首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVES: The mechanisms by which hypothermia improves cardiac arrest (CA)-induced brain damage are unclear. The authors hypothesized that mild hypothermia induced before CA attenuates brain edema formation by preventing neutrophil-mediated dysfunction of the endothelial cell junction proteins. METHODS: Eighteen rats were randomized to normal control surgery (group 1, n = 6), normothermic (37.5 degrees C) CA (group 2, n = 6), or hypothermic (34 degrees C) CA (group 3, n = 6). Hypothermia was induced with external cooling before CA in group 3. Cardiac arrest was induced by 8 minutes of asphyxiation. Brain edema was determined by wet-to-dry weight ratio and cerebral spinal fluid pressure (CSFP). Brain neutrophil content was determined by myeloperoxidase (MPO) activity, and occludin degradation was assessed by western blotting. RESULTS: Normothermic CA significantly increased brain wet-to-dry weight ratio from 4.52 +/- 0.04 in group 1 to 4.80 +/- 0.04 in group 2 (p = 0.0003) and CSFP from 3.6 +/- 0.9 in group 1 to 8.9 +/- 0.9 mm Hg in group 2 (p = 0.004). Mild hypothermia before CA in group 3 significantly reduced brain wet-to-dry weight ratio (4.68 +/- 0.03, p = 0.008 vs. group 2) and CSFP (3.8 +/- 0.5 mm Hg, p = 0.004 vs. group 2). Cardiac arrest increased brain MPO from 0.07 +/- 0.025 in group 1 to 0.16 +/- 0.02 units/gram brain weight in group 2 (p = 0.006) that was not decreased by hypothermia before CA (0.12 +/- 0.02 in group 3 (p = 0.07 vs. group 2). There was no occludin proteolysis in any group. CONCLUSIONS: Mild hypothermia before CA decreases CA-induced brain edema. The hypothermia-elicited reduction in brain edema does not appear to be neutrophil-dependent and the early brain edema formation may not involve the proteolysis of occludin.  相似文献   

2.
OBJECTIVE: Brain edema occurs in experimental and clinical cardiac arrest (CA) and is predictive of a poor neurological outcome. N-Methyl--aspartate (NMDA) receptors contribute to brain edema elicited by focal cerebral ischemia/reperfusion (I/R). Ifenprodil, a NMDA receptor antagonist, attenuates brain edema and injury size in rats after focal cerebral I/R. We assessed the hypothesis that ifenprodil reduces CA-elicited brain edema. METHODS: Eighteen male Sprague-Dawley rats were assigned to group 1 (normal control, n=6), group 2 (placebo-treated CA, n=6), or group 3 (ifenprodil-treated CA, n=6). CA was induced by 8 min of asphyxiation and the animals were resuscitated with cardiopulmonary resuscitation (CPR), ventilation, epinephrine (adrenaline), and sodium bicarbonate (NaHCO3). Ifenprodil of 10 mg/kg or a placebo vehicle was given intraperitoneally 5 min before CA. Brain edema was determined by brain wet-to-dry weight ratio at 1 h after resuscitation. RESULTS: There were no differences between groups 2 and 3 in all physiological variables at baseline. Time from asphyxiation to CA was 201.5 +/- 7.5 s in group 2 and 160.7 +/- 10.4 s in group 3 (P<0.001). Resuscitation time was 68.2 +/- 13.3 s in group 2 and 92.8 +/- 18.2 s in group 3 (P<0.05). Ifenprodil decreased mean arterial pressure (MAP) before asphyxiation, from 128 +/- 7 in group 2 to 82 +/- 15 mmHg in group 3 (P<0.001), and negated immediate post-resuscitation hypertension. Brain wet-to-dry weight ratio was 5.64 +/- 0.44 in group 1, 7.34 +/- 0.95 in group 2 (P<0.01 versus group 1), and 5.93 +/- 0.40 in group 3 (P<0.05 versus group 2). CONCLUSIONS: Ifenprodil reduces CA-elicited brain edema. In addition, we observed significant hemodynamic changes caused by ifenprodil.  相似文献   

