首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Recently, the field of predicting phenotypes of externally visible characteristics (EVCs) from DNA genotypes with the final aim of concentrating police investigations to find persons completely unknown to investigating authorities, also referred to as Forensic DNA Phenotyping (FDP), has started to become established in forensic biology. We previously developed and forensically validated the IrisPlex system for accurate prediction of blue and brown eye colour from DNA, and recently showed that all major hair colour categories are predictable from carefully selected DNA markers. Here, we introduce the newly developed HIrisPlex system, which is capable of simultaneously predicting both hair and eye colour from DNA. HIrisPlex consists of a single multiplex assay targeting 24 eye and hair colour predictive DNA variants including all 6 IrisPlex SNPs, as well as two prediction models, a newly developed model for hair colour categories and shade, and the previously developed IrisPlex model for eye colour. The HIrisPlex assay was designed to cope with low amounts of template DNA, as well as degraded DNA, and preliminary sensitivity testing revealed full DNA profiles down to 63 pg input DNA. The power of the HIrisPlex system to predict hair colour was assessed in 1551 individuals from three different parts of Europe showing different hair colour frequencies. Using a 20% subset of individuals, while 80% were used for model building, the individual-based prediction accuracies employing a prediction-guided approach were 69.5% for blond, 78.5% for brown, 80% for red and 87.5% for black hair colour on average. Results from HIrisPlex analysis on worldwide DNA samples imply that HIrisPlex hair colour prediction is reliable independent of bio-geographic ancestry (similar to previous IrisPlex findings for eye colour). We furthermore demonstrate that it is possible to infer with a prediction accuracy of >86% if a brown-eyed, black-haired individual is of non-European (excluding regions nearby Europe) versus European (including nearby regions) bio-geographic origin solely from the strength of HIrisPlex eye and hair colour probabilities, which can provide extra intelligence for future forensic applications. The HIrisPlex system introduced here, including a single multiplex test assay, an interactive tool and prediction guide, and recommendations for reporting final outcomes, represents the first tool for simultaneously establishing categorical eye and hair colour of a person from DNA. The practical forensic application of the HIrisPlex system is expected to benefit cases where other avenues of investigation, including STR profiling, provide no leads on who the unknown crime scene sample donor or the unknown missing person might be.  相似文献   

2.
DNA phenotyping is a rapidly developing area of research in forensic biology. Externally visible characteristics (EVCs) can be determined based on genotype data, specifically based on single nucleotide polymorphisms (SNPs). These SNPs are chosen based on their association with genes related to the phenotypic expression of interest, with known examples in eye, hair, and skin color traits. DNA phenotyping has forensic importance when unknown biological samples at a crime scene do not result in a criminal database hit; a phenotypic profile of the sample can therefore be used to develop investigational leads. IrisPlex, an eye color prediction assay, has previously shown high prediction rates for blue and brown eye color in a Dutch European population. The objective of this work was to evaluate its utility in a North American population. We evaluated six SNPs included in the IrisPlex assay in population sample collected from a USA college campus. We used a quantitative method of eye color classification based on (RGB) color components of digital photographs of the eye taken from each study volunteer so that each eye was placed in one of three eye color categories: brown, intermediate, or blue. Objective color classification was shown to correlate with basic human visual determination making it a feasible option for use in future prediction assay development. Using these samples and various models, the maximum prediction accuracies of the IrisPlex system after allele frequency adjustment was 58% and 95% brown and blue eye color predictions, respectively, and 11% for intermediate eye colors. Future developments should include incorporation of additional informative SNPs, specifically related to the intermediate eye color, and we recommend the use of a Bayesian approach as a prediction model as likelihood ratios can be determined for reporting purposes.  相似文献   

