首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Revue neurologique》2014,170(12):739-748
Recent advances in the understanding of Alzheimer's disease pathogenesis have led to the development of numerous compounds that might modify the disease process. Amyloid β peptide represents an important molecular target for intervention in Alzheimer's disease. The main purpose of this work is to review immunotherapy studies in relation to the Alzheimer's disease. Several types of amyloid β peptide immunotherapy for Alzheimer's disease are under investigation, active immunization and passive administration with monoclonal antibodies directed against amyloid β peptide. Although immunotherapy approaches resulted in clearance of amyloid plaques in patients with Alzheimer's disease, this clearance did not show significant cognitive effect for the moment. Currently, several amyloid β peptide immunotherapy approaches are under investigation but also against tau pathology. Results from amyloid-based immunotherapy studies in clinical trials indicate that intervention appears to be more effective in early stages of amyloid accumulation in particular solanezumab with a potential impact at mild Alzheimer's disease, highlighting the importance of diagnosing Alzheimer's disease as early as possible and undertaking clinical trials at this stage. In both phase III solanezumab and bapineuzumab trials, PET imaging revealed that about a quarter of patients lacked fibrillar amyloid pathology at baseline, suggesting that they did not have Alzheimer's disease in the first place. So a new third phase 3 clinical trial for solanezumab, called Expedition 3, in patients with mild Alzheimer's disease and evidence of amyloid burden has been started. Thus, currently, amyloid intervention is realized at early stage of the Alzheimer's disease in clinical trials, at prodromal Alzheimer's disease, or at asymptomatic subjects or at risk to develop Alzheimer's disease and or at asymptomatic subjects with autosomal dominant mutation.  相似文献   

2.
Extensive evidence has indicated that the breakdown of myelin is associated with Alzheimer's disease (AD) since the vulnerability of oligodendrocytes under Alzheimer's pathology easily induces the myelin breakdown and the loss of the myelin sheath which might be the initiating step in the changes of the earliest stage of AD prior to appearance of amyloid and tau pathology. Considerable research implicated that beta-amyloid (Aβ)-mediated oligodendrocyte dysfunction and myelin breakdown may be via neuroinflammation, oxidative stress and/or apoptosis. It also seems that the oligodendrocyte dysfunction is triggered by the formation of neurofibrillary tangles (NFTs) through inflammation and oxidative stress as the common pathophysiological base. Impaired repair of oligodendrocyte precursor cells (OPCs) might possibly enhance the disease progress under decreased self-healing ability from aging process and pathological factors including Aβ pathology and/or NFTs. Thus, these results have suggested that targeting oligodendrocytes may be a novel therapeutic intervention for the prevention and treatment of AD.  相似文献   

3.
As the world''s population continues to age, Alzheimer''s disease presents a homing public health crisis that left unchecked, threatens to overwhelm health care systems throughout the developed world, in order to significantly tackle the most catastrophic and devastating symptom of Alzheimer''s disease (AD)-dementia-we must be able to detect the disease prior to the onset of clinical symptoms, and be able to offer patients preventative treatments that block or significantly slow disease progression. This review summarizes a variety of the most promising early detection methods for Alzheimer''s disease (AD) and mild cognitive impairment (MCI) that could be used to identify those at high risk of developing the disease and used for monitoring disease progression and response to investigational treatments, in addition, treatment research programs that could be developed into disease-modifying treatments that significantly delay the development of dementia are highlighted. These potential treatments target many different pathways, and may one day be dosed in combination to increase efficacy and prevent cognitive deterioration in patients with AD. While we still face numerous challenges, AD researchers have made great progress in understanding disease mechanisms. As we have seen in the treatment of heart disease, even modest preventative treatments can have hugely significant clinical outcomes and drastically reduce disease prevalence on a population scale. Therefore, there is hope that the development of prophylactic treatments, combined with improved early detection methods, will provide dramatic relief for millions of aging individuals threatened by the specter of Alzheimer''s disease.  相似文献   