3.
OBJECTIVE: To study the effect of mild hypothermia on cerebral oxygen metabolism and brain function in piglets during reduced cerebral blood flow because of gradual reduction of the effective cerebral perfusion pressure (CPP). DESIGN: Comparison of two randomized treatment groups: normothermic group (NT; n = 7) and hypothermic group (HT; n = 7). SETTING: Work was conducted in the research laboratory of the Institute for Pathophysiology, Friedrich Schiller University, Jena, Germany. SUBJECTS: Fourteen piglets (14 days old) of mixed German domestic breed. INTERVENTION: Animals were anesthetized and mechanically ventilated. An epidural balloon was gradually inflated to increase intracranial pressure to 25 mm Hg, 35 mm Hg, and 45 mm Hg every 30 mins at adjusted mean arterial blood pressures. After determination of baseline CPP (NT, 79+/-14 mm Hg; HT, 84+/-9 mm Hg), CPP was reduced to approximately 70%, 50%, and 30% of baseline (NT, 38.1+/-0.5 degrees C; HT, 31.7+/-0.5 degrees C). MEASUREMENTS AND Main RESULTS: Every 25 mins after the gradual CPP reductions. Mild hypothermia induced a reduction of the cerebral metabolic rate of oxygen (CMRO2) to 50%+/-15% of baseline values (baseline values, 352+/-99 micromol x 100 g(-1) x min(-1)) (p < .05). Moreover, the electrocorticogram was altered to a pattern of reduced delta activity (p < .05) but unchanged higher frequency activity. The cerebral oxygen balance in HT animals remained improved until CPP reduction to 50%, indicated by a reduced cerebral arteriovenous difference of oxygen but elevated brain tissue Po2 (p < .05). Further CPP reduction gave rise to a strong CMRO2 reduction (NT, 19+/-21%; HT, 15+/-15%; p < .05). However, the high-frequency band of electrocorticogram was less reduced in hypothermic animals (p < .05). CONCLUSIONS: Mild whole body hypothermia improves cerebral oxygen balance by reduction of brain energy demand in juvenile piglets. The improvement of brain oxygen availability continues during a mild to moderate CPP decrease. A loss of the difference in CMRO2 between the hypothermic and normothermic piglets together with the fact that brain electrical activity was less suppressed under hypothermia during severe cerebral blood flow reduction indicates that hypothermic protection may involve some other mechanisms than reduction of brain oxidative metabolism.  相似文献   

4.
OBJECTIVES: To determine whether transient, moderate hypothermia is beneficial after traumatic brain injury in fentanyl-anesthetized rats. DESIGN: Prospective, randomized study. SETTING: University-based animal research facility. SUBJECTS: Adult male Sprague-Dawley rats. INTERVENTIONS: All rats were intubated, mechanically ventilated, and anesthetized with fentanyl (10 microg/kg intravenous bolus and then 50 microg.kg(-1).hr(-1) infusion). Controlled cortical impact was performed to the left parietal cortex, followed immediately by 1 hr of either normothermia (brain temperature 37 +/- 0.5 degrees C) or hypothermia (brain temperature 32 +/- 0.5 degrees C). Hypothermic rats were rewarmed gradually over 1 hr. Fentanyl anesthesia and mechanical ventilation were continued in both groups until the end of rewarming (2 hrs after traumatic brain injury). MEASUREMENTS AND MAIN RESULTS: Histologic assessment performed 72 hrs after traumatic brain injury was the primary outcome variable. Secondary outcome variables were physiologic variables monitored during the first 2 hrs after traumatic brain injury and plasma catecholamine and serum fentanyl concentrations measured at the end of both hypothermia and rewarming (1 and 2 hrs after traumatic brain injury). Contusion volume was larger in hypothermic vs. normothermic rats (44.3 +/- 4.2 vs. 28.6 +/- 4.0 mm, p <.05), but hippocampal neuronal survival did not differ between groups. Physiologic variables did not differ between groups. Plasma dopamine and norepinephrine concentrations were increased at the end of hypothermia in hypothermic (vs. normothermic) rats (p <.05), indicating that hypothermia augmented the systemic stress response. Similarly, serum fentanyl concentrations were higher in hypothermic (vs. normothermic) rats at the end of both hypothermia and rewarming (p <.05), demonstrating that hypothermia reduced the clearance and/or metabolism of fentanyl. CONCLUSIONS: Moderate hypothermia was detrimental after experimental traumatic brain injury in fentanyl-anesthetized rats. Since treatment with hypothermia has provided reliable benefit in experimental traumatic brain injury with inhalational anesthetics, these results indicate that the choice of anesthesia/analgesia after traumatic brain injury may dramatically influence response to other therapeutic interventions, such as hypothermia. Given that narcotics commonly are administered to patients after severe traumatic brain injury, this study may have clinical implications.  相似文献   

5.
BACKGROUND AND PURPOSE: although normothermic extracorporeal lung and heart assist (ECLHA) improves cardiac outcomes, patients can not benefit from hypothermia-mediated brain protection. The present study evaluated the effects of long-term ECLHA with mild to moderate hypothermia (33 degrees C) in a canine model of prolonged cardiac arrest. METHODS: 15 dogs were assigned to either the hypothermic (seven dogs, 33 degrees C) or normothermic group (eight dogs, 37.5 degrees C). All dogs were induced to normothermic ventricular fibrillation (VF) for 15 min, followed by 24 h of ECLHA and 72 h of intensive care. The hypothermia group maintained core (pulmonary artery) temperature at 33 degrees C for 20 h starting from resuscitation, then were rewarmed by 28 h. Outcome evaluations included: (1) mortality; (2) catecholamine dose; (3) time to extubation; (4) necrotic myocardial mass (g); and (5) neurological deficits score (NDS). RESULTS: in the normothermic group five dogs died of cardiogenic shock and one dog succumbed to poor oxygenation. The two surviving dogs remained comatose (NDS 60.5 +/- 4.9%) with necrotic myocardial mass of 14.5 +/- 3.5 g. In the hypothermic group, one dog died from pulmonary dysfunction, the other six dogs survived. The surviving dogs showed brain damage (29.8 +/- 2.5%), but there was evidence of some brain-protective effect. The mass of necrotic myocardium was 4.2 +/- 1.3 g in the hypothermic group or 3.4 times smaller than in the normothermic group. The survival rate was significantly higher in the hypothermic than in the normothermic group (P < 0.05). The catecholamine requirement was also lower in the hypothermic than in the normothermic dogs (P < 0.05). CONCLUSIONS: Long-term mild to moderate hypothermia with ECLHA induced immediately after cardiac arrest improved survival as well as cerebral and cardiac outcomes.  相似文献   