3.
The ability to predict Externally Visible Characteristics (EVCs) from DNA, also referred to as Forensic DNA Phenotyping (FDP), is an exciting new chapter in forensic genetics holding great promise for tracing unknown individuals who are unidentifiable via standard forensic short tandem repeat (STR) profiling. For the purpose of DNA-based eye colour prediction, we previously developed the IrisPlex system consisting of a multiplex genotyping assay and a prediction model based on genotype and phenotype data from 3804 Dutch Europeans. Recently, we performed a forensic developmental validation study of the highly sensitive IrisPlex assay, which currently represents the only validated tool available for DNA-based prediction of eye colour in forensic applications. In the present study, we validate the IrisPlex prediction model by extending our initially described model towards genotype and phenotype data from multiple European populations. We performed IrisPlex analysis on 3840 individuals from seven sites across Europe as part of the European Eye (EUREYE) study for which DNA and high-resolution eye images were available. The accuracy rate of correctly predicting an individual's eye colour as being blue or brown, above the empirically established probability threshold of 0.7, was on average 94% across all seven European populations, ranging from 91% to 98%, despite the large variation in eye colour frequencies between the populations. The overall prediction accuracies expressed by the area under the receiver characteristic operating curves (AUC) were 0.96 for blue and 0.96 for brown eyes, which is considerably higher than those established before. The IrisPlex prediction model parameters generated from this multi-population European dataset, and thus its prediction capabilities, were highly comparable to those previously established. Therefore, the increased information regarding eye colour phenotype and genotype distributions across Europe, and the system's ability to provide eye colour predictions across Europe accurately, both highlight additional evidence for the utility of the IrisPlex system in forensic casework.  相似文献   

4.
Prediction of eye and hair colour from DNA can be an important investigative tool in forensic cases if conventional DNA profiling fails to match DNA from any known suspects or cannot obtain a hit in a DNA database. The HIrisPlex model for simultaneous eye and hair colour predictions was developed for forensic usage. To genotype a DNA sample, massively parallel sequencing (MPS) has brought new possibilities to the analysis of forensic DNA samples. As part of an in-house validation, this study presents the genotyping and predictive performance of the HIrisPlex SNPs in a Norwegian study population, using Verogen’s ForenSeq™ DNA Signature Prep Kit on the MiSeq FGx system and the HIrisPlex webtool. DNA-profiles were successfully typed with DNA input down to 125 pg. In samples with DNA input < 125 pg, false homozygotes were observed with as many as 92 reads. Prediction accuracies in terms of AUC were high for red (0.97) and black (0.93) hair colours, as well as blue (0.85) and brown (0.94) eye colours. The AUCs for blond (0.72) and brown (0.70) hair colour were considerably lower. None of the individuals was predicted to have intermediate eye colour. Therefore, the error rates of the overall eye colour predictions were 37% with no predictive probability threshold (pmax) and 26% with a probability threshold of 0.7. We also observed that more than half of the incorrect predictions were for individuals carrying the rs12913832 GG genotype. For hair colour, 65% of the individuals were correctly predicted when using the highest probability category approach. The main error was observed for individuals with brown hair colour that were predicted to have blond hair. Utilising the prediction guide approach increased the correct predictions to 75%. Assessment of phenotype-genotype associations of eye colours using a quantitative eye colour score (PIE-score), revealed that rs12913832 AA individuals of Norwegian descent had statistically significantly higher PIE-score (less brown eye colour) than individuals of non-northern European descent. To our knowledge, this has not been reported in other studies. Our study suggests that careful assessment of the target population prior to the implementation of forensic DNA phenotyping to case work is beneficial.  相似文献   

5.
In forensic analysis predictive tests for external visible characteristics (or EVCs), including inference of iris color, represent a potentially useful tool to guide criminal investigations. Two recent studies, both focused on forensic testing, have analyzed single nucleotide polymorphism (SNP) genotypes underlying common eye color variation (Mengel-From et al., Forensic Sci. Int. Genet. 4:323 and Walsh et al., Forensic Sci. Int. Genet. 5:170). Each study arrived at different recommendations for eye color predictive tests aiming to type the most closely associated SNPs, although both confirmed rs12913832 in HERC2 as the key predictor, widely recognized as the most strongly associated marker with blue and brown iris colors. Differences between these two studies in identification of other eye color predictors may partly arise from varying approaches to assigning phenotypes, notably those not unequivocally blue or dark brown and therefore occupying an intermediate iris color continuum. We have developed two single base extension assays typing 37 SNPs in pigmentation-associated genes to study SNP-genotype based prediction of eye, skin, and hair color variation. These assays were used to test the performance of different sets of eye color predictors in 416 subjects from six populations of north and south Europe. The presence of a complex and continuous range of intermediate phenotypes distinct from blue and brown eye colors was confirmed by establishing eye color populations compared to genetic clusters defined using Structure software. Our study explored the effect of an expanded SNP combination beyond six markers has on the ability to predict eye color in a forensic test without extending the SNP assay excessively – thus maintaining a balance between the test's predictive value and an ability to reliably type challenging DNA with a multiplex of manageable size. Our evaluation used AUC analysis (area under the receiver operating characteristic curves) and naïve Bayesian likelihood-based classification approaches. To provide flexibility in SNP-based eye color predictive tests in forensic applications we modified an online Bayesian classifier, originally developed for genetic ancestry analysis, to provide a straightforward system to assign eye color likelihoods from a SNP profile combining additional informative markers from the predictors analyzed by our study plus those of Walsh and Mengel-From. Two advantages of the online classifier is the ability to submit incomplete SNP profiles, a common occurrence when typing challenging DNA, and the ability to handle physically linked SNPs showing independent effect, by allowing the user to input frequencies from SNP pairs or larger combinations. This system was used to include the submission of frequency data for the SNP pair rs12913832 and rs1129038: indicated by our study to be the two SNPs most closely associated to eye color.  相似文献   

