首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative injury may be important to the pathogenesis of multiple sclerosis (MS). We tested the antioxidant alpha lipoic acid (ALA) in an experimental murine model of MS, experimental autoimmune encephalomyelitis (EAE). ALA was administered to SJL mice 7 days after immunization with proteolipid protein (PLP) 139-151 peptide. Mice that received 5-100 mg/kg/day of ALA had dose-dependent reductions in their 10-Day Cumulative Disease Scores (10-Day CDS) by 23-100%. Minimal inflammation, demyelination and axonal loss occurred in the spinal cords (SC) of ALA-suppressed mice, and there was a marked reduction in CD3+ T cells and CD11b+ monocyte/macrophage cells within the SC. Mice treated with ALA (100 mg/kg/day) commencing on the first day of clinical EAE had a significant reduction in 10-Day CDS. SC of ALA-treated mice had reduced demyelination and axonal loss and a rapid reduction in CD3+ T cells. In vitro, ALA and its reduced form, dihydrolipoic acid, inhibited the activity of matrix metalloproteinase-9 (MMP-9) in a dose-dependent fashion. ALA is highly effective at suppressing and treating EAE and does so by inhibiting T cell trafficking into the SC, perhaps by acting as a matrix metalloproteinase inhibitor.  相似文献   

2.
The effect of ribavirin on development of experimental autoimmune encephalomyelitis (EAE) was investigated. The disease was induced in genetically susceptible Dark Agouti rats with syngeneic spinal cord homogenate in complete Freund's adjuvant (SCH-CFA). Depending on the amount of mycobacteria in CFA, the animals developed either moderate or severe EAE. Ribavirin (1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide) was applied i.p. at a daily dosage of 30 mg/kg in two treatment protocols: from the start of immunization (preventive treatment) or from the onset of the first EAE signs after the induction (therapeutic treatment). Signs of EAE began between 7 and 9 days after induction and peaked at days 11-13. In moderate EAE (mean maximal severity score 3.33 +/- 0.21), the recovery was completed by days 23-26, whereas, in severe EAE (mean maximal severity score 4.5 +/- 0.23), obvious recovery was not detected. Preventive ribavirin treatment significantly decreased clinical signs after both moderate (score 1.75 +/- 0.25, P < 0.05) and severe (score 3.62 +/- 0.31, P < 0.015) immunization. Also, disease manifestations were reduced by therapeutic treatment of ribavirin (mean maximal severity score 2.5 +/- 0.2 vs. 3.33 +/- 0.21 in controls, P < 0.005) but less so in comparison with preventive treatment. Analysis of the effects of ribavirin on histopathologic changes in the spinal cord tissue revealed a reduction of mononuclear cell infiltrates, composed of T cells and macrophages/microglia, and the absence of demyelination, which were pronounced in control EAE animals. Beneficial effects of preventive and therapeutic treatment with ribavirin on development of EAE suggest this nucleoside analogue as a useful candidate for therapy in multiple sclerosis.  相似文献   

3.
Dextromethorphan (DM) is a dextrorotary morphinan and a widely used component of cough medicine. Relatively high doses of DM in combination with quinidine are used for the treatment of mood disorders for patients with multiple sclerosis (MS). However, at lower doses, morphinans exert anti-inflammatory activities through the inhibition of NOX2-dependent superoxide production in activated microglia. Here we investigated the effects of high (10 mg/kg, i.p., "DM-10") and low (0.1 mg/kg, i.p., "DM-0.1") doses of DM on the development and progression of mouse experimental autoimmune encephalomyelitis (EAE), an animal model of MS. We found no protection by high dose DM treatment. Interestingly, a minor late attenuation by low dose DM treatment was seen in severe EAE that was characterized by a chronic disease course and a massive spinal cord infiltration of CD45(+) cells including T-lymphocytes, macrophages and neutrophils. Furthermore, in a less severe form of EAE, where lower levels of CD4(+) and CD8(+) T-cells, Iba1(+) microglia/macrophages and no significant infiltration of neutrophils were seen in the spinal cord, the treatment with DM-0.1 was remarkably more beneficial. The effect was the most significant at the peak of disease and was associated with an inhibition of NOX2 expression and a decrease in infiltration of monocytes and lymphocytes into the spinal cord. In addition, chronic treatment with low dose DM resulted in decreased demyelination and reduced axonal loss in the lumbar spinal cord. Our study is the first report to show that low dose DM is effective in treating EAE of moderate severity. Our findings reveal that low dose morphinan DM treatment may represent a new promising protective strategy for treating MS.  相似文献   