4.
Longitudinal positron emission tomography (PET) imaging of beta-amyloid is used in basic research and in drug efficacy trials in Alzheimer''s disease (AD). However, the extent of amyloid accumulation after clinical onset is not fully known. Importantly, regional PET data are typically quantified using the standardized uptake value ratio (SUVR), which according to simulations is sensitive to changes in regional cerebral blood flow (rCBF). We aimed to better understand the potentials of longitudinal amyloid imaging by disentangling the influence of blood flow on SUVR using experimental data. [18F]AV-45 PET data from 101 subjects, ranging from cognitively normal to AD patients, in the Alzheimer''s Disease Neuroimaging Initiative were extracted. The relationship between global cortical distribution volume ratio, indicator of rCBF (R1), and SUVR was examined using multilinear regression. There was a significant effect of rCBF on SUVR. The effect increased by disease severity. Results suggest that changes in rCBF can produce apparent changes in SUVR in AD. Therefore, future longitudinal studies should measure amyloid changes in a way not sensitive to this effect, ideally using quantitative PET imaging. Furthermore, the results suggest no true accumulation beyond clinical onset and highlight the risks of longitudinal amyloid imaging in drug trials in AD.  相似文献   

5.
Diagnosis and treatment strategies for dementia are based on the sensitive and specific detection of the incipient neuropathological characteristics, combined with emerging treatments that counteract molecular processes in its pathogenesis. Positron emission tomography (PET) is used for diverse clinical and basic studies on dementia with a wide range of radiotracers. Approaches to visualize amyloid deposition in human brains non‐invasively with PET depend on imaging agents reacting with amyloid fibrils. The most widely used tracer is [11C]‐6‐OH‐BTA‐1, also known as Pittsburgh Compound‐B, which has a high affinity to amyloid β peptide (Aβ) aggregates. Some 18F‐labeled amyloid ligands with a longer radioactive half‐life have also been developed for broader clinical applications. In addition, there have been demonstrated advantages of tracers with high specific radioactivity in the sensitive detection of amyloid, which have indicated the significance of Aβ‐N3‐pyroglutamate as a new diagnostic and therapeutic target. Furthermore, beneficial outcomes of Aβ and tau immunization in humans and mouse models have highlighted crucial roles of immunocompetent glia in the protection of neurons against amyloid toxicities. The utility of PET with a radioligand for translocator protein as a biomarker for tau‐triggered toxicity, and as a complement to amyloid and tau imaging for diagnostic assessment of tauopathies with and without Aβ pathologies, has also been demonstrated. Meanwhile, brain cholinergic function can be estimated by measuring acetylcholinesterase activity in the brain with PET and radiolabeled acetylcholine analogues. It has been reported that patients with early Parkinson's disease exhibit a reduction in acetylcholinesterase activity in the cerebral cortex, and this decline is more profound in patients with Parkinson's disease with dementia and dementia with Lewy bodies than in patients with Parkinson's disease without dementia. The Alzheimer's Disease Neuroimaging Initiative was a multicentre research project conducted over 6 years that studied changes in cognition, brain structure, and biomarkers in healthy elderly controls and subjects with mild cognitive impairment and Alzheimer's disease. An international workgroup of the National Institute on Aging‐Alzheimer's Association has suggested that Alzheimer's disease would be optimally treated before significant cognitive impairment, defined as a ‘presymptomatic’ or ‘preclinical’ stage. Therefore, PET will be of technical importance for both clinical and basic research aimed at prodromal pathologies of Alzheimer's disease.  相似文献   

6.
Recently, ~16% of participants in an anti‐Aβ passive immunotherapy trial for mild‐to‐moderate Alzheimer disease (AD) had a negative baseline amyloid positron emission tomography (PET) scan. Whether they have AD or are AD clinical phenocopies remains unknown. We examined the 2005–2013 National Alzheimer's Coordinating Center autopsy database and found that ~14% of autopsied subjects clinically diagnosed with mild‐to‐moderate probable AD have no or sparse neuritic plaques, which would expectedly yield a negative amyloid PET scan. More than half of these “Aβ‐negative” subjects have low neurofibrillary tangle Braak stages. These findings support the implementation of a positive amyloid biomarker as an inclusion criterion in future anti‐Aβ drug trials. Ann Neurol 2014;75:597–601  相似文献   