6.
背景:亚低温(28~35℃)正成为一种治疗急性缺血性卒中较有前景的方法,低温可有效地减轻脑水肿是其神经保护作用之一。目的:观察亚低温对大鼠脑缺血再灌注后脑含水量和水通道蛋白4(AQP4)表达的影响,探讨亚低温脑保护的作用机制。设计:随机对照实验。单位:徐州医学院神经生物实验室。材料:选择健康雄性SD大鼠110只,体质量250~300g,由徐州医学院实验动物中心提供[No.SYNK(苏)2002-0079]。应用SPSS11.0统计软件将大鼠随机分3组:①假手术组(n=10);②常温组(n=50);③亚低温组(33℃,n=50)。常温组及亚低温组又分为缺血后再灌注6h,1d,2d,3d,7d各亚组,每亚组各10只大鼠。每组中5只用于脑含水量测定,5只用于苏木精-伊红染色及免疫组织化学染色。方法:参考Pulsinelli方法对常温组及亚低温组大鼠制备四动脉结扎全脑缺血模型,缺血时间为15min。假手术组大鼠仅电凝双侧椎动脉及分离颈总动脉,不作结扎,手术后24h断头取脑。对常温组及亚低温组大鼠脑组织切片,HE染色及免疫组化染色,分别于再灌注后6h,1d,2d,3d,7d观察脑组织病理学和AQP4表达水平的动态变化;干湿重法测定各组大鼠各时间点脑含水量。主要观察指标:①常温组及亚低温组大鼠脑组织病理学变化。②所有大鼠各时间点脑含水量及AQP4表达水平。结果:①常温组大鼠在缺血再灌注后6h可见血管周围间隙增宽、细胞外间隙扩大、脑组织变疏松等脑组织水肿表现,以缺血再灌注后2d最明显;亚低温组大鼠各时间点与相应的常温组比较,脑组织水肿表现相对减轻。②常温组及亚低温组大鼠缺血再灌注后6h内即出现脑含水量增高,2d达高峰,7d时脑含水量明显减少,但仍高于假手术组。亚低温组脑含水量均较相应时间点的常温组少(6h,7d组P<0.01,余各组P<0.05)。③常温组及亚低温组大鼠AQP4表达水平在再灌注后6h增高,2d达最高水平,7d时明显降低,但仍较假手术组高。亚低温组AQP4表达水平均较相应时间点的常温组降低(P<0.01)。结论:脑缺血再灌注后AQP4表达水平的变化趋势与脑含水量变化趋势在时间上一致,表明AQP4表达上调可能是缺血性脑水肿形成的分子机制之一。亚低温可减轻缺血性脑水肿,而通过抑制AQP4表达可能是亚低温减轻缺血性脑水肿的作用机制之一。  相似文献   

7.
OBJECTIVES: Hypothermia improves outcomes after cardiac arrest (CA), while hyperthermia worsens injury. EEG recovers through periodic bursting from isoelectricity after CA, the duration of which is associated with outcome in normothermia. We quantified burst frequency to study the effect of temperature on early EEG recovery after CA. METHODS: Twenty-four rats were divided into three groups, based on 6h of hypothermia (T=33 degrees C), normothermia (T=37 degrees C), or hyperthermia (T=39 degrees C) immediately post-resuscitation from 7-min asphyxial CA. Temperature was maintained using surface cooling and re-warming. Neurological recovery was defined by 72-h neurological deficit score (NDS). RESULTS: Burst frequency was higher during the first 90min in rats treated with hypothermia (25.6+/-12.2min(-1)) and hyperthermia (22.6+/-8.3min(-1)) compared to normothermia (16.9+/-8.5min(-1)) (p<0.001). Burst frequency correlated strongly with 72-h NDS in normothermic rats (p<0.05) but not in hypothermic or hyperthermic rats. The 72-h NDS of the hypothermia group (74, 61-74; median, 25-75th percentile) was significantly higher than the normothermia (49, 47-61) and hyperthermia (43, 0-50) groups (p<0.001). CONCLUSIONS: In normothermic rats resuscitated from CA, early EEG burst frequency is strongly associated with neurological recovery. Increased bursting followed by earlier restitution of continuous EEG activity with hypothermia may represent enhanced recovery, while heightened metabolic rate and worsening secondary injury is likely in the hyperthermia group. These factors may confound use of early burst frequency for outcome prediction.  相似文献   