4.
Using the rat model Experimental Autoimmune Encephalomyelitis (EAE), we have investigated the cytokinetical and cellular events of axonal degeneration and demyelination following treatment with 5 mg/kg/24h R(+)WIN55,212-2 or 10 mg/kg/24h R(+)WIN55,212-2, which have immunosuppressive effects. EAE was induced using MOG(1-125) in Dark Agouti rats and treatment was initiated at symptom debut and continued until first relapse culminated. The central nervous system (CNS) cell death including caspase and calpain activation, axonal degeneration and demyelination as well as a wide range of immunological parameters were quantified. We found a significant reduction in axonal degeneration associated with reduced calpain 1 following treatment with 5 mg/kg/24h R(+)WIN55,212-2. Treatment with 10 mg/kg/24h resulted furthermore in an improved clinical performance and a reduction in inflammatory activity and demyelination. Furthermore, the cytokines IL-2, IL-6, IL-10, RANTES, and TGF-β were significantly reduced as were the cellular infiltration with regulatory T cells. We suggest that cannabinoids in low doses are neuroprotective through a reduction in calpain 1 expression. Our study implies that long-term low-dose cannabinoid administration to multiple sclerosis (MS) patients could result in some degree of neuroprotection, and thereby slow down the atrophy associated with this disease.  相似文献   

5.
Treosulfan (dihydroxybusulfane, DHB, L-threitol-1,4-bis [methane sulfonate]) is a cytostatic alkylating agent with a favorable profile of side effects. Myelin-oligodendrocyte-glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) induced in DA (RT1(av1)) rats resembles multiple sclerosis (MS) in many aspects since central nervous system (CNS) pathology shows inflammation, demyelination and axonal loss. Moreover, DA rats develop a chronic disease course. We here explored the efficacy of treosulfan in the treatment of MOG-induced EAE in DA rats. A single dose of treosulfan (1 g/kg body weight i.p.) at the day of immunization significantly reduced disease severity compared with PBS-treated controls. In addition, after disease had evolved, a single dose of treosulfan (1 g/kg body weight) given i.p. on day 14 post-immunization (p.i.) improved long-term disease outcome. Treatment with treosulfan resulted in reduced mRNA expression of IL-12 and interferon (IFN)-gamma in draining lymph nodes and reduced numbers of IFN-gamma-secreting MOG-specific T cells. No myelosuppression was observed. Treosulfan was applied to different subsets of cultured human blood mononuclear cells in order to asses the effects on human immune cells in vitro: Treosulfan reduced proliferative capacity and increased apoptosis in T cells and antigen-presenting cells. In light of the beneficial effects in EAE in vivo and the in vitro immunosuppressive and pro-apoptotic capacities in cultured human mononuclear immune effector cells, these data may support a potential role of treosulfan, an agent with high immunosuppressive capacity and low toxicity, in the treatment of MS.  相似文献   

6.
Liposomal encapsulation leads to enhanced efficacy of glucocorticosteroids (GS) in treatment of autoimmune diseases. Here we compare liposomal prednisolone (PL) to liposomal methylprednisolone (MPL) in chronic-relapsing myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE), a model closely reflecting aspects of multiple sclerosis (MS). At the maximum of the first relapse, a single dose of PL or MPL was applied at 10 mg/kg or at 4 mg/kg and compared to classical methylprednisolone (MP) pulse therapy. PL at 10 mg/kg was superior to free MP with long-term efficacy and a sustained protection even during the second and third relapse. At the same time, in vivo magnetic resonance imaging of rat brains revealed a significant reduction of T2-lesions after PL application. Comparison of PL and MPL at 10 mg/kg disclosed superior effects for MPL with an enhanced reduction of inflammatory infiltration as well as preservation of myelin and axons. Dose titration experiments underscored a dose-dependent efficacy of liposomal GS with a sustained efficacy especially of the higher dosage. In histological analyses, PL10 was superior in reducing macrophage and T cell infiltration as well as demyelination and axonal loss while the lower dosages were still at least as effective as free MP. FACS analyses revealed an effect of liposome formulations on T cell numbers, the CD4/CD8 ratio, frequencies of regulatory T cells and adhesion molecule expression. In summary, liposomal GS and especially methylprednisolone formulations display an enhanced efficacy not only in acute inflammatory, but also in chronic demyelinating models of MS and confer long-term protection from relapses. These findings lay the groundwork for applying liposomal GS in clinical MS trials in the near future.  相似文献   