7.
The longer and neurotoxic species of amyloid‐β protein (Aβ), Aβ42 and Aβ43, contribute to Aβ accumulation in Alzheimer's disease (AD) pathogenesis and are considered to be the primary cause of the disease. In contrast, the predominant secreted form of Aβ, Aβ40, inhibits amyloid deposition and may have neuroprotective effects. We have reported that angiotensin‐converting enzyme (ACE) converts Aβ42 to Aβ40 and that Aβ43 is the earliest‐depositing Aβ species in the amyloid precursor protein transgenic mouse brain. Here we found that Aβ43 can be converted to Aβ42 and to Aβ40 in mouse brain lysate. We further identified the brain Aβ43‐to‐Aβ42‐converting enzyme as ACE2. The purified human ACE2 converted Aβ43 to Aβ42, and this activity was inhibited by a specific ACE2 inhibitor, DX600. Notably, the combination of ACE2 and ACE could convert Aβ43 to Aβ40. Our results indicate that the longer, neurotoxic forms of Aβ can be converted to the shorter, less toxic or neuroprotective forms of Aβ by ACE2 and ACE. Moreover, we found that ACE2 activity showed a tendency to decrease in the serum of AD patients compared with normal controls, suggesting an association between lower ACE2 activity and AD. Thus, maintaining brain ACE2 and ACE activities may be important for preventing brain amyloid neurotoxicity and deposition in Alzheimer's disease. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
Here, we review progress by the Penn Biomarker Core in the Alzheimer's Disease Neuroimaging Initiative (ADNI) toward developing a pathological cerebrospinal fluid (CSF) and plasma biomarker signature for mild Alzheimer's disease (AD) as well as a biomarker profile that predicts conversion of mild cognitive impairment (MCI) and/or normal control subjects to AD. The Penn Biomarker Core also collaborated with other ADNI Cores to integrate data across ADNI to temporally order changes in clinical measures, imaging data, and chemical biomarkers that serve as mileposts and predictors of the conversion of normal control to MCI as well as MCI to AD, and the progression of AD. Initial CSF studies by the ADNI Biomarker Core revealed a pathological CSF biomarker signature of AD defined by the combination of Aβ1-42 and total tau (T-tau) that effectively delineates mild AD in the large multisite prospective clinical investigation conducted in ADNI. This signature appears to predict conversion from MCI to AD. Data fusion efforts across ADNI Cores generated a model for the temporal ordering of AD biomarkers which suggests that Aβ amyloid biomarkers become abnormal first, followed by changes in neurodegenerative biomarkers (CSF tau, F-18 fluorodeoxyglucose-positron emission tomography, magnetic resonance imaging) with the onset of clinical symptoms. The timing of these changes varies in individual patients due to genetic and environmental factors that increase or decrease an individual's resilience in response to progressive accumulations of AD pathologies. Further studies in ADNI will refine this model and render the biomarkers studied in ADNI more applicable to routine diagnosis and to clinical trials of disease modifying therapies.  相似文献   

9.
Vascular abnormalities are a key feature of Alzheimer''s disease (AD). Imaging of cerebral vascular reactivity (CVR) is a powerful tool to investigate vascular health in clinical populations although the cause of reduced CVR in AD patients is not fully understood. We investigated the specific role of tau pathology in CVR derangement in AD using the rTg4510 mouse model. We observed an increase in CVR in cortical regions with tau pathology. These data suggest that tau pathology alone does not produce the clinically observed decreases in CVR and implicates amyloid pathology as the dominant etiology of impaired CVR in AD patients.  相似文献   