6.
The IrisPlex system consists of a highly sensitive multiplex genotyping assay together with a statistical prediction model, providing users with the ability to predict blue and brown human eye colour from DNA samples with over 90% precision. This ‘DNA intelligence’ system is expected to aid police investigations by providing phenotypic information on unknown individuals when conventional DNA profiling is not informative. Falling within the new area of forensic DNA phenotyping, this paper describes the developmental validation of the IrisPlex assay following the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines for the application of DNA-based eye colour prediction to forensic casework. The IrisPlex assay produces complete SNP genotypes with only 31 pg of DNA, approximately six human diploid cell equivalents, and is therefore more sensitive than commercial STR kits currently used in forensics. Species testing revealed human and primate specificity for a complete SNP profile. The assay is capable of producing accurate results from simulated casework samples such as blood, semen, saliva, hair, and trace DNA samples, including extremely low quantity samples. Due to its design, it can also produce full profiles with highly degraded samples often found in forensic casework. Concordance testing between three independent laboratories displayed reproducible results of consistent levels on varying types of simulated casework samples. With such high levels of sensitivity, specificity, consistency and reliability, this genotyping assay, as a core part of the IrisPlex system, operates in accordance with SWGDAM guidelines. Furthermore, as we demonstrated previously, the IrisPlex eye colour prediction system provides reliable results without the need for knowledge on the bio-geographic ancestry of the sample donor. Hence, the IrisPlex system, with its model-based prediction probability estimation of blue and brown human eye colour, represents a useful tool for immediate application in accredited forensic laboratories, to be used for forensic intelligence in tracing unknown individuals from crime scene samples.  相似文献   

7.
Massively parallel sequencing can provide genetic data for hundreds to thousands of loci in a single assay for various types of forensic testing. However, available commercial kits require an initial PCR amplification of short-to-medium sized targets which limits their application for highly degraded DNA. Development and optimisation of large PCR multiplexes also prevents creation of custom panels that target different suites of markers for identity, biogeographic ancestry, phenotype, and lineage markers (Y-chromosome and mtDNA). Hybridisation enrichment, an alternative approach for target enrichment prior to sequencing, uses biotinylated probes to bind to target DNA and has proven successful on degraded and ancient DNA. We developed a customisable hybridisation capture method, that uses individually mixed baits to allow tailored and targeted enrichment to specific forensic questions of interest. To allow collection of forensic intelligence data, we assembled and tested a custom panel of hybridisation baits to infer biogeographic ancestry, hair and eye colour, and paternal lineage (and sex) on modern male and female samples with a range of self-declared ancestries and hair/eye colour combinations. The panel correctly estimated biogeographic ancestry in 9/12 samples (75%) but detected European admixture in three individuals from regions with admixed demographic history. Hair and eye colour were predicted correctly in 83% and 92% of samples respectively, where intermediate eye colour and blond hair were problematic to predict. Analysis of Y-chromosome SNPs correctly assigned sex and paternal haplogroups, the latter complementing and supporting biogeographic ancestry predictions. Overall, we demonstrate the utility of this hybridisation enrichment approach to forensic intelligence testing using a combined suite of biogeographic ancestry, phenotype, and Y-chromosome SNPs for comprehensive biological profiling.  相似文献   