7.
In recent years, a number of histopathologic studies revealed the presence of cortical demyelination in multiple sclerosis (MS). The underlying mechanisms responsible for cortical demyelination are unresolved. Recently, the presence of cortical lesions in autoimmune encephalomyelitis (EAE) induced in marmosets and Lewis rats has been demonstrated. So far, it is not known whether cortical demyelinated lesions are also present in other models of EAE. In this study, we analyzed a large spectrum of different rat strains actively immunized with myelin oligodendrocyte glycoprotein (MOG), a model strongly mimicking MS for cortical demyelination. By using sets of rat strains with the constant EAE-permissive LEW nonmajor histocompatability complex (MHC) genome, but different MHC haplotypes, we demonstrated that considerable cortical demyelination was only found in LEW.1AR1 (RT1) and LEW.1W (RT1) strains. These rat strains have the isotypes and alleles RT1.BD in the MHC II region and RT1.C in the nonclassic MHC I region in common. Because cortical demyelination was most prominent in LEW.1AR1 rats, an additional strong influence is promoted by the RT1.A MHC class I allele. Demyelination was accompanied by microglia infiltration and deposition of immunoglobulins on myelin sheaths. Our study shows that extensive cortical demyelination can be reproducibly induced in certain rat strains by active immunization with MOG. Furthermore, our findings suggest that cortical demyelination in EAE depends on particular combinations of MHC I and class II isotypes and alleles. The mechanisms for this influence and any similar effects in humans will be important to define.  相似文献   

8.
Teriflunomide is an orally available anti-inflammatory drug that prevents T and B cell proliferation and function by inhibition of dihydroorotate dehydrogenase. It is currently being developed for the treatment of multiple sclerosis (MS). We report here for the first time the anti-inflammatory effects of teriflunomide in the Dark Agouti rat model of experimental autoimmune encephalomyelitis (EAE). Neurological evaluation demonstrated that prophylactic dosing of teriflunomide at 3 and 10 mg/kg delayed disease onset and reduced maximal and cumulative scores. Therapeutic administration of teriflunomide at doses of 3 or 10 mg/kg at disease onset significantly reduced maximal and cumulative disease scores as compared to vehicle treated rats. Dosing teriflunomide at disease remission, at 3 and 10 mg/kg, reduced the cumulative scores for the remaining course of the disease. Teriflunomide at 10 mg/kg significantly reduced inflammation, demyelination, and axonal loss when dosed prophylactically or therapeutically. In electrophysiological somatosensory evoked potential studies, therapeutic administration of teriflunomide, at the onset of disease, prevented both a decrease in waveform amplitude and an increase in the latency to waveform initiation in EAE animals compared to vehicle. Therapeutic dosing with teriflunomide at disease remission prevented a decrease in evoked potential amplitude, prevented an increase in latency, and enhanced recovery time within the CNS.  相似文献   

9.
Experimental autoimmune encephalomyelitis (EAE) is an animal model for the human demyelinating disease multiple sclerosis (MS). EAE and MS are characterized by significant inflammation, demyelination, neuroglial damage, and cell death. Metallothionein-I and -II (MT-I + II) are antiinflammatory and neuroprotective proteins that are expressed during EAE and MS. We have shown recently that exogenous administration of Zn-MT-II to Lewis rats with EAE significantly reduced clinical symptoms and the inflammatory response, oxidative stress, and apoptosis of the infiltrated central nervous system areas. We show for the first time that Zn-MT-II treatment during EAE significantly prevents demyelination and axonal damage and transection, and stimulates oligodendroglial regeneration from precursor cells, as well as the expression of the growth factors basic fibroblast growth factor (bFGF), transforming growth factor (TGF)beta, neurotrophin-3 (NT-3), NT-4/5, and nerve growth factor (NGF). These beneficial effects of Zn-MT-II treatment could not be attributable to its zinc content per se. The present results support further the use of Zn-MT-II as a safe and successful therapy for multiple sclerosis.  相似文献   