10.
Brain imaging methods can be used to track declines in the cerebral metabolic rate for glucose (CMRgl) in the absence of symptoms in persons and laboratory animals at risk for Alzheimer's disease (AD). In fluorodeoxyglucose (FDG) positron emission tomography studies, late middle-aged, cognitively normal carriers of a common Alzheimer's susceptibility gene (the apolipoprotein E ε4 allele) had progressively reduced CMRgl in the same regions of the brain as patients with Alzheimer's dementia. In an FDG autoradiography study, transgenic mice carrying two copies of an Alzheimer's gene (a mutation in the amyloid precursor protein gene) had a similar CMRgl pattern, including progressively reduced CMRgl in the posterior cingulate cortex. Functional brain imaging techniques could be used to help bridge the gap between studies of patients with Alzheimer's dementia, cognitively normal persons at genetic risk for AD, and suitable laboratory animals. By providing a potential indicator of AD, these techniques could help clarify disease mechanisms and screen candidate treatments in at least some transgenic mice, and they could efficiently test the potential of candidate Alzheimer's prevention therapies in persons at genetic risk for the disorder.  相似文献   

11.
This paper discusses the effects of curcumin on patients with Alzheimer''s disease (AD). Curcumin (Turmeric), an ancient Indian herb used in curry powder, has been extensively studied in modern medicine and Indian systems of medicine for the treatment of various medical conditions, including cystic fibrosis, haemorrhoids, gastric ulcer, colon cancer, breast cancer, atherosclerosis, liver diseases and arthritis. It has been used in various types of treatments for dementia and traumatic brain injury. Curcumin also has a potential role in the prevention and treatment of AD. Curcumin as an antioxidant, anti-inflammatory and lipophilic action improves the cognitive functions in patients with AD. A growing body of evidence indicates that oxidative stress, free radicals, beta amyloid, cerebral deregulation caused by bio-metal toxicity and abnormal inflammatory reactions contribute to the key event in Alzheimer''s disease pathology. Due to various effects of curcumin, such as decreased Beta-amyloid plaques, delayed degradation of neurons, metal-chelation, anti-inflammatory, antioxidant and decreased microglia formation, the overall memory in patients with AD has improved. This paper reviews the various mechanisms of actions of curcumin in AD and pathology.  相似文献   

12.
Summary

The definite diagnosis of Alzheimer's disease (AD) is based upon quantitative estimates of two main neuropathological features: tangles and plaques. The characterization of the principal components of neurofibrillary tangles and plaques identified altered metabolism of tau protein and amyloid protein precursor (APP) to underlie the development of these changes. Here we review research conducted during the last decade aiming to elucidate the pathophysiological mechanisms that lead to the formation of both neurofibrillary changes and extracellular deposits of amyloid. We have specifically focused on three major topics that dominate comtemporary AD research: (i) altered metabolism of APP as a result of mutations of the APP gene; (ii) altered tau metabolism in aging and Alzheimer's-type dementia; and (hi) the role of apolipoprotein s4 allele in the genesis of tau and amyloid pathology.  相似文献   

13.
《Brain research bulletin》2010,83(5-6):235-242
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the dys-homeostasis of biometal metabolism, the extracellular accumulation of neurotoxic amyloid-β (Aβ) peptide, the intracellular accumulation of hyperphosphorylated tau and the loss of synapses. Copper plays a key role in AD development. The Aβ peptide and amyloid precursor protein (APP), the parental molecule of Aβ, are modulated by copper in the brain. Increased copper concentration has been found in the AD brain that implies that copper may participate in the pathophysiology of AD. Copper can bind to APP and Aβ, then affects the structure and toxic of APP and Aβ. Some researchers have reported that copper could affect the formation of β-sheet structure that is widely accepted as toxic secondary structure of Aβ. This review explores the role of copper on the conformation and aggregation of Aβ, and the copper-induced neuroactive mechanisms. Copper may be involved in the following pathways to affect the neuroactivation of Aβ: (1) change of the secondary structure of Aβ; (2) induction of oxidative stress in AD brains, and (3) regulation of cellular signal pathway. Thus, correcting brain copper imbalance may represent a relevant therapeutic target for Alzheimer's disease.  相似文献   