8.
The IrisPlex system is a DNA-based test system for the prediction of human eye colour from biological samples and consists of a single forensically validated multiplex genotyping assay together with a statistical prediction model that is based on genotypes and phenotypes from thousands of individuals. IrisPlex predicts blue and brown human eye colour with, on average, >94% precision accuracy using six of the currently most eye colour informative single nucleotide polymorphisms (HERC2 rs12913832, OCA2 rs1800407, SLC24A4 rs12896399, SLC45A2 (MATP) rs16891982, TYR rs1393350, and IRF4 rs12203592) according to a previous study, while the accuracy in predicting non-blue and non-brown eye colours is considerably lower. In an effort to vigorously assess the IrisPlex system at the international level, testing was performed by 21 laboratories in the context of a collaborative exercise divided into three tasks and organised by the European DNA Profiling (EDNAP) Group of the International Society of Forensic Genetics (ISFG). Task 1 involved the assessment of 10 blood and saliva samples provided on FTA cards by the organising laboratory together with eye colour phenotypes; 99.4% of the genotypes were correctly reported and 99% of the eye colour phenotypes were correctly predicted. Task 2 involved the assessment of 5 DNA samples extracted by the host laboratory from simulated casework samples, artificially degraded, and provided to the participants in varying DNA concentrations. For this task, 98.7% of the genotypes were correctly determined and 96.2% of eye colour phenotypes were correctly inferred. For Tasks 1 and 2 together, 99.2% (1875) of the 1890 genotypes were correctly generated and of the 15 (0.8%) incorrect genotype calls, only 2 (0.1%) resulted in incorrect eye colour phenotypes. The voluntary Task 3 involved participants choosing their own test subjects for IrisPlex genotyping and eye colour phenotype inference, while eye photographs were provided to the organising laboratory and judged; 96% of the eye colour phenotypes were inferred correctly across 100 samples and 19 laboratories. The high success rates in genotyping and eye colour phenotyping clearly demonstrate the reproducibility and the robustness of the IrisPlex assay as well as the accuracy of the IrisPlex model to predict blue and brown eye colour from DNA. Additionally, this study demonstrates the ease with which the IrisPlex system is implementable and applicable across forensic laboratories around the world with varying pre-existing experiences.  相似文献   

9.
Tests that infer the ancestral origin of a DNA sample have considerable potential in the development of forensic tools that can help to guide crime investigation. We have developed a single-tube 34-plex SNP assay for the assignment of ancestral origin by choosing ancestry-informative markers (AIMs) exhibiting highly contrasting allele frequency distributions between the three major population-groups. To predict ancestral origin from the profiles obtained, a classification algorithm was developed based on maximum likelihood. Sampling of two populations each from African, European and East Asian groups provided training sets for the algorithm and this was tested using the CEPH Human Genome Diversity Panel. We detected negligible theoretical and practical error for assignments to one of the three groups analyzed with consistently high classification probabilities, even when using reduced subsets of SNPs. This study shows that by choosing SNPs exhibiting marked allele frequency differences between population-groups a practical forensic test for assigning the most likely ancestry can be achieved from a single multiplexed assay.  相似文献   

10.
In two recent studies of Spanish individuals [1], [2], gender was suggested as a factor that contributes to human eye colour variation. However, gender did not improve the predictive accuracy on blue, intermediate and brown eye colours when gender was included in the IrisPlex model [3].In this study, we investigate the role of gender as a factor that contributes to eye colour variation and suggest that the gender effect on eye colour is population specific.A total of 230 Italian individuals were typed for the six IrisPlex SNPs (rs12913832, rs1800407, rs12896399, rs1393350, rs16891982 and rs12203592). A quantitative eye colour score (Pixel Index of the Eye: PIE-score) was calculated based on digital eye images using the custom made DIAT software. The results were compared with those of Danish and Swedish population samples.As expected, we found HERC2 rs12913832 as the main predictor of human eye colour independently of ancestry. Furthermore, we found gender to be significantly associated with quantitative eye colour measurements in the Italian population sample. We found that the association was statistically significant only among Italian individuals typed as heterozygote GA for HERC2 rs12913832. Interestingly, we did not observe the same association in the Danish and Swedish population. This indicated that the gender effect on eye colour is population specific. We estimated the effect of gender on quantitative eye colour in the Italian population sample to be 4.9%. Among gender and the IrisPlex SNPs, gender ranked as the second most important predictor of human eye colour variation in Italians after HERC2 rs12913832. We, furthermore, tested the five lower ranked IrisPlex predictors, and evaluated all possible 36 (729) genotype combinations of the IrisPlex assay and their corresponding predictive values using the IrisPlex prediction model [4]. The results suggested that maximum three (rs12913832, rs1800407, rs16891982) of the six IrisPlex SNPs are useful in practical forensic genetic casework.  相似文献   

