studies have shown that the apoptosis-inducing activity of TRAIL can be enhanced by various cancer therapeutic agents. R115777 (tipifarnib) is the first farnesyltransferase inhibitor (FTI) that showed clinical activity in myeloid malignancies. In general, R115777, like other FTIs, exerts relatively weak effects on the induction of apoptosis in cancer cells with undefined mechanism(s). In the current study, we studied its effects on the growth of human lung cancer cells, including induction of apoptosis, and examined potential underlying mechanisms for these effects. We showed that R115777 induced apoptosis in human lung cancer cells, in addition to inducing G(1) or G(2)-M arrest. Moreover, we found that R115777 up-regulated the expression of death receptor 5 (DR5), an important death receptor for TRAIL, and exhibited an augmented effect on the induction of apoptosis when combined with recombinant TRAIL. Blockage of DR5 induction by small interfering RNA (siRNA) abrogated the ability of R115777 to enhance TRAIL-induced apoptosis, indicating that R115777 augments TRAIL-induced apoptosis through up-regulation of DR5 expression. Thus, our findings show the efficacy of R115777 in human lung cancer cells and suggest that R115777 may be used clinically in combination with TRAIL for treatment of human lung cancer.  相似文献   

3.
Lin YD  Chen S  Yue P  Zou W  Benbrook DM  Liu S  Le TC  Berlin KD  Khuri FR  Sun SY 《Cancer research》2008,68(13):5335-5344
The flexible heteroarotinoids (Flex-Het) represent a novel type of atypical retinoids lacking activity in binding to and transactivating retinoid receptors. Preclinical studies have shown that Flex-Hets induce apoptosis of cancer cells while sparing normal cells and exhibit anticancer activity in vivo with improved therapeutic ratios over conventional retinoid receptor agonists. Flex-Hets have been shown to induce apoptosis through activation of the intrinsic apoptotic pathway. The present study has revealed a novel mechanism underlying Flex-Het-induced apoptosis involving induction of death receptor 5 (DR5). The representative Flex-Het SHetA2 effectively inhibited the growth of human lung cancer cells in cell culture and in mice. SHetA2 induced apoptosis, which could be abrogated by silencing caspase-8 expression, indicating that ShetA2 triggers a caspase-8-dependent apoptosis. Accordingly, SHetA2 up-regulated DR5 expression, including cell surface levels of DR5, and augmented tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Importantly, small interfering RNA (siRNA)-mediated blockade of DR5 induction conferred cell resistance to SHetA2-induced apoptosis, as well as SHetA2/TRAIL-induced apoptosis. These results show that DR5 induction is a key component of apoptosis induced by SHetA2 or by SHetA2 combined with TRAIL. SHetA2 exerted CAAT/enhancer-binding protein homologous protein (CHOP)-dependent transactivation of the DR5 promoter. Consistently, SHetA2 induced CHOP expression, which paralleled DR5 up-regulation, whereas siRNA-mediated blockage of CHOP induction prevented DR5 up-regulation, indicating CHOP-dependent DR5 up-regulation by SHetA2. Collectively, we conclude that CHOP-dependent DR5 up-regulation is a key event mediating SHetA2-induced apoptosis.  相似文献   