14.
The Alzheimer's Disease Neuroimaging Initiative (ADNI) beginning in October 2004, is a 6-year research project that studies changes of cognition, function, brain structure and function, and biomarkers in elderly controls, subjects with mild cognitive impairment, and subjects with Alzheimer's disease (AD). A major goal is to determine and validate MRI, PET images, and cerebrospinal fluid (CSF)/blood biomarkers as predictors and outcomes for use in clinical trials of AD treatments. Structural MRI, FDG PET, C-11 Pittsburgh compound B (PIB) PET, CSF measurements of amyloid β (Aβ) and species of tau, with clinical/cognitive measurements were performed on elderly controls, subjects with mild cognitive impairment, and subjects with AD. Structural MRI shows high rates of brain atrophy, and has high statistical power for determining treatment effects. FDG PET, C-11 Pittsburgh compound B PET, and CSF measurements of Aβ and tau were significant predictors of cognitive decline and brain atrophy. All data are available at UCLA/LONI/ADNI, without embargo. ADNI-like projects started in Australia, Europe, Japan, and Korea. ADNI provides significant new information concerning the progression of AD.  相似文献   

15.
16.
Alzheimer's disease (AD) is a common dementia affecting a vast number of individuals and significantly impairing quality of life. Despite extensive research in animal models and numerous promising treatment trials, there is still no curative treatment for AD. Astrocytes, the most common cell type of the central nervous system, have been shown to play a role in the major AD pathologies, including accumulation of amyloid plaques, neuroinflammation, and oxidative stress. Here, we show that inflammatory stimulation leads to metabolic activation of human astrocytes and reduces amyloid secretion. On the other hand, the activation of oxidative metabolism leads to increased reactive oxygen species production especially in AD astrocytes. While healthy astrocytes increase glutathione (GSH) release to protect the cells, Presenilin-1-mutated AD patient astrocytes do not. Thus, chronic inflammation is likely to induce oxidative damage in AD astrocytes. Activation of NRF2, the major regulator of cellular antioxidant defenses, encoded by the NFE2L2 gene, poses several beneficial effects on AD astrocytes. We report here that the activation of NRF2 pathway reduces amyloid secretion, normalizes cytokine release, and increases GSH secretion in AD astrocytes. NRF2 induction also activates the metabolism of astrocytes and increases the utilization of glycolysis. Taken together, targeting NRF2 in astrocytes could be a potent therapeutic strategy in AD.  相似文献   

17.
There are two types of dementia with early onset: (i) presenile dementias; and (ii) senile dementias with early onset. Most patients who develop dementia before 65 years of age have Alzheimer's disease (AD). The remainder are likely to have vascular dementia (VaD), frontotemporal dementia, head injury, alcohol intoxication, or metabolic disorder. Presenile dementias, caused by frontotemporal lobar degeneration, progressive supranuclear palsy, and corticobasal degeneration, usually occur in patients of presenile and are rarely seen in patients of senile age. Although the factors responsible for the accelarted onset of the illness are not fully known, genetic abnormalities appear to be important in some types of presenile dementia, such as frontotemporal dementia with parkinsonism linked to chromosome 17. Conversely, senile dementias such as sporadic AD and VaD commonly occur in patients of senile age. These disorders may also occur in patients of presenile age, although less frequently. Alzheimer's disease was originally classified as a ‘presenile dementia’. Since the 1980s, ‘senile dementia of Alzheimer type’ (SDAT) and ‘Alzheimer's disease’ have been considered to belong to the same pathological entity and both are now known as ‘dementia of Alzheimer's type (DAT)’ or merely ‘Alzheimer's disease’. Rapid progression of cognitive impairment with neuropsychological syndromes and neurological symptoms has been considered a characteristic of early onset AD. However, recently, neurological symptoms such as spastic paraparesis, seizures, and myoclonic convulsions have been reported to occur infrequently in early onset AD, although language problems and visuospatial dysfunctions are common. There are at least three dominant genes that have been identified in cases of familial Alzheimer's disease with early onset, namely the amyloid precursor gene (APP), and the genes encoding presenilin 1 (PSEN1) and presenilin 2 (PSEN2). Therefore, genetic abnormalities are important factors contributing to the earlier onset of the illness. It is also important to investigate the pathophysiological mechanism in relation to genetic abnormalities, environmental factors, physical illnesses, and metabolic disturbances to understand the processes underlying the development of dementia with early onset.  相似文献   