11.
In recent years, several studies have greatly increased our understanding of the genetic basis underlying human eye colour variation. A large percentage of the eye colour diversity present in humans can already be genetically explained, so much so that different DNA-based eye colour prediction models, such as IrisPlex, have been recently developed for forensic purposes. Though these models are already highly accurate, they are by no means perfect, with many genotype-phenotype discrepancies still remaining unresolved. In this work we have genotyped six SNPs associated with eye colour (IrisPlex) in 535 individuals from Spain, a Mediterranean population. Aside from different SNP frequencies in Spain compared to Northern Europe, the results for eye colour prediction are quite similar to other studies. However, we have found an association between gender and eye colour prediction. When comparing similar eye colour genetic profiles, females tend, as a whole, to have darker eyes than males (and, conversely, males lighter than females). These results are also corroborated by the revision and meta-analysis of data from previously published eye colour genetic studies in several Caucasian populations, which significantly support the fact that males are more likely to have blue eyes than females, while females tend to show higher frequencies of green and brown eyes than males. This significant gender difference would suggest that there is an as yet unidentified gender-related factor contributing to human eye colour variation.  相似文献   

12.
New DNA-based predictive tests for physical characteristics and inference of ancestry are highly informative tools that are being increasingly used in forensic genetic analysis. Two eye colour prediction models: a Bayesian classifier – Snipper and a multinomial logistic regression (MLR) system for the Irisplex assay, have been described for the analysis of unadmixed European populations. Since multiple SNPs in combination contribute in varying degrees to eye colour predictability in Europeans, it is likely that these predictive tests will perform in different ways amongst admixed populations that have European co-ancestry, compared to unadmixed Europeans. In this study we examined 99 individuals from two admixed South American populations comparing eye colour versus ancestry in order to reveal a direct correlation of light eye colour phenotypes with European co-ancestry in admixed individuals. Additionally, eye colour prediction following six prediction models, using varying numbers of SNPs and based on Snipper and MLR, were applied to the study populations. Furthermore, patterns of eye colour prediction have been inferred for a set of publicly available admixed and globally distributed populations from the HGDP-CEPH panel and 1000 Genomes databases with a special emphasis on admixed American populations similar to those of the study samples.  相似文献   

13.
In the present study, a multiplexed genotyping assay for ten single nucleotide polymorphisms (SNPs) located within six pigmentation candidate genes was developed on modern biological samples and applied to DNA retrieved from 25 archeological human remains from southern central Siberia dating from the Bronze and Iron Ages. SNP genotyping was successful for the majority of ancient samples and revealed that most probably had typical European pigment features, i.e., blue or green eye color, light hair color and skin type, and were likely of European individual ancestry. To our knowledge, this study reports for the first time the multiplexed typing of autosomal SNPs on aged and degraded DNA. By providing valuable information on pigment traits of an individual and allowing individual biogeographical ancestry estimation, autosomal SNP typing can improve ancient DNA studies and aid human identification in some forensic casework situations when used to complement conventional molecular markers.  相似文献   

14.
DNA-based prediction for externally visible characteristics such as eye color is already a useful tool in forensic criminal investigations. The IrisPlex system, consisting of six single nucleotide polymorphisms (SNPs) and a prediction model, was developed based on individuals from several European populations. Other recent studies have developed a different prediction model, also based on European populations. In this study, we compared two prediction models using the data for the six IrisPlex SNPs genotyped on 905 individuals from 12 different Eurasian populations. All SNPs showed significant differences in allele frequencies among three groups of populations: European, genetically intermediate (Khanty, Uygur, and Yakut), and East Asian. The two prediction models, the FROG-kb calculation based on the formula of Walsh et al. (2011) and the Snipper calculation from Ruiz et al. (2013), gave identical predictions of brown eye color for the four East Asian populations with complete data but did not give concordant predictions for many individuals in the seven intermediate and European populations. Inconsistencies were mainly conclusive prediction by one model but not the other. Of the 714 individuals with complete 6-locus genotypes, the two models gave 22 % inconsistent predictions. Eliminating the 306 individuals in the Korean and three Chinese populations, in which the predictions were always consistent for brown eye color, the inconsistencies (among the remaining 408 individuals) were 38.7 %. We conclude that more attention should be paid to predictive uncertainty/error. Implementation of both prediction models in future forensic casework is one immediate way to highlight uncertainty.  相似文献   