10.
Axonal pathology is a key contributor to long‐term disability in multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS), but the mechanisms that underlie axonal pathology in MS remain elusive. Evidence suggests that axonal pathology is a direct consequence of demyelination, as we and others have shown that the node of Ranvier disassembles following loss of myelin. In contrast to the node of Ranvier, we now show that the axon initial segment (AIS), the axonal domain responsible for action potential initiation, remains intact following cuprizone‐induced cortical demyelination. Instead, we find that the AIS is disrupted in the neocortex of mice that develop experimental autoimmune encephalomyelitis (EAE) independent of local demyelination. EAE‐induced mice demonstrate profound compromise of AIS integrity with a progressive disruption that corresponds to EAE clinical disease severity and duration, in addition to cortical microglial reactivity. Furthermore, treatment with the drug didox results in attenuation of AIS pathology concomitantly with microglial reversion to a less reactive state. Together, our findings suggest that inflammation, but not demyelination, disrupts AIS integrity and that therapeutic intervention may protect and reverse this pathology. GLIA 2016;64:1190–1209  相似文献   

11.
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) in which demyelination and axonal loss result in permanent neurologic disability. We examined the neuroprotective property of the immunosuppressant FK506 (tacrolimus), FK1706 (a nonimmunosuppressant FK506 derivative) and cyclosporin A (CsA) in a chronic relapsing experimental autoimmune encephalomyelitis (EAE) model of MS. Female SJL/J mice were immunized by subcutaneous (s.c.) injection with proteolipid protein 139-151 peptide in complete Freund's adjuvant. At the onset of paralysis, 12-14 days after immunization, mice received daily s.c. injections of FK506 (0.2, 1, and 5 mg/kg), FK1706 (5 mg/kg), CsA (2, 10, and 50 mg/kg), saline or vehicle (30% dimethylsulfoxide) for 30 days. FK506 (at a dose of 5 mg/kg) reduced the severity of the initial disease and suppressed relapses. FK1706 did not significantly alter the clinical course and CsA (at a dose of 50 mg/kg) lessened the severity of the initial episode of EAE but did not alter relapses. In the thoracic spinal cord, FK506 (5 mg/kg), FK1706 (5 mg/kg), and CsA (50 mg/kg) significantly (P < 0.001) reduced the extent of damage in the dorsal, lateral, and ventral white matter by a mean of up to 95, 68, and 30%, respectively. A nonimmunosuppressant dose of FK506 (0.2 mg/kg) also significantly (P < 0.001) reduced the extent of damage in the spinal cord by a mean of up to 45%. Other dosages of these compounds were ineffective. FK506 markedly protects against demyelination and axonal loss in this MS model through immunosuppression and neuroprotection.  相似文献   

12.
Microglia are resident antigen‐presenting cells in the central nervous system (CNS) that either suppress or promote disease depending on their activation phenotype and the microenvironment. Multiple sclerosis (MS) is a chronic inflammatory disease causing demyelination and nerve loss in the CNS, and experimental autoimmune encephalomyelitis (EAE) is an animal model of MS that is widely used to investigate pathogenic mechanisms and therapeutic effects. We isolated and cultured microglia from adult mouse brains and exposed them to specific combinations of stimulatory molecules and cytokines, the combination of IL‐4, IL‐10, and TGF‐β yielding the optimal regime for induction of an immunosuppressive phenotype (M2). M2 microglia were characterized by decreased expression or production of CD86, PD‐L1, nitric oxide, and IL‐6, increased expression of PD‐L2, and having a potent capacity to retain their phenotype on secondary proinflammatory stimulation. M2 microglia induced regulatory T cells, suppressed T‐cell proliferation, and downmodulated M1‐associated receptor expression in M1 macrophages. Myelin oligodendrocyte glycoprotein (MOG)‐induced EAE was induced in DBA/1 mice and at different time points (0, 5, 12, or 15 days postimmunization) 3 × 105 M2 microglia were transferred intranasally. A single transfer of M2 microglia attenuated the severity of established EAE, which was particularly obvious when the cells were injected at 15 days postimmunization. M2 microglia‐treated mice had reduced inflammatory responses and less demyelination in the CNS. Our findings demonstrate that adult M2 microglia therapy represents a novel intervention that alleviated established EAE and that this therapeutic principle may have relevance for treatment of MS patients. GLIA 2014;62:804–817  相似文献   

13.
There have been significant advances in the treatment of multiple sclerosis (MS) in recent years, but further improvement in therapy is required as not all patients have responded optimally. An approach to enhancing MS treatment is to combine drugs that impact on different aspects of the disease process. We have described that the tetracycline derivative, minocycline, attenuates the severity of experimental autoimmune encephalomyelitis (EAE), a model of MS. Here, we have evaluated the combination of minocycline and glatiramer acetate (GA), a current therapy in MS, on the course of EAE in mice. This combination resulted in a significant reduction of disease severity and disease burden with attenuation of the inflammation, axonal loss and demyelination.  相似文献   

14.
Multiple sclerosis (MS) is an immune-mediated disabling neurological disorder involving inflammation, demyelination, axonal damage, and neurodegeneration. Poly(ADP-ribose)polymerase-1 (PARP-1), a nuclear enzyme linked to DNA repair, has been shown to regulate the cellular inflammatory response through interactions with nuclear factor-kappaB. Extensive PARP-1 activation can, by separate mechanisms, also cause cell death. PARP-1 activation in brain occurs in several settings associated with oxidative stress and DNA damage, and PARP-1 inhibition has been shown to attenuate inflammation and improve neuronal survival in these settings. Here we studied the pattern of PARP-1 activation in a nonhuman primate model of MS, marmoset (Callithrix jacchus) experimental allergic encephalomyelitis (EAE). Characteristic of this model is relapsing and remitting focal demyelination typical of human MS. Immunostaining for poly(ADP-ribose), the enzymatic product of PARP-1, showed PARP-1 activation specifically in plaque areas of EAE brains. Robust immunostaining was found in astrocytes surrounding demyelinated EAE plaques and in scattered nearby microglia, oligodendrocytes, and neurons. The immunostaining also suggested PARP-1 activation in occasional endothelial cells surrounded by microglia or infiltrating peripheral blood cells. Given the importance of PARP-1 in both inflammation and cell death processes, these findings suggest that PARP-1 activation may be a significant factor in the pathogenesis of MS.  相似文献   

15.
Gap junctions (GJs) are vital for oligodendrocyte survival and myelination. In order to examine how different stages of inflammatory demyelination affect oligodendrocyte GJs, we studied the expression of oligodendrocytic connexin32 (Cx32) and Cx47 and astrocytic Cx43 in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis (MS) induced by recombinant myelin oligodendrocyte glycoprotein. EAE was characterized by remissions and relapses with demyelination and axonal loss. Formation of GJ plaques was quantified in relation to the lesions and in normal appearing white matter (NAWM). During acute EAE at 14 days postimmunization (dpi) both Cx47 and Cx32 GJs were severely reduced within and around lesions but also in the NAWM. Cx47 was localized intracellularly in oligodendrocytes while protein levels remained unchanged, and this redistribution coincided with the loss of Cx43 GJs in astrocytes. Cx47 and Cx32 expression increased during remyelination at 28 dpi but decreased again at 50 dpi in the relapsing phase. Oligodendrocyte GJs remained reduced even in NAWM, despite increased formation of Cx43 GJs toward lesions indicating astrogliosis. EAE induced in Cx32 knockout mice resulted in an exacerbated clinical course with more demyelination and axonal loss compared with wild-type EAE mice of the same backcross, despite similar degree of inflammation, and an overall milder loss of Cx47 and Cx43 GJs. Thus, EAE causes persistent impairment of both intra- and intercellular oligodendrocyte GJs even in the NAWM, which may be an important mechanism of MS progression. Furthermore, GJ deficient myelinated fibers appear more vulnerable to CNS inflammatory demyelination.  相似文献   

16.
17.
Axonal loss is now considered a consistent feature of MS pathology and evidence suggests that its accumulation may be the pathological correlate for the development of irreversible disability. In this study, we investigated the features of axonal loss in myelin autoimmunity and tested the hypothesis that loss of axons determines permanent neurological impairment in a model of inflammatory demyelination that closely mimics the pathology and course of MS. EAE was induced in DA rats by injection of recombinant mouse MOG with IFA. Animals that developed progressive EAE were killed at several time points after disease onset and animals that followed a chronic relapsing-remitting course of EAE were killed at approximately 4 months, exhibiting varying degrees of residual disability. Toluidine blue staining of semithin sections and immunohistochemistry for OX-42 were used to quantify demyelination, remyelination, inflammation and axonal loss in the spinal cord of MOG-EAE rats. In progressive EAE, the degree of axon loss, demyelination and inflammation all correlated significantly with clinical severity scores and a causative role for macrophages in the pathogenesis of axonal injury is suggested. However, in the chronic stage of relapsing-remitting EAE, in rats having suffered a variable number of relapses, only axonal loss correlated significantly with clinical severity scores. In addition, both axonal loss and clinical severity scores correlated with the number of relapses. These findings imply that secondary, or 'bystander', axonal loss is the main determinant of irreversible neurological disability in MOG-EAE and make the model a useful tool for the investigation of mechanisms of axonal loss and the evaluation of the benefits of neuroprotective therapies under conditions of antibody-mediated inflammatory demyelination.  相似文献   

18.
Multiple sclerosis (MS) is a T cell-mediated autoimmune disease with early lesions characterized by mononuclear cellular infiltrate, edema, demyelination, and axonal loss that contribute to the clinical course of the disease. Experimental autoimmune encephalomyelitis (EAE) in the mouse is a valuable model with a similar disease course to relapsing-remitting MS. The ability to detect the migration of encephalitogenic T cells into the central nervous system in EAE and MS would provide key information on these cells role in the development of lesions observed on magnetic resonance imaging (MRI). T cells were labeled for detection by magnetic resonance imaging using Food and Drug Administration-approved, superparamagnetic iron oxide nanoparticles (Ferumoxides) complexed to poly-L-Lysine (FE-PLL). EAE was induced by adoptive transfer of either labeled or unlabeled T cells. After disease onset, FE-PLL-labeled T cells were detected in the mouse spinal cord using in vivo and ex vivo cellular MRI. Excellent correlation was seen between MRI-visible lesions in the spinal cord and histopathology. The results demonstrate that T cells labeled with FE-PLL can induce EAE disease and can be detected in vivo in the mouse model. The magnetic labeling of cells opens the possibility of monitoring specific cellular phenotypes or pharmacologically or genetically engineered cells by MRI.  相似文献   

19.
Multiple sclerosis (MS) is a CNS disease that includes demyelination and axonal degeneration. Voltage-gated Na+ channels are abnormally expressed and distributed in MS and its animal model, Experimental Allergic Encephalomyelitis (EAE). Up-regulation of Na+ channels along demyelinated axons is proposed to lead to axonal loss in MS/EAE. We hypothesized that Na+ channel β2 subunits (encoded by Scn2b) are involved in MS/EAE pathogenesis, as β2 is responsible for regulating levels of channel cell surface expression in neurons. We induced non-relapsing EAE in Scn2b+/+ and Scn2b?/? mice on the C57BL/6 background. Scn2b?/? mice display a dramatic reduction in EAE symptom severity and lethality as compared to wildtype, with significant decreases in axonal degeneration and axonal loss. Scn2b?/? mice show normal peripheral immune cell populations, T cell proliferation, cytokine release, and immune cell infiltration into the CNS in response to EAE, suggesting that Scn2b inactivation does not compromise immune function. Our data suggest that loss of β2 is neuroprotective in EAE by prevention of Na+ channel up-regulation in response to demyelination.  相似文献   

20.
The common marmoset Callithrix jacchus is a primate phylogenetically close to humans which, when immunized with myelin proteins, is susceptible to a form of experimental autoimmune encephalomyelitis (EAE) that resembles multiple sclerosis (MS). Neuropathological features of marmoset EAE, including inflammation, demyelination and axonal injury, are strikingly similar to findings in the human disease and are the final result of a joint autoimmune attack by myelin-specific T and B cells. The molecular and functional similarity of the marmoset immune system, together with the availability of diagnostic tools that can be used in humans (such as magnetic resonance imaging), makes the marmoset EAE a unique model with which to evaluate the safety and efficacy of therapeutic strategies for the treatment of MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号