18.
《Alzheimer's & dementia》2014,10(6):853-860
Several lines of evidence from Alzheimer's disease (AD) research continue to support the notion that the biological changes associated with AD are occurring possibly several decades before an individual will experience the cognitive and functional changes associated with the disease. The National Institute on Aging—Alzheimer's Association revised criteria for AD provided a framework for this new thinking. As a result of this growing understanding, several research efforts have launched or will be launching large secondary prevention trials in AD. These and other efforts have clearly demonstrated a need for better measures of cognitive and functional change in people with the earliest changes associated with AD. Recent draft guidance from the US Food and Drug Administration further elevated the importance of cognitive and functional assessments in early stage clinical trials by proposing that even in the pre-symptomatic stages of the disease, approval will be contingent on demonstrating clinical meaningfulness. The Alzheimer's Association's Research Roundtable addressed these issues at its fall meeting October 28–29, 2013, in Washington, D.C. The focus of the discussion included the need for improved cognitive and functional outcome measures for clinical of participants with preclinical AD and those diagnosed with Mild Cognitive Impairment due to AD.  相似文献   

19.
Alzheimer''s disease (AD) is the most common form of age-related dementias. In addition to genetics, environment, and lifestyle, growing evidence supports vascular contributions to dementias including dementia because of AD. Alzheimer''s disease affects multiple cell types within the neurovascular unit (NVU), including brain vascular cells (endothelial cells, pericytes, and vascular smooth muscle cells), glial cells (astrocytes and microglia), and neurons. Thus, identifying and integrating biomarkers of the NVU cell-specific responses and injury with established AD biomarkers, amyloid-β (Aβ) and tau, has a potential to contribute to better understanding of the disease process in dementias including AD. Here, we discuss the existing literature on cerebrospinal fluid biomarkers of the NVU cell-specific responses during early stages of dementia and AD. We suggest that the clinical usefulness of established AD biomarkers, Aβ and tau, could be further improved by developing an algorithm that will incorporate biomarkers of the NVU cell-specific responses and injury. Such biomarker algorithm could aid in early detection and intervention as well as identify novel treatment targets to delay disease onset, slow progression, and/or prevent AD.  相似文献   

20.
Vascular pathology is a major feature of Alzheimer''s disease (AD) and other dementias. We recently showed that chronic administration of the target-of-rapamycin (TOR) inhibitor rapamycin, which extends lifespan and delays aging, halts the progression of AD-like disease in transgenic human (h)APP mice modeling AD when administered before disease onset. Here we demonstrate that chronic reduction of TOR activity by rapamycin treatment started after disease onset restored cerebral blood flow (CBF) and brain vascular density, reduced cerebral amyloid angiopathy and microhemorrhages, decreased amyloid burden, and improved cognitive function in symptomatic hAPP (AD) mice. Like acetylcholine (ACh), a potent vasodilator, acute rapamycin treatment induced the phosphorylation of endothelial nitric oxide (NO) synthase (eNOS) and NO release in brain endothelium. Administration of the NOS inhibitor L-NG-Nitroarginine methyl ester reversed vasodilation as well as the protective effects of rapamycin on CBF and vasculature integrity, indicating that rapamycin preserves vascular density and CBF in AD mouse brains through NOS activation. Taken together, our data suggest that chronic reduction of TOR activity by rapamycin blocked the progression of AD-like cognitive and histopathological deficits by preserving brain vascular integrity and function. Drugs that inhibit the TOR pathway may have promise as a therapy for AD and possibly for vascular dementias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号