4.
Kim EH  Yoon MJ  Kim SU  Kwon TK  Sohn S  Choi KS 《Cancer research》2008,68(1):266-275
The current study shows that treatment of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistant glioma cells with a combination of TRAIL and subtoxic doses of arsenic trioxide (As(2)O(3)) induces rapid apoptosis. Whereas TRAIL-mediated proteolytic processing of procaspase-3 was partially blocked in glioma cells, treatment with As(2)O(3) efficiently recovered TRAIL-induced activation of caspases. We also found that As(2)O(3) treatment of glioma cells significantly up-regulated DR5, a death receptor of TRAIL. Furthermore, suppression of DR5 expression by small interfering RNA (siRNA) inhibited As(2)O(3)/TRAIL-induced apoptosis of U87MG glioma cells, suggesting that DR5 up-regulation is critical for As(2)O(3)-induced sensitization of glioma cells to TRAIL-mediated apoptosis. Our results also indicate that an increase in CCAAT/enhancer binding protein homologous protein (CHOP) protein levels precedes As(2)O(3)-induced DR5 up-regulation. The involvement of CHOP in this process was confirmed by siRNA-mediated CHOP suppression, which not only attenuated As(2)O(3)-induced DR5 up-regulation but also inhibited the As(2)O(3)-stimulated TRAIL-induced apoptosis. These results therefore suggest that the CHOP-mediated DR5 up-regulation, brought about by As(2)O(3), stimulates the TRAIL-mediated signaling pathway. This in turn leads to complete proteolytic processing of caspase-3, which is partially primed by TRAIL in glioma cells. In contrast to human glioma cells, astrocytes were very resistant to the combined administration of As(2)O(3) and TRAIL, demonstrating the safety of this treatment. In addition, As(2)O(3)-mediated up-regulation of CHOP and DR5, as well as partial proteolytic processing of procaspase-3 by TRAIL, was not induced in astrocytes. Taken together, the present results suggest that the combined treatment of glioma cells with As(2)O(3) plus TRAIL may provide an effective and selective therapeutic strategy.  相似文献   

5.
6.
Death receptor 5 (DR5/TRAIL-R2) is an apoptosis-inducing membrane receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L). In this study, we showed that tunicamycin, a naturally occurring antibiotic, is a potent enhancer of TRAIL-induced apoptosis through up-regulation of DR5 expression. Tunicamycin significantly sensitized PC-3, androgen-independent human prostate cancer cells, to TRAIL-induced apoptosis. The tunicamycin-mediated enhancement of TRAIL-induced apoptosis was markedly blocked by a recombinant human DR5/Fc chimeric protein. Tunicamycin and TRAIL cooperatively activated caspase-8, -10, -9, and -3 and Bid cleavage and this activation was also blocked in the presence of the DR5/Fc chimera. Tunicamycin up-regulated DR5 expression at the mRNA and protein levels in a dose-dependent manner. Furthermore, the tunicamycin-mediated sensitization to TRAIL was efficiently reduced by DR5 small interfering RNA, suggesting that the sensitization was mediated through induction of DR5 expression. Tunicamycin increased DR5 promoter activity and this enhanced activity was diminished by mutation of a CHOP-binding site. In addition, suppression of CHOP expression by small interfering RNA reduced the tunicamycin-mediated induction of DR5. Of note, tunicamycin-mediated induction of CHOP and DR5 protein expression was not observed in normal human peripheral blood mononuclear cells. Moreover, tunicamycin did not sensitize the cells to TRAIL-induced apoptosis. Thus, combined treatment with tunicamycin and TRAIL may be a promising candidate for prostate cancer therapy.  相似文献   

7.
Combined treatment with a proteasome inhibitor and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising strategy for cancer therapy. Proteasome inhibitors induce the expression of death receptor 5 (DR5), a receptor for TRAIL, and sensitize cancer cells to TRAIL-induced apoptosis; however, the molecular mechanism of DR5 up-regulation has not been elucidated. In this study, we report that CCAAT/enhancer-binding protein homologous protein (CHOP) is a regulator of DR5 induction by proteasome inhibitor MG132. MG132 induced DR5 expression at a protein and mRNA level in prostate cancer DU145 cells. Furthermore, MG132 increased DR5 promoter activity. Using a series of deletion mutant plasmids containing DR5 promoters of various sizes, we found that MG132 stimulated the promoter activity via the region of -289 to -253. This region contained a CHOP-binding site. Site-directed mutation of the site abrogated the promoter activity enhanced by MG132. An electrophoretic mobility shift assay showed that CHOP directly bound to the MG132-responsive site on the DR5 promoter. Expression of the CHOP protein was increased with MG132 along with DR5 up-regulation. Furthermore, CHOP small interfering RNA attenuated the DR5 up-regulation due to MG132. These results indicate that the proteasome inhibitor MG132 induces DR5 expression through CHOP up-regulation.  相似文献   