15.
Forensic DNA Phenotyping or ‘DNA intelligence’ tools are expected to aid police investigations and find unknown individuals by providing information on externally visible characteristics of unknown suspects, perpetrators and missing persons from biological samples. This is especially useful in cases where conventional DNA profiling or other means remain non-informative. Recently, we introduced the HIrisPlex system, capable of predicting both eye and hair colour from DNA. In the present developmental validation study, we demonstrate that the HIrisPlex assay performs in full agreement with the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines providing an essential prerequisite for future HIrisPlex applications to forensic casework. The HIrisPlex assay produces complete profiles down to only 63 pg of DNA. Species testing revealed human specificity for a complete HIrisPlex profile, while only non-human primates showed the closest full profile at 20 out of the 24 DNA markers, in all animals tested. Rigorous testing of simulated forensic casework samples such as blood, semen, saliva stains, hairs with roots as well as extremely low quantity touch (trace) DNA samples, produced complete profiles in 88% of cases. Concordance testing performed between five independent forensic laboratories displayed consistent reproducible results on varying types of DNA samples. Due to its design, the assay caters for degraded samples, underlined here by results from artificially degraded DNA and from simulated casework samples of degraded DNA. This aspect was also demonstrated previously on DNA samples from human remains up to several hundreds of years old. With this paper, we also introduce enhanced eye and hair colour prediction models based on enlarged underlying databases of HIrisPlex genotypes and eye/hair colour phenotypes (eye colour: N = 9188 and hair colour: N = 1601). Furthermore, we present an online web-based system for individual eye and hair colour prediction from full and partial HIrisPlex DNA profiles. By demonstrating that the HIrisPlex assay is fully compatible with the SWGDAM guidelines, we provide the first forensically validated DNA test system for parallel eye and hair colour prediction now available to forensic laboratories for immediate casework application, including missing person cases. Given the robustness and sensitivity described here and in previous work, the HIrisPlex system is also suitable for analysing old and ancient DNA in anthropological and evolutionary studies.  相似文献   

16.
As evidenced by the large number of articles recently published in the literature, forensic scientists are making great efforts to infer externally visible features and biogeographical ancestry (BGA) from DNA analysis. Just as phenotypic, ancestry information obtained from DNA can provide investigative leads to identify the victims (missing/unidentified persons, crime/armed conflict/mass disaster victims) or trace their perpetrators when no matches were found with the reference profile or in the database. Recently, the advent of Massively Parallel Sequencing technologies associated with the possibility of harnessing high-throughput genetic data allowed us to investigate the associations between phenotypic and genomic variations in worldwide human populations and develop new BGA forensic tools capable of simultaneously analyzing up to millions of markers if for example the ancient DNA approach of hybridization capture was adopted to target SNPs of interest. In the present study, a selection of more than 3000 SNPs was performed to create a new BGA panel and the accuracy of the new panel to infer ancestry from unknown samples was evaluated by the PLS-DA method. Subsequently, the panel created was assessed using three variable selection techniques (Backward variable elimination, Genetic Algorithm and Regularized elimination procedure), and the best SNPs in terms of inferring bio-geographical ancestry at inter- and intra-continental level were selected to obtain panels to predict BGA with a reduced number of selected markers to be applied in routine forensic cases where PCR amplification is the best choice to target SNPs.  相似文献   

17.
The results of empirical testing of forensic DNA probabilities for Australian and New Zealand populations is reported. It is concluded that if consideration is given to relatedness and subpopulation effects, the current model used in most of Australia and New Zealand appears to give very good predictions.  相似文献   