8.
INTRODUCTION: Cardiac arrest (CA) is associated with poor neurological outcome and is associated with a poor understanding of the cerebral hemodynamic and metabolic changes. The objective of this study was to determine the applicability of near-infrared spectroscopy (NIRS), to observe the changes in cerebral total hemoglobin (T-Hb) reflecting cerebral blood volume, oxygenation state of Hb, oxidized cytochrome oxidase (Cyto-C), and brain water content following CA. METHODS: Fourteen rats were subjected to normothermic (37.5 degrees C) or hypothermic (34 degrees C) CA induced by 8 min of asphyxiation. Animals were resuscitated with ventilation, cardiopulmonary resuscitation (CPR), and epinephrine (adrenaline). Hypothermia was induced before CA. NIRS was applied to the animal head to measure T-Hb with a wavelength of 808 nm (n = 10) and oxygenated/deoxygenated Hb, Cyto-C, and brain water content with wavelengths of 620-1120 nm (n = 4). RESULTS: There were no technical difficulties in applying NIRS to the animal, and the signals were strong and consistent. Normothermic CA caused post-resuscitation hyperemia followed by hypoperfusion determined by the level of T-Hb. Hypothermic CA blunted post-resuscitation hyperemia and resulted in more prominent post-resuscitation hypoperfusion. Both, normothermic and hypothermic CA resulted in a sharp decrease in oxygenated Hb and Cyto-C, and the level of oxygenated Hb was higher in hypothermic CA after resuscitation. There was a rapid increase in brain water signals following CA. Hypothermic CA attenuated increased water signals in normothermic CA following resuscitation. CONCLUSION: NIRS can be applied to monitor cerebral blood volume, oxygenation state of Hb, Cyto-C, and water content following CA in rats.  相似文献   

9.
To investigate the influence of hypothermic cardiopulmonary bypass (HCPB) at 25 degrees C and circulatory arrest at 18 degrees C on the global and regional cerebral blood flow (CBF) during pulsatile perfusion, we performed the following studies in a neonatal piglet model. Using a pediatric physiologic pulsatile pump, we subjected six piglets to deep hypothermic circulatory arrest (DHCA) and six other piglets to HCPB. The DHCA group underwent hypothermia for 25 min, DHCA for 60min, cold reperfusion for 10 min, and rewarming for 40 min. The HCPB group underwent 15 min of cooling, followed by 60 min of HCPB, 10min of cold reperfusion, and 30 min of rewarming. The following variables remained constant in both groups: pump flow (150 ml/kg/min), pump rate (150 bpm), and stroke volume (1 ml/kg). During the 60-min aortic crossclamp period, the temperature was kept at 18 degrees C for DHCA and at 25 degrees C for HCPB. The global and regional CBF (ml/100g/min) was assessed with radiolabeled microspheres. The CBF was 48% lower during deep hypothermia at 18degrees C (before DHCA) than during hypothermia at 25 degrees C (55.2 +/- 14.3ml/100g/min vs 106.4 +/- 19.7 ml/100 g/min; p < 0.05). After rewarming, the global CBF was 45% lower in the DHCA group than in the HCPB group 48.3 +/- 18.1 ml/100g/min vs (87 +/- 35.9ml/100g/min; p < 0.05). Fifteen minutes after the termination of CPB, the global CBF was only 25% lower in the DHCA group than in the HCPB group (42.2 +/- 20.7 ml/100 g/min vs 56.4 +/- 25.8ml/100g/min; p = NS). In the right and left hemispheres, cerebellum, basal ganglia, and brain stem, blood flow resembled the global CBF. In conclusion, both HCPB and DHCA significantly decrease the regional and global CBF during CPB. Unlike HCPB, DHCA has a continued negative impact on the CBF after rewarming. However, 15 min after the end of CPB, there are no significant intergroup differences in the CBF.  相似文献   

10.
OBJECTIVE: Human traumatic brain injury frequently results in secondary complications, including hypoxia. In previous studies, we have reported that posttraumatic hypothermia is neuroprotective and that secondary hypoxia exacerbates histopathologic outcome after fluid-percussion brain injury. The purpose of this study was to assess the therapeutic effects of mild (33 degrees C) hypothermia after fluid-percussion injury combined with secondary hypoxia. In addition, the importance of the rewarming period on histopathologic outcome was investigated. DESIGN: Prospective experimental study in rats. SETTING: Experimental laboratory in a university teaching hospital. INTERVENTION: Intubated, anesthetized rats underwent normothermic parasagittal fluid-percussion brain injury (1.8-2.1 atmospheres) followed by either 30 mins of normoxia (n = 6) or hypoxic (n = 6) gas levels and by 4 hrs of normothermia (37 degrees C). In hypothermic rats, brain temperature was reduced immediately after the 30-min hypoxic insult and maintained for 4 hrs. After hypothermia, brain temperature was either rapidly (n = 6) or slowly (n = 5) increased to normothermic levels. Rats were killed 3 days after traumatic brain injury, and contusion volumes were quantitatively assessed. MEASUREMENTS AND MAIN RESULTS: As previously shown, posttraumatic hypoxia significantly increased contusion volume compared with traumatic brain injury-normoxic animals (p <.02). Importantly, although posttraumatic hypothermia followed by rapid rewarming (15 mins) failed to decrease contusion volume, those animals undergoing a slow rewarming period (120 mins) demonstrated significantly (p <.03) reduced contusion volumes, compared with hypoxic normothermic rats. CONCLUSIONS: These data emphasize the beneficial effects of posttraumatic hypothermia in a traumatic brain injury model complicated by secondary hypoxia and stress the importance of the rewarming period in this therapeutic intervention.  相似文献   

11.
Lung fluid transport in aquaporin-1 and aquaporin-4 knockout mice   总被引:57,自引:0,他引:57       下载免费PDF全文
The mammalian lung expresses water channel aquaporin-1 (AQP1) in microvascular endothelia and aquaporin-4 (AQP4) in airway epithelia. To test whether these water channels facilitate fluid movement between airspace, interstitial, and capillary compartments, we measured passive and active fluid transport in AQP1 and AQP4 knockout mice. Airspace-capillary osmotic water permeability (Pf) was measured in isolated perfused lungs by a pleural surface fluorescence method. Pf was remarkably reduced in AQP1 (-/-) mice (measured in cm/s x 0.001, SE, n = 5-10: 17 +/- 2 [+/+]; 6.6 +/- 0.6 AQP1 [+/-]; 1.7 +/- 0.3 AQP1 [-/-]; 12 +/- 1 AQP4 [-/-]). Microvascular endothelial water permeability, measured by a related pleural surface fluorescence method in which the airspace was filled with inert perfluorocarbon, was reduced more than 10-fold in AQP1 (-/-) vs. (+/+) mice. Hydrostatically induced lung interstitial and alveolar edema was measured by a gravimetric method and by direct measurement of extravascular lung water. Both approaches indicated a more than twofold reduction in lung water accumulation in AQP1 (-/-) vs. (+/+) mice in response to a 5- to 10-cm H2O increase in pulmonary artery pressure for five minutes. Active, near-isosmolar alveolar fluid absorption (Jv) was measured in in situ perfused lungs using 125I-albumin as an airspace fluid volume marker. Jv (measured in percent fluid uptake at 30 min, n = 5) in (+/+) mice was 6.0 +/- 0.6 (37 degrees C), increased to 16 +/- 1 by beta-agonists, and inhibited to less than 2.0 by amiloride, ouabain, or cooling to 23 degrees C. Jv (with isoproterenol) was not affected by aquaporin deletion (18.9 +/- 2.2 [+/+]; 16.4 +/- 1.5 AQP1 [-/-]; 16.3 +/- 1.7 AQP4 [-/-]). These results indicate that osmotically driven water transport across microvessels in adult lung occurs by a transcellular route through AQP1 water channels and that the microvascular endothelium is a significant barrier for airspace-capillary osmotic water transport. AQP1 facilitates hydrostatically driven lung edema but is not required for active near-isosmolar absorption of alveolar fluid.  相似文献   

12.
OBJECTIVE: Therapeutic hypothermia during cardiac arrest and after restoration of spontaneous circulation enables intact survival after prolonged cardiopulmonary cerebral resuscitation (CPCR). The effect of cooling during CPCR is not known. We hypothesized that mild to moderate hypothermia during CPCR would increase the rate of neurologically intact survival after prolonged cardiac arrest in dogs. DESIGN: Randomized, controlled study using a clinically relevant cardiac arrest outcome model in dogs. SETTING: University research laboratory. SUBJECTS: Twenty-seven custom-bred hunting dogs (19-29 kg; three were excluded from outcome evaluation). INTERVENTIONS: Dogs were subjected to cardiac arrest no-flow of 3 mins, followed by 7 mins of basic life support and 10 mins of simulated unsuccessful advanced life support attempts. Another 20 mins of advanced life support continued with four treatments: In control group 1 (n = 7), CPCR was with normothermia; in group 2 (n = 6, 1 of 7 excluded), with moderate hypothermia via venovenous extracorporeal shunt cooling to tympanic temperature 27 degrees C; in group 3 (n = 6, 2 of 8 excluded), the same as group 2 but with mild hypothermia, that is, tympanic temperature 34 degrees C; and in group 4 (n = 5), with normothermic venovenous shunt. After 40 mins of ventricular fibrillation, reperfusion was with cardiopulmonary bypass for 4 hrs, including defibrillation to achieve spontaneous circulation. All dogs were maintained at mild hypothermia (tympanic temperature 34 degrees C) to 12 hrs. Intensive care was to 96 hrs. MEASUREMENTS AND MAIN RESULTS: Overall performance categories and neurologic deficit scores were assessed from 24 to 96 hrs. Regional and total brain histologic damage scores and extracerebral organ damage were assessed at 96 hrs.In normothermic groups 1 and 4, all 12 dogs achieved spontaneous circulation but remained comatose and (except one) died within 58 hrs with multiple organ failure. In hypothermia groups 2 and 3, all 12 dogs survived to 96 hrs without gross extracerebral organ damage (p < .0001). In group 2, all but one dog achieved overall performance category 1 (normal); four of six dogs had no neurologic deficit and normal brain histology. In group 3, all dogs achieved good functional outcome with normal or near-normal brain histology. Myocardial damage scores were worse in the normothermic groups compared with both hypothermic groups (p < .01). CONCLUSION: Mild or moderate hypothermia during prolonged CPCR in dogs preserves viability of extracerebral organs and improves outcome.  相似文献   

13.
OBJECTIVE: External cooling is commonly used to force induction of mild hypothermia but requires equipment, has a slow onset of action, and must be prolonged to provide permanent neurologic benefits after hypoxic-ischemia. It is unknown whether the method for inducing mild hypothermia affects neurologic outcome after near-drowning. The objective of the study was to induce mild hypothermia with neurotensin analog NT77 or external cooling in a rat model of near-drowning. We hypothesize that NT77 would be more effective for improving neurologic outcome than external cooling of the same duration. DESIGN: Rats were randomized to a normothermic control, neurotensin-induced hypothermia, brief external cooling, or prolonged external cooling group after asphyxial cardiac arrest. SETTING: Laboratory investigation. SUBJECTS: Forty-eight rats. INTERVENTIONS: Mild hypothermia was induced by external cooling for 4 hrs (brief external cooling) or 24 hrs (prolonged external cooling) or by neurotensin-induced hypothermia administration 30 mins after asphyxial cardiac arrest in rats. MEASUREMENTS: Outcome was assessed by a neurologic deficit score, the Morris water maze, and CA1 hippocampus histology 15 days after resuscitation. MAIN RESULTS: Neurologic deficit score at 72 hrs after asphyxial cardiac arrest was lower with neurotensin-induced hypothermia (score, 0) and prolonged external cooling (score, 0) vs. normothermic control (score, 20) and brief external cooling (score, 18; p <.05). Latency time in the Morris water maze 15 days after asphyxial cardiac arrest was decreased with neurotensin-induced hypothermia (14+/-11 secs) and prolonged external cooling (18+/-9 secs) vs. normothermic control (74+/-17 secs) and brief external cooling (78+/-18 secs, p <.05). There was less ischemic neuronal damage with neurotensin-induced hypothermia (28+/-24%) and prolonged external cooling (21+/-14%) vs. normothermic control (61+/-32%) and brief external cooling (51+/-32%). CONCLUSIONS: Neurotensin-induced hypothermia improved neurologic outcome after asphyxial cardiac arrest in rats vs. brief external cooling but was comparable to prolonged external cooling.  相似文献   

14.
The objective of this study was to investigate the effects of two hollow-fiber membrane oxygenators, the Capiox SX10 and the Lilliput 901, on pressure drop of the membranes during normothermic and hypothermic cardiopulmonary bypass (CPB) in neonates. METHODS: Twenty-six congenital heart surgery patients (n = 13 in each group) with a mean weight of 3 kg were included in this study. Pressure drops of the membranes, pre- and post-oxygenator extracorporeal circuit pressures (ECC) were recorded during normothermic CPB, hypothermic CPB (20 degrees C) and after rewarming. There were no differences between the groups in mean arterial pressure, pump flow rate, temperature, duration of CPB, crossclamp time or the severity of the surgical repairs. RESULTS: Pressure drop of the Capiox SX10 oxygenator was significantly lower during normothermic (32 +/- 10 versus 55 +/- 16 mmHg, p < 0.001), hypothermic (38 +/- 15 versus 72 +/- 18 mmHg, p < 0.001) and post-rewarming (42 +/- 13 versus 72 +/- 21 mmHg, p < 0.001) periods compared to the Lilliput oxygenator. In the Capiox group, the pre-oxygenator ECC pressure was also significantly lower during normothermic CPB (142 +/- 27 versus 184 +/- 43 mmHg, p < 0.01), hypothermic CPB (162 +/- 30 versus 199 +/- 38 mmHg, p < 0.01) and after rewarming periods (172 +/- 32 versus 212 +/- 42 mmHg, p < 0.01). Post-oxygenator pressures in the Capiox group were also lower than in the Lilliput group, but results were not statistically significant. CONCLUSIONS: These results suggest that the Capiox SX10 hollow-fiber membrane oxygenator produced significantly lower membrane pressure drops and pre- and post-oxygenator ECC during normothermic and hypothermic CPB. Thus, blood trauma with the Capiox during extracorporeal circulation may be significantly lower compared to the Lilliput. Further studies, including the level of complements, platelets, neutrophils and cytokines, with these oxygenators are warranted.  相似文献   

15.
Faddy SC 《Resuscitation》2002,52(2):159-165
Hypothermia during brain ischemia can improve neurological outcome. This study tested whether local cranial cooling during the low-flow state of cardiopulmonary resuscitation (CPR) could produce clinically significant cerebral cooling. Ice was applied to the heads and necks of subjects (hypothermia group) with out-of-hospital cardiac arrest (OOHCA) during CPR. Nasopharyngeal and tympanic temperatures were measured as surrogates for cerebral temperature. The rate of cranial cooling in the hypothermia group (-0.06 +/- 0.06 degrees C/min) was not significantly increased compared with a control group without ice (-0.04 +/- 0.07 degrees C/min), although older age was associated with more rapid cranial cooling. Of note, many subjects with OOHCA are already mildly hypothermic (mean cranial temperature= 35.0 +/- 1.2 degrees C) when they are first encountered in the field. This study suggests that brief cranial cooling is ineffective for rapidly lowering brain temperature. However, most cardiac arrest victims are spontaneously mildly hypothermic and preventing rewarming may provide some of the desired benefits of cerebral hypothermia.  相似文献   

16.
INTRODUCTION: Therapeutic hypothermia after resuscitation has been shown to improve the outcome regarding neurological state and to reduce mortality. The earlier hypothermia therapy is induced probably the better. We studied the induction of hypothermia with a large volume of intravenous ice-cold fluid after cardiac arrest during ongoing cardiopulmonary resuscitation (CPR). METHODS: Twenty anaesthetised piglets were subjected to 8 min of ventricular fibrillation, followed by CPR. They were randomized into two groups. The hypothermic group was given an infusion of 4 degrees C acetated Ringer's solution 30 ml/kg at an infusion rate of 1.33 ml/kg/min, starting after 1 min of CPR. The control group received the same infusion at room temperature. All pigs received a bolus dose of vasopressin after 3 min of CPR. After 9 min, defibrillatory shocks were applied to achieve restoration of spontaneous circulation (ROSC). Core temperature and haemodynamic variables were measured at baseline and repeatedly until 180 min after ROSC. Cortical cerebral blood flow was measured, using Laser-Doppler flowmetry. RESULTS: All pigs had ROSC, except one animal in the hypothermic group. Only one animal in the hypothermic group died during the observation period. The calculated mean temperature reduction was 1.6+/-0.35 degrees C (S.D.) in the hypothermic group and 1.1+/-0.37 degrees C in the control group (p=0.009). There was no difference in cortical cerebral blood flow and haemodynamic variables. CONCLUSION: Inducing hypothermia with a cold infusion seems to be an effective method that can be started even during ongoing CPR. This method might warrant consideration for induction of early therapeutic hypothermia in cardiac arrest victims.  相似文献   

17.

Purpose

The induction of deep cerebral hypothermia (15°C) via large-volume cold (4°C) saline aortic flush during cardiac arrest and resuscitation with cardiopulmonary bypass improves neurologic outcome in pigs. We hypothesized that induction of mild cerebral hypothermia (33°C) via smaller volume and resuscitation without bypass will improve survival and neurologic outcome after 15 minutes of cardiac arrest as compared with conventional resuscitation attempts.

Basic Procedures

Twenty-four pigs (29-38 kg) underwent ventricular fibrillation cardiac arrest for 15 minutes. Conventional resuscitation (n = 8) was compared with hypothermic (4°C, n = 8) and normothermic (38.5°C, n = 8) aortic flush (30 mL/kg) at the beginning of resuscitation efforts, with defibrillation attempts 2 minutes later. Outcomes after 9 days were compared.

Main Findings

In the hypothermic flush group, brain temperature decreased from 38.3°C ± 0.5°C to 33°C ± 0.5°C within 277 ± 112 seconds. We observed considerably higher mean coronary perfusion pressures in the normothermic and hypothermic flush groups (hypothermic vs conventional, P = .023; normothermic vs conventional, P = .041). Three animals of each flush group, compared with none of the conventional group, achieved restoration of spontaneous circulation (P = .2); and 3 pigs of the hypothermic flush group and 2 pigs of the normothermic flush group survived to 9 days without differences in neurologic outcome.

Principal Conclusion

A smaller volume, cold saline aortic flush during prolonged cardiac arrest rapidly induces mild cerebral hypothermia to 33°C and improves coronary perfusion pressure but does not result in a significant improvement in outcome as compared with conventional resuscitation attempts.  相似文献   

18.
Prolonged therapeutic hypothermia (32-34 degrees C for 12-24 h) improves the functional outcome of comatose cardiac arrest survivors. It is generally believed that rapidly achieving target temperature optimizes neuroprotection. However, this hypothesis has not been tested systematically. In this study, we compared the neuroprotective effect of prolonged hypothermia initiated between 0 and 8 h after reoxygenation using an in vitro model of simulated global brain ischemia. Organotypic hippocampal slices were prepared from 5-day-old Wistar rat pups and cultured for 1 week prior to analysis. Ischemia was simulated by normothermic oxygen-glucose deprivation (OGD). Hypothermia (33 degrees C) was initiated 0-8 h after reoxygenation and maintained until 24 h post-injury. CA1 regional cell death was quantified by propidium iodide (PI) fluorescence. Release of 14-3-3 beta protein was evaluated as a potential surrogate maker for neuroprotection. Hypothermia initiated 0, 1, 2, or 4 h after 30 min OGD reduced 24 h CA1 regional PI fluorescence by 47 +/- 34%, 85 +/- 4%, 88 +/- 3%, and 88 +/- 5% (P < 0.05 for all versus normothermic reoxygenation). Direct comparison of hypothermia initiated 4 or 8 h after reoxygenation revealed equivalent neuroprotection following 15 and 30 min OGD, but neither was protective after 60 min OGD. Hypothermia initiated 4 or 8 h after 30 min OGD reduced 14-3-3 beta release by 73 +/- 11% and 92 +/- 4%, respectively (P < 0.01 for both versus normothermic reoxygenation). In this model, the neuroprotective effect of prolonged post-ischemic hypothermia is both optimal and equivalent when initiated between 1 and 8 h after reoxygenation. These results suggest the need for further in vivo studies to define the therapeutic window within which prolonged hypothermia is optimally neuroprotective after cardiac arrest.  相似文献   

19.
BACKGROUND: International guidelines (2000) do not recommend vasopressor and antiarrhythmic medications during ventricular fibrillation (VF) with a core temperature below 30 degrees C. The efficacy of normothermic AHA algorithms using standard doses of epinephrine (EPI) (adrenaline) followed by amiodarone (AMIO) in hypothermic VF is uncertain. OBJECTIVES: To determine the effects of EPI followed by the combination of EPI/AMIO in the treatment of VF in a canine model of severe hypothermia. METHODS: An un-blinded, placebo controlled experiment using 21 mechanically ventilated dogs. Coronary perfusion pressure (CPP), temperature, and electrocardiogram (ECG) were monitored. Animals were cooled to 22 degrees C or the onset of spontaneous VF. VF was induced if necessary. Animals in the treatment group received EPI (0.01 mg/kg IV) and defibrillation. This was followed by EPI (0.01 mg/kg IV), AMIO (10 mg/kg IV) and defibrillation if there was no sustained return of spontaneous circulation (ROSC) for 15 min. RESULTS: Mean CPP in the treatment group increased after the administration of EPI/AMIO (24.7+/-13.3 mmHg to 46.6+/-7.7 mmHg, p<0.004). Cumulatively, the administration of EPI followed by EPI/AMIO achieved ROSC after defibrillation in 10 of 11 animals compared to 3 of 10 in the control group (91% versus 30%, n=21, p=0.0075). CONCLUSIONS: In this model of severe hypothermia, the use of standard 2000 protocols for VF resulted in a significant increase of CPP, and, a higher ROSC rate compared to placebo controls. This study suggests that AHA normothermic algorithms may be beneficial in severe hypothermia.  相似文献   

20.
OBJECTIVE: During hypothermic cardiopulmonary resuscitation with a body core temperature <30 degrees C administration of a vasopressor to support coronary perfusion pressure is controversial. The purpose of the current study was to assess the effects of a single 0.4-unit/kg dose of vasopressin on coronary perfusion pressure, defibrillation success, and 1-hr survival in a pig model of hypothermic closed-chest cardiopulmonary resuscitation combined with rewarming. DESIGN: Prospective, randomized study in an established pig model. SETTING: University hospital research laboratory. SUBJECTS: Fifteen 12- to 16-wk-old domestic pigs. INTERVENTIONS: Pigs were surface cooled to a body core temperature of 26 degrees C and ventricular fibrillation was induced. After 15 mins of untreated cardiac arrest, manual closed-chest cardiopulmonary resuscitation and thoracic lavage with 40 degrees C warmed tap water were started. After 3 mins of external chest compression, animals were assigned randomly to receive vasopressin (0.4 units/kg, n = 8; or saline placebo, n = 7). Defibrillation was attempted 10 mins after drug administration. MEASUREMENTS AND MAIN RESULTS: Compared with saline placebo treated-animals, coronary perfusion pressure in vasopressin-treated pigs was significantly higher 90 secs (36 +/- 5 mm Hg vs. 7 +/- 4 mm Hg, p =.000) to 10 mins (24 +/- 4 mm Hg vs. 8 +/- 4 mm Hg, p =.000) after drug administration. Restoration of spontaneous circulation and 1 hr survival were significantly higher in vasopressin animals compared with saline placebo (8 of 8 vasopressin pigs vs. 0 of 7 placebo pigs, p <.001). CONCLUSIONS: A single 0.4-unit/kg dose of vasopressin administered at a body core temperature <30 degrees C significantly improved defibrillation success and 1-hr survival in a pig model of hypothermic cardiopulmonary resuscitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号