8.
Development of resistance to TNF‐related apoptosis‐inducing ligand (TRAIL) in tumor cells is one of the important problems in cancer treatment. Despite the previous report demonstrating that oligomycin suppressed TNF‐induced apoptosis, in our screening of small molecules enhancing cancer cell death to TRAIL, oligomycin A (OMA) was found to enhance TRAIL‐induced apoptosis in HeLa cells. CCAAT/enhancer‐binding protein homologous protein (CHOP) was found to directly bind to death receptor 5 (DR5) promoter through endoplasmic reticulum stress (ER‐stress) signaling and sensitize the cells to TRAIL. Among ER‐stress associated proteins, OMA triggered the inositol‐requiring enzyme 1 (IRE1) signaling pathway, leading to X‐binding protein 1 (XBP1) splicing, CHOP expression and DR5 upregulation. In contrast, small‐interfering RNA (siRNA) of CHOP reduced the number of apoptotic cells in response to the co‐treatment of TRAIL and OMA. Collectively, our data suggest that OMA enhances apoptotic death of cervical cancer cells to TRAIL through upregulation of CHOP‐mediated DR5 expression following ER‐stress. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
Liu X  Yue P  Chen S  Hu L  Lonial S  Khuri FR  Sun SY 《Cancer research》2007,67(10):4981-4988
The proteasome inhibitor PS-341 (bortezomib or Velcade), an approved drug for treatment of patients with multiple myeloma, is currently being tested in clinical trials against various malignancies, including lung cancer. Preclinical studies have shown that PS-341 induces apoptosis and enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human cancer cells with undefined mechanisms. In the present study, we show that PS-341 induced caspase-8-dependent apoptosis, cooperated with TRAIL to induce apoptosis, and up-regulated death receptor 5 (DR5) expression in human non-small cell lung cancer (NSCLC) cells. DR5 induction correlated with the ability of PS-341 to induce apoptosis. Blockage of PS-341-induced DR5 up-regulation using DR5 small interfering RNA (siRNA) rendered cells less sensitive to apoptosis induced by either PS-341 or its combination with TRAIL, indicating that DR5 up-regulation mediates PS-341-induced apoptosis and enhancement of TRAIL-induced apoptosis in human NSCLC cells. We exclude the involvement of c-FLIP and survivin in mediating these events because c-FLIP (i.e., FLIP(S)) and survivin protein levels were actually elevated on exposure to PS-341. Reduction of c-FLIP with c-FLIP siRNA sensitized cells to PS-341-induced apoptosis, suggesting that c-FLIP elevation protects cells from PS-341-induced apoptosis. Thus, the present study highlights the important role of DR5 up-regulation in PS-341-induced apoptosis and enhancement of TRAIL-induced apoptosis in human NSCLC cells.  相似文献   

10.
Because available treatments have limited efficacy in triple‐negative breast cancer (TNBC), the identification of new therapeutic strategies to improve patients' outcome is urgently needed. In our study, we investigated the effects of the administration of the small molecule selective survivin suppressant YM155, alone or in association with CD34+ cells transduced with a replication‐deficient adenovirus encoding the human tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL) gene (CD34‐TRAIL+ cells), in three TNBC cell models. YM155 exposure significantly impaired TNBC cell growth and selectively modulated survivin expression at both mRNA and protein level. In addition, co‐culturing YM155‐treated TNBC cells with CD34‐TRAIL+ cells resulted in markedly increased cytotoxic effect and apoptotic response in comparison with single treatments. Such a chemosensitizing effect was observed only in TNBC cells inherently expressing DR5 and relied on the ability of YM155 to upregulate DR5 expression through a p38 MAPK‐ and CHOP‐dependent mechanism. YM155/CD34‐TRAIL+ combination also showed a significant inhibitory effect on the growth of DR5‐expressing TNBC cells following xenotransplantation into NOD/SCID mice, in the absence of toxicity. Overall, our data (i) provide, for the first time, evidence that YM155 sensitizes TNBC cells to CD34‐TRAIL+ cells‐induced apoptosis by a mechanism involving the downregulation of survivin and the simultaneous p38 MAPK‐ and CHOP‐mediated upregulation of DR5, and (ii) suggest the combination of YM155 with TRAIL‐armed CD34+ progenitor cells as a promising therapeutic option for patients with TNBC expressing DR5.  相似文献   

11.
Zou W  Liu X  Yue P  Zhou Z  Sporn MB  Lotan R  Khuri FR  Sun SY 《Cancer research》2004,64(20):7570-7578
Death receptor (DR) 4 or 5, on binding to its ligand, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), triggers apoptosis via activating the caspase-8-mediated caspase cascade. Certain anticancer drugs up-regulate the expression of these receptors and thereby induce apoptosis or enhance TRAIL-induced apoptosis. In this study, we explored the ability of methyl-2-cyano-3,12-dioxooleana-1,9-dien-28-oate (CDDO-Me) to activate the extrinsic DR-mediated apoptotic pathway in human lung cancer cells. We found that CDDO-Me not only activated caspase-8 but also induced expression of DRs, particularly DR5, in a p53-independent mechanism. Correspondingly, CDDO-Me augmented TRAIL-induced apoptosis in these cells regardless of p53 status as evidenced by enhanced DNA fragmentation and activation of caspase cascades, suggesting that CDDO-Me-induced DRs are functionally active. Moreover, silencing of DR5 expression using small interfering RNA suppressed apoptosis induced by CDDO-Me alone or by combination of CDDO-Me and TRAIL, indicating that DR5 up-regulation is required for induction of apoptosis by CDDO-Me and for enhancement of TRAIL-induced apoptosis by CDDO-Me. CDDO-Me rapidly activated c-Jun NH(2)-terminal kinase (JNK) before DR up-regulation and caspase-8 activation. Moreover, application of the JNK-specific inhibitor SP600125 blocked CDDO-Me-induced increases in JNK activation, DR up-regulation, caspase-8 activation, and DNA fragmentation. These results show that activation of JNK pathway results in CDDO-Me-induced DR up-regulation, caspase-8 activation, and apoptosis. Collectively, we conclude that CDDO-Me induces apoptosis via the JNK-mediated DR up-regulation in human lung cancer cells.  相似文献   

12.
The administration of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is one of the expected cancer therapeutics. However, improvements are required in therapies against TRAIL-resistant tumor cells. We report, here, that the anti-obesity drug orlistat enhances the sensitivity to TRAIL in hormone-refractory prostate cancer (HRPC) cells through two different pathways. The combination of orlistat and TRAIL remarkably induced apoptosis in TRAIL-resistant HRPC, DU145 and PC3 cells. Orlistat induced the expression of death receptor (DR) 5, which is one of the TRAIL receptors, at both the mRNA and protein levels. The suppression of DR5 with siRNA reduced the apoptosis induced by the combination of orlistat and TRAIL, suggesting that the apoptosis was at least partially due to the upregulation of DR5. Although the upregulation by orlistat of CHOP at both mRNA and protein levels was observed in both cell lines, the activation of the DR5 promoter in DU145 cells was CHOP-dependent, but that in PC3 cells was CHOP-independent. Moreover, orlistat induced reactive oxygen species (ROS), and a ROS scavenger diminished the sensitivity to TRAIL through the suppression of CHOP and DR5 expression in both cell lines. These results suggest that there are two pathways of upregulation of DR5 by orlistat, which are the ROS-CHOP pathway and the ROS-direct pathway. In conclusion, orlistat promotes the sensitivity to TRAIL by ROS-mediated pathways in prostate cancer cells, especially in TRAIL-resistant cells. We believe that the combination of orlistat and TRAIL in HRPC is promising as a new chemotherapeutic strategy.  相似文献   

13.
Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands are potential chemo-preventive agents. Many studies have shown that PPARy ligands induce apoptosis in various types of cancer cells including lung cancer cells. Some PPAR gamma ligands have been shown to downregulate c-FLIP expression and thus enhance tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in some cancer cell lines. In the current study, we further show that PPARy ligands induced the expression of death receptor 5 (DR5) and increased DR5 distribution at the cell surface in addition to reducing c-FLIP levels in human lung cancer cells. These agents cooperated with TRAIL to enhance induction of apoptosis in human lung cancer cells. Both overexpression of c-FLIP and knockdown of DR5 abrogated PPARgamma ligand's ability to enhance TRAIL-induced apoptosis. Thus, it appears that not only c-FLIP downregulation but also DR5 upregulation contribute to PPARy ligand-mediated enhancement of TRAIL-induced apoptosis in human lung cancer cells. Both the PPARgamma antagonist GW9662 and silencing PPARgamma expression failed to diminish PPARgamma ligand-induced DR5 upregulation or c-FLIP downregulation, indicating that PPARy ligands modulate the expression of DR5 and c-FLIP through a PPARy-independent mechanism. Collectively, we conclude that PPARy ligands exert PPARy-independent effects on inducing DR5 expression and downregulating c-FLIP levels, leading to enhancement of TRAIL-induced apoptosis.  相似文献   

14.
15.
Because tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively kills tumor cells, it is being tested in cancer patients. Unfortunately, patients develop resistance to the cytokine, therefore, agents that can sensitize cells to TRAIL are urgently needed. In this study, we investigated whether dibenzylideneacetone (DBA) can sensitize cancer cells to TRAIL and potentiates TRAIL-induced apoptosis. As indicated by accumulation of the membrane phospholipid phosphatidylserine, DNA breaks, intracellular esterase activity, and activation of caspase-8, -9, and -3, we concluded that DBA potentiated TRAIL-induced apoptosis in colon cancer cells. DBA also converted TRAIL resistant-cells to TRAIL-sensitive. When examined for the mechanism, we found that DBA decreased the expression of antiapoptotic proteins and decoy receptor-2 and increased proapoptotic proteins. DBA also induced both death receptor (DR)-5 and DR4. Knockdown of DR5 and DR4 by small interfering RNA (SiRNA) reduced the sensitizing effect of DBA on TRAIL-induced apoptosis. In addition, DBA increased the expression of CHOP proteins. Knockdown of CHOP by siRNA decreased the induction of DBA-induced DR5 expression and apoptosis. Induction of receptors by DBA, however, was p53-independent, as deletion of p53 had no effect on receptor induction. We observed that DBA-induced induction of DR5 and DR4 was mediated through generation of reactive oxygen species (ROS), as N-acetylcysteine blocked the induction of death receptors and suppression of cell survival proteins by DBA. Overall, our results show that DBA potentiates TRAIL-induced apoptosis through downregulation of cell survival proteins and upregulation of death receptors via activation of ROS and CHOP mediated pathways.  相似文献   

16.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (Apo2L/TRAIL) belongs to the TNF family known to transduce their death signals via cell membrane receptors. Because it has been shown that Apo2L/TRAIL induces apoptosis in tumor cells without or little toxicity to normal cells, this cytokine became of special interest for cancer research. Unfortunately, cancer cells are often resistant to Apo2L/TRAIL-induced apoptosis; however, this can be at least partially negotiated by parallel treatment with other substances, such as chemotherapeutic agents. Here, we report that cardiac glycosides, which have been used for the treatment of cardiac failure for many years, sensitize lung cancer cells but not normal human peripheral blood mononuclear cells to Apo2L/TRAIL-induced apoptosis. Sensitization to Apo2L/TRAIL mediated by cardiac glycosides was accompanied by up-regulation of death receptors 4 (DR4) and 5 (DR5) on both RNA and protein levels. The use of small interfering RNA revealed that up-regulation of death receptors is essential for the demonstrated augmentation of apoptosis. Blocking of up-regulation of DR4 and DR5 alone significantly reduced cell death after combined treatment with cardiac glycosides and Apo2L/TRAIL. Combined silencing of DR4 and DR5 abrogated the ability of cardiac glycosides and Apo2L/TRAIL to induce apoptosis in an additive manner. To our knowledge, this is the first demonstration that glycosides up-regulate DR4 and DR5, thereby reverting the resistance of lung cancer cells to Apo2/TRAIL-induced apoptosis. Our data suggest that the combination of Apo2L/TRAIL and cardiac glycosides may be a new interesting anticancer treatment strategy.  相似文献   

17.
目的:观察卡铂联合TNF相关凋亡诱导配体(TRAIL)对人肺腺癌细胞A549增殖和凋亡的影响。方法:经20、40、80 μg/mL卡铂和100 ng/μL TRAIL单用或联用处理后,用MTS法检测A549细胞的增殖能力,在光镜下观察细胞形态学变化;并采用流式细胞术检测细胞凋亡情况;RT-PCR和Western blot法检测死亡受体4(DR4)、死亡受体5(DR5)、Survivin和X连锁凋亡抑制蛋白基因(XIAP)mRNA与蛋白表达的变化。结果:卡铂和TRAIL单用或联用均可浓度依赖性抑制A549细胞的增殖,诱导其凋亡,两药联用比单用卡铂时抑制率和凋亡率更高(P<0.05)。单用卡铂或TRAIL可使A549细胞数减少,漂浮细胞增多,出现明显的凋亡形态变化,且明显降低Survivin和XIAP的mRNA和蛋白表达水平(P均<0.05);但对A549细胞DR4和DR5 mRNA表达均无明显影响,而单用卡铂或TRAIL却能升高A549细胞DR5蛋白的表达(P<0.05)。与单用组相比,TRAIL与卡铂联用A549细胞凋亡形态变化更明显,可明显降低A549细胞Survivin和XIAP mRNA和蛋白的表达水平及升高DR5蛋白表达水平(P<0.05)。结论:卡铂与TRAIL联用可协同抑制肺癌细胞A549细胞增殖,促进其凋亡,且与卡铂能够增加A549细胞DR5蛋白的表达和降低Survivin及XIAP的表达相关。  相似文献   

18.
19.
Sensitization of cancer cells to TRAIL could improve the effectiveness of TRAIL as an anticancer agent. We explored whether TRAIL in combination with phytosphingosine could sensitize cancer cells to TRAIL. The combined treatment enhanced synergistic apoptotic cell death of Jurkat T cells, compared to TRAIL or phytosphingosine alone. Enhanced apoptosis in response to the combination treatment was associated with caspase-8 activation-mediated Bax and Bak activation and mitochondrial dysfunction. The combination treatment also resulted in synergistic up-regulation of TRAIL receptor R1 (DR4) and R2 (DR5). siRNA targeting of DR5 significantly attenuated the combination treatment-induced caspase-8 activation, mitochondrial dysfunction, and apoptotic cell death. Upon stimulation of cells with the combination treatment, NF-kappaB was activated. Moreover, siRNA targeting of NF-kappaB significantly attenuated the combination treatment-induced DR4 and DR5 expression and receptor-mediated caspase-8 activation. These results indicate that phytosphingosine sensitizes cancer cells to TRAIL through the synergistic up-regulation of DR4 and DR5 in an NF-kappaB-dependent fashion resulting in caspase-8 activation and subsequent mitochondrial dysfunction. These findings support the potential application of combination treatment with TRAIL and phytosphingosine in the treatment of cancers that are less sensitive to TRAIL.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号