18.
Predicting the outward appearance of dogs via their DNA, also known as Canine DNA Phenotyping, is a young, emerging field of research in forensic genetics. The few previous studies published in this respect were restricted to the consecutive analysis of single DNA markers, a process that is time- and sample-consuming and therefore not a viable option for limited forensic specimens. Here, we report on the development and evaluation of a Massively Parallel Sequencing (MPS) based molecular genetic assay, the LASSIE MPS Panel. This panel aims to predict externally visible as well as skeletal traits, which include coat color, coat pattern, coat structure, tail morphology, skull shape, ear shape, eye color and body size from DNA using 44 genetic markers in a single molecular genetic assay. A biostatistical naïve Bayes classification approach was applied to identify the most informative marker combinations for predicting phenotypes. Overall, the predictive performance was characterized by a very high classification success for some of the trait categories, and high to moderate success for others. The performance of the developed predictive framework was further evaluated using blind samples from three randomly selected dog individuals, whose appearance was well predicted.  相似文献   

19.
Ancestry informative single-nucleotide polymorphism (AISNP) panels for differentiating between East and Southeast Asian populations are scarce. This study aimed to identify AISNPs for ancestry assignment of five East and Southeast Asian populations, and Caucasians. We analyzed 145 autosomal SNPs of the 627 DNA samples from individuals of six populations (234 Taiwanese Han, 91 Filipinos, 79 Indonesians, 60 Thais, 71 Vietnamese, and 92 Caucasians) using arrays. The multiple logistic regression model and a multi-tier approach were used for ancestry classification. We observed that 130 AISNPs were effective for classifying the ethnic origins with fair accuracy. Among the 130 AISNPs, 122 were useful for stratification between these five Asian populations and 64 were effective for differentiating between Caucasians and these Asian populations. For differentiation between Caucasians and Asians, an accuracy rate of 100% was achieved in these 627 subjects with 50 optimal AISNPs among the 64 effective SNPs. For classification of the five Asian populations, the accuracy rates of ancestry inference using 20 to 57 SNPs for each of the two Asian populations ranged from 74.1% to 100%. Another 14 degraded DNA samples with incomplete profiling were analyzed, and the ancestry of 12 (85.7%) of those subjects was accurately assigned. We developed a 130-AISNP panel for ethnic origin differentiation between the five East and Southeast Asian populations and Caucasians. This AISNP set may be helpful for individual ancestral assignment of these populations in forensic casework.  相似文献   

20.
Forensic DNA Phenotyping (FDP) provides the ability to predict externally visible characteristics from minute amounts of crime scene DNA, which can help find unknown perpetrators who are typically unidentifiable via conventional forensic DNA profiling. Fundamental human genetics research has led to a better understanding of the specific DNA variants responsible for physical appearance characteristics, particularly eye, hair, and skin color. Recently, we introduced the HIrisPlex-S system for the simultaneous prediction of eye, hair, and skin color based on 41 DNA variants generated from two forensically validated SNaPshot multiplex assays using capillary electrophoresis (CE). Here we introduce massively parallel sequencing (MPS) solutions for the HIrisPlex-S (HPS) system on two MPS platforms commonly used in forensics, Ion Torrent and MiSeq, that cover all 41 DNA variants in a single assay, respectively. Additionally, we present the forensic developmental validation of the two HPS-MPS assays. The Ion Torrent MPS assay, based on Ion AmpliSeq technology, illustrated the successful generation of full HIrisPlex-S genotypic profiles from 100 pg of input control DNA, while the MiSeq MPS assay based on an in-house design yielded complete profiles from 250 pg of input DNA. Assessing simulated forensic casework samples such as saliva, hair (bulb), blood, semen, and low quantity touch DNA, as well as artificially damaged DNA samples, concordance testing, and samples from numerous species, all illustrated the ability of both versions of the HIrisPlex-S MPS assay to produce results that motivate forensic applications. By also providing an integrated bioinformatics analysis pipeline, MPS data can now be analyzed and a file generated for upload to the publically accessible HIrisPlex online webtool (https://hirisplex.erasmusmc.nl). In addition, we updated the website to accept VCF input data for those with genome sequence data. We thus provide a user-friendly and semi-automated MPS workflow from DNA sample to individual eye, hair, and skin color prediction probabilities. Furthermore, we present a 2-person mixture separation tool that not only assesses genotype reliability with regards genotyping confidence but also provides the most fitting mixture scenario for both minor and major contributors, including profile separation. We envision this MPS implementation of the HIrisPlex-S system for eye, hair, and skin color prediction from DNA as a starting point for further expanding MPS-based forensic DNA phenotyping. This may include the future addition of SNPs predictive for more externally visible characteristics, as well as SNPs for bio-geographic ancestry inference, provided the statistical framework for DNA prediction of these traits is in place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号