首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to determine the source of 3,4-dihydroxyphenylacetic acid (DOPAC) in medial zona incerta (MZI) and dorsomedial nucleus (DMN), with the overall aim of ascertaining whether alterations in the concentration of this dopamine (DA) metabolite reflect the activity of incertohypothalamic dopaminergic neurons. In both the MZI and DMN, the concentration of norepinephrine (NE) exceeds that of DA, reflecting a higher density of noradrenergic vs. dopaminergic neurons in these brain regions. The ratio of DOPAC to DA was greater than the ratio of 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG) to NE indicating that the activity of dopaminergic neurons in the MZI and DMN is greater than that of noradrenergic neurons. Destruction of noradrenergic neuronal axons in the ventral bundle following bilateral injections of the neurotoxin 5-amino-2,4-dihydroxy-alpha-methylphenylethylamine (5-ADMP) decreased NE concentrations in the MZI and DMN, but had no effect on the concentrations of DA or DOPAC, revealing that under basal conditions noradrenergic neurons contribute little to DOPAC concentrations in these brain regions. The DA receptor antagonist haloperidol increased, while the DA receptor agonist apomorphine decreased DOPAC concentrations in the MZI and DMN, indicating that alterations in the activity of incertohypothalamic dopaminergic neurons are accompanied by corresponding changes in the concentration of this DA metabolite. On the other hand, activation of noradrenergic neurons following administration of the alpha 2-adrenergic receptor antagonist idazoxan increased DOPAC concentrations in both the MZI and DMN in intact, but not in ventral bundle-lesioned rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The medial zona incerta (MZI) and dorsomedial nucleus of the hypothalamus (DMN), which contain cell bodies and terminals of incertohypothalamic dopaminergic (DA) neurons, are densely innervated by both noradrenergic (NE) and 5-hydroxytryptaminergic (5-HT) neurons. In view of emerging anatomical and pharmacological evidence suggesting possible interactions between 5-HT and catecholaminergic neurons, the effects of experimental procedures that inhibit or disrupt 5-HT neurons on the activities of catecholaminergic neurons terminating in these regions were examined in the present study. Catecholaminergic neuronal activity was estimated by measuring catecholamine synthesis (accumulation of 3,4-dihydroxyphenylalanine [DOPA] after administration of a decar☐ylase inhibitor) and metabolism (concentrations of the dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) and the norepinephrine metabolite 3-methoxy-4-hydroxyphenyleneglycol (MHPG) in the MZI and DMN of both male and female rats. Inhibition of 5-HT neurons following administration of the 5-HT1A autoreceptor agonist8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) increasedthe accumulation of DOPA in the DMN and the concentrations of DOPAC in the MZI and DMN, indicating an activation of catecholaminergic neurons in these regions. Concentrations of MHPG were increased in the MZI and DMN by 8-OH-DPAT or 5,7-dihydroxytryptamine-induced lesions of 5-HT neurons, revealing that NE neurons terminating in these regions were activated following procedures that decrease 5-HT neuronal function. Following destruction of NE neurons projecting to the MZI and DMN, 8-OH-DPAT no longer increased DOPAC concentrations in these brain regions. Taken together, these results reveal that 5-HT neurons tonically inhibit the activity of NE neurons terminating in the MZI and DMN, but do not influence the activity of incertohypothalamic DA neurons.  相似文献   

3.
The effects of an acute injection of morphine on the activities of mesotelencephalic, tuberoinfundibular and incertohypothalamic dopamine (DA) neurons was estimated by measuring: the rate of turnover of DA (decline after alpha-methyltyrosine); and the concentration of the DA metabolite, dihydroxyphenylacetic acid (DOPAC), in brain regions containing cell bodies or terminals of these neurons (i.e. nucleus accumbens, striatum, median eminence and various hypothalamic nuclei). The rate of turnover of DA and the concentration of DOPAC were increased in nucleus accumbens and striatum and decreased in the median eminence 60 min after the administration of morphine (10 mg/kg, s.c.). Morphine increased the rate of turnover of DA and the concentration of DOPAC in brain regions containing both cell bodies (periventricular nucleus and medial zona incerta) and terminals (medial preoptic, preopticosuprachiasmatic and dorsomedial nuclei) of incertohypothalamic DA neurons. The effects of morphine in all brain regions were blocked by pretreatment with naltrexone. These results indicate that incertohypothalamic DA neurons are stimulated by the acute administration of morphine, and in this respect they resemble the extrahypothalamic mesotelencephalic DA neurons rather than hypothalamic tuberoinfundibular DA neurons.  相似文献   

4.
The effects of two inhibitors of dopamine (DA) reuptake, amfonelic acid and GBR 12909, on the clozapine- and haloperidol-induced increases in DA synthesis, release, and metabolism were investigated in the rat. In the striatum, as well as in the nucleus accumbens, the haloperidol-induced increase in tissue concentrations of dihydroxyphenylacetic acid (DOPAC) or the accumulation of dihydroxyphenylalanine (DOPA) was potentiated or unaltered, respectively, in rats treated with amfonelic acid. In contrast, amfonelic acid attenuated the stimulatory effects of clozapine on DOPAC concentrations and DOPA accumulation in both brain regions. GBR 12909 also differentially affected the haloperidol- and clozapine-induced increases in DOPAC concentrations. However, the clozapine-induced increase in DOPA accumulation in the median eminence was not significantly altered by treatment with amfonelic acid. The haloperidol-induced increase in the extracellular concentrations of DA and DOPAC in the striatum also was potentiated by amfonelic acid, whereas the increase elicited by clozapine was suppressed. The increase in extracellular DA produced by the administration of morphine or the coadministration of ritanserin, a 5-HT2 antagonist, and haloperidol also was potentiated by amfonelic acid. The ability of amfonelic acid to distinguish between the actions of clozapine and haloperidol on nigrostriatal and mesocorticolimbic DA neurons does not appear to be related to differences in the effects of the drugs on DA autoreceptors or 5-HT2 receptors. Moreover, the mechanism through which clozapine activates tuberoinfundibular DA neurons may differ from that which is involved in the activation of nigrostriatal or mesocorticolimbic DA neurons.  相似文献   

5.
Previous studies have demonstrated the virtual lack of analgesia in mu opioid receptor knockout mice after systemic administration of morphine. Thus, it has been suggested that analgesic actions of morphine are produced via the mu opioid receptor, despite its ability to bind to kappa and delta receptors in vitro. However, it is not clear whether the results of these studies reflect the effect of morphine in the spinal cord. In the present study, we report study of the analgesic actions of spinally-administered morphine and other opioid receptor agonists in mu opioid receptor knockout and wild type mice. Morphine produced a dose-dependent antinociceptive effect in the tail flick test in the knockout mice, although higher doses were needed to produce antinociception than in wild type mice. The antinociceptive effect of morphine was completely blocked by naloxone (a non-selective opioid antagonist) and nor-binaltorphimine (nor-BNI, a selective kappa-opioid receptor antagonist), but not by naltrindole (a selective delta-opioid receptor antagonist). U-50,488H (a selective kappa-opioid receptor agonist) also produced a dose-dependent antinociceptive effect in knockout mice but presented lower analgesic potency in knockout mice than in wild type mice. Analgesic effects of [d-Pen2,d-Pen5]enkephalin (DPDPE, a selective delta-opioid receptor agonist) were observed in wild type mice but abolished in knockout mice. SNC80 (a selective delta-opioid receptor agonist) was not antinociceptive even in wild type mice. The present study demonstrated that morphine can produce thermal antinociception via the kappa opioid receptor in the spinal cord in the absence of the mu opioid receptor. Lower potency of U50,488H in mu opioid receptor knockout mice suggests interaction between kappa and mu opioid receptors at the spinal level.  相似文献   

6.
The purpose of the present study was to determine if D2 receptor-mediated activation of hypothalamic tuberoinfundibular dopaminergic (TIDA) neurons occurs via afferent neuronal inhibition of tonically active inhibitory dynorphinergic neurons in the male rat. To this end, the effects of either surgical deafferentation of the mediobasal hypothalamus or administration of a κ opioid receptor agonist (U-50,488) or antagonist (nor-binaltorphimine (NOR-BNI)) on D2 receptor-mediated activation of TIDA neurons were assessed. For comparison, the activity of mesolimbic DA neurons was also determined in these studies. TIDA and mesolimbic DA neuronal activities were estimated by measuring dopamine synthesis (accumulation of 3,4-dihydroxyphenylalanine (DOPA) following decarboxylase inhibition) and metabolism (concentrations of 3,4-dihydroxyphenylacetic acid (DOPAC)) in terminals of these neurons in the median eminence and nucleus accumbens, respectively. Intraperitoneal administration of the D2 receptor agonist quinelorane caused a dose-dependent increase in DOPAC in the median eminence and a decrease in DOPAC in the nucleus accumbens; surgical deafferentation of the mediobasal hypothalamus prevented the effect of quinelorane in the median eminence, but not the nucleus accumbens. Activation of κ opioid receptors with U-50,488 had no effect per se, but blocked quinelorane-induced increases in median eminence DOPA. In contrast, U-50,488 had no effect on DOPA in the nucleus accumbens of either vehicle- or quinelorane-treated rats. Blockade of κ opioid receptors with NOR-BNI increased median eminence DOPA, and prevented the stimulatory effects of quinelorane on dopamine synthesis. Administration of prolactin also increased median eminence DOPA, but did not alter the ability of quinelorane to stimulate dopamine synthesis. Neither NOR-BNI nor prolactin had any effect on DOPA in the nucleus accumbens of vehicle- or quinelorane-treated rats. These results suggest that D2 receptor-mediated activation of TIDA neurons occurs via an afferent neuronal mechanism involving, at least in part, inhibition of tonically active inhibitory dynorphinergic neurons in the male rat.  相似文献   

7.
Recent findings have shown that systemic morphine increases extracellular dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), ascorbic acid (AA) and uric acid concentrations in the striatum of freely moving rats. The morphine-induced increase in DA oxidative metabolism is highly correlated with that of xanthine. In the present study, we evaluated the effects of subcutaneous (s.c.) naloxone (1 mg/kg) on morphine-induced changes in DA, DOPAC, HVA, 5-hydroxyindoleacetic acid (5-HIAA), AA, uric acid and glutamate in the striatum of freely moving rats using microdialysis. Dialysates were assayed by high performance liquid chromatography with electrochemical detection or (glutamate) ultraviolet detection. Morphine (5–20 mg/kg) given s.c. increased DA, DOPAC+HVA, 5-HIAA, AA and uric acid and decreased glutamate dialysate concentrations over a 3 h period after morphine. Morphine (1 mM), given intrastriatally, did not affect all the above parameters, with the exception of an early short-lasting decrease in AA concentration. Naloxone antagonised all morphine-induced changes with the exception of AA increase and glutamate decrease in dialysate concentrations. Systemic or intrastrial (0.2–2 mM) naloxone increased AA and decreased glutamate dialysate concentrations. When given intranigrally, morphine (1 mM) increased DOPAC+HVA, AA and uric acid and decreased glutamate dialysate concentrations over a 2 h period after morphine; DA and 5-HIAA concentrations were unaffected. These results suggest that: (i) morphine increases striatal DA release and 5-hydroxytryptamine oxidative metabolism by a μ-opioid receptor-mediated mechanism mainly at extranigrostriatal sites; (ii) morphine increases DA and xanthine oxidative metabolism and affects glutamate and AA release by a μ-opioid receptor mediated mechanism acting also at nigral sites; and (iii) a μ-opioid receptor-mediated mechanism tonically controls at striatal sites extracellular AA and glutamate concentrations.  相似文献   

8.
Studies utilizing fluorescent histochemical techniques first revealed that A13 dopaminergic (DA) perikarya located in medial zona incerta (MZI) project to various regions within the hypothalamus; accordingly, these DA neurons were designated the ‘incertohypothalamic’ DA neuronal system. More recently, it has been shown that the anterograde neuronal tract tracer Phaseolus vulgaris leucoagglutinin, after injection into MZI, is identified in nerve terminals outside of the hypothalamus: for example, in horizontal limb of the diagonal band of Broca (HDB) and central nucleus of the amygdala (cAMY). The purpose of the present study was to determine, using neurochemical techniques, if A13 DA neurons project to the HDB and cAMY. Concentrations of dopamine and one of its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) were determined in HDB and cAMY following: (1) electrical stimulation of MZI, (2) electrolytic lesion or knife ablation of MZI, and (3) administration of gamma-hydroxybutyric acid (GHBA) into MZI. For comparison, similar measurements were made in nucleus accumbens (N. Acc.), a terminal region of A10 DA neurons in the ventral tegmental area (VTA). Electrical stimulation of MZI increased DOPAC concentrations in HDB and cAMY, whereas electrolytic or ablative lesions of MZI decreased dopamine concentrations in both of these regions. By contrast, neither stimulation nor lesion of MZI had any effect on DOPAC or dopamine concentrations in N. Acc. Intracerebral injection of GHBA into MZI increased dopamine concentrations in MZI and HDB, but not in cAMY or N. Acc. Intracerebral administration of GHBA into VTA increased dopamine concentrations in HDB and N. Acc., but not in MZI or cAMY. These results suggest that A13 DA neurons project to HDB and cAMY but not to N. Acc., and HDB receives projections from both A10 and A13 DA neurons.  相似文献   

9.
Primary neuronal enriched cultures were incubated with mu (morphine, 10(-5) M), delta (DPDPE, 10(-6) M) and kappa (U-50,488H, 10(-5) M) receptor agonists for 5 days, respectively. Thereafter the acute inhibitory actions of mu, delta or kappa receptor agonists on forskolin stimulated cAMP accumulation was assayed. The effect of long term opioid treatment on the steady-state level of G-protein mRNA (G alpha s, G alpha i-1 and G alpha i-2) was analyzed using an RNAase protection hybridization assay. Incubation for 5 days with kappa receptor agonist resulted in an attenuated ability to decrease the accumulation of cAMP by kappa receptors, as well as mu and delta receptors, which was also observed after 5 days of incubation with the delta receptor agonist. Furthermore, the adenylate cyclase responsiveness to forskolin stimulation was markedly reduced in cultures treated with either delta or kappa receptor agonists. Five days of incubation with kappa receptor agonist resulted in an increase in the levels of G alpha s and G alpha i-2 mRNAs. No effects on the amounts of G alpha s mRNA, G alpha i-1 mRNA or G alpha i-2 mRNA were detected after 5 days of delta receptor stimulation. On the other hand, 5 days of mu receptor stimulation decreased the amounts of G alpha s, G alpha i-1 and G alpha i-2 mRNA. Incubation with kappa receptor agonist for 24 h resulted in a significant decrease in the forskolin-stimulated accumulation of cAMP. The stimulatory effect of forskolin was further decreased after 3 days incubation with kappa receptor agonist.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The incertohypothalamic dopaminergic (DA) neuronal system has been divided into a rostral component of neurons originating in the rostral periventricular nucleus and projecting to the preopticosuprachiasmatic and medial preoptic nuclei and a caudal component originating in the medial zona incerta and projecting to the dorsomedial and anterior hypothalamic nuclei. The purpose of the present study was to determine if the activity of these intrahypothalmic DA neurons is regulated by DA receptor-mediated mechanisms, as are those in the major ascending nigrostriatal and mesolimbic neurons, or if they resemble another group of intrahypothalamic DA neurons, those that comprise the tuberoinfundibular system, which are not responsive to the acute actions of DA agonists or antagonists. The rate of DA turnover (decline after alpha-methyltyrosine) in micropunched regions of the striatum (ST), nucleus accumbens (NA) and hypothalamic regions which contain cell bodies or terminals of incertohypothalamic DA neurons was increased after administration of a DA antagonist (haloperidol) and decreased after administration of a DA agonist (bromocriptine). gamma-Butyrolactone increased DA concentrations in the ST, NA and hypothalamic brain regions containing incertohypothalamic DA neurons, and this effect was blocked by the DA agonist apomorphine. In contrast, none of these treatments affected the concentration or rate of turnover of DA in the median eminence (terminal region of tuberoinfundibular neurons). Injections of either gamma-hydroxybutyric acid or baclofen into the substantia nigra/ventral tegmental region of the midbrain increased DA concentrations in the NA and/or ST but failed to alter DA concentrations in any hypothalamic region. These results suggest that the incertohypothalamic DA system is composed of neurons whose activity can be rapidly modulated by DA receptor-mediated mechanisms and thus resemble the DA neurons in the major ascending nigrostriatal and mesolimbic systems rather than the hypothalamic neurons which comprise the tuberoinfundibular DA system.  相似文献   

11.
The purpose of this study was to determine the effects of acute hypoprolactinemia on tuberoinfundibular dopamine (DA) neurons using a rabbit anti-rat prolactin antiserum (PRL-AB) to immunoneutralize circulating prolactin under basal conditions and at various times after haloperidol-induced hyperprolactinemia. The specificity of PRL-AB for prolactin was determined by examining the ability of unlabelled hormone to displace binding of 125I-labelled prolactin to PRL-AB. Tuberoinfundibular DA neuronal activity was estimated by measuring the concentrations of the DA metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the median eminence which contains terminals of these neurons. Systemic (i.v.) administration of 200 microl of PRL-AB decreased plasma prolactin concentrations below detectable levels for at least 4 h, and this was accompanied by a pronounced decrease in DOPAC concentrations in the median eminence of females, but not males. Central (i.c.v.) administration of 2 microl PRL-AB diluted up to 1:100 mimicked the inhibitory effect of systemic administration of PRL-AB on median eminence DOPAC concentrations suggesting that the tonic stimulatory effect of prolactin on the basal activity of tuberoinfundibular DA neurons in females occurs via a central site of action. In male rats, blockade of anterior pituitary DA receptors with haloperidol (1 mg/kg; s.c.) caused an prompt (by 1 h) increase in plasma prolactin concentrations which was maintained for at least 12 h. Haloperidol-induced hyperprolactinemia also caused a delayed (at 6 and 12 h) increase in median eminence DOPAC concentrations in these animals which was blocked by PRL-AB. Exposure of rats to initial priming periods of endogenous hyperprolactinemia of up to 6 h duration (followed by 6 h or more of PRL-AB-induced hypoprolactinemia) failed to alter median eminence DOPAC concentrations unless prolactin exposure was reinstated by an i.c.v. injection of prolactin. These results confirm that prolactin mediates the stimulatory effects of haloperidol on tuberoinfundibular DA neurons, and reveal that delayed induced activation of these neurons by prolactin is dependent upon a priming period of sustained hyperprolactinemia longer than 3 h for initiation and maintenance of this response.  相似文献   

12.
S F Fan  K F Shen  S M Crain 《Brain research》1991,558(1):166-170
Previous studies showed that low concentrations of opioids prolong the calcium-dependent component of the action potential duration (APD) of dorsal root ganglion (DRG) neurons, whereas higher concentrations shorten the APD. In the present study whole-cell voltage-clamp, as well as cell-attached membrane-patch voltage-clamp, recordings demonstrate that application of picomolar to nanomolar concentrations of mu, delta or kappa opioid agonists (DAGO, DPDPE or dynorphin) to DRG neurons in dissociated cell cultures reversibly decreased the activities of voltage-sensitive K+ channels. Pretreatment of DRG neurons with the opioid receptor antagonists, naloxone (30 nM) or diprenorphine (1 nM) prevented mu/delta or kappa opioid-induced decreases in K+ channel activities, respectively. Since opioids added to the bath solution decreased the activities of K+ channels in the membrane patch sealed off by the pipette tip, our results provide strong evidence that some modes of excitatory modulation of the action potential of DRG neurons are mediated by diffusible second messengers. The data are consonant with our previous studies indicating that opioids can elicit excitatory effects on sensory neurons via cholera toxin-sensitive Gs-linked excitatory opioid receptors coupled to cyclic AMP-dependent ionic channels.  相似文献   

13.
Glucocorticoid receptor (GR)-mediated facilitation of striatal dopaminergic (DA) neurotransmission has been proposed to play a role in behavioral sensitization induced by intermittent exposure to drugs of abuse or stressors. Searching for possible common neuronal substrates acted upon by drugs of abuse and corticosterone, we addressed the question as to whether such a facilitatory effect is apparent (i.e., persists) in primary cultures of rat striatum subsequent to intermittent (prenatal) morphine administration. As previously observed in striatal slices of morphine-treated rats, intermittent morphine exposure in vivo caused a long-lasting increase in DA D1 receptor-stimulated adenylyl cyclase activity, that appeared to persist in primary cultures of rat striatal γ-aminobutyric acid (GABA) neurons. Subsequent in vitro exposure of these striatal neurons to corticosterone or dexamethasone, simultanously activating GR and mineralocorticoid receptors (MR), about doubled this adaptive effect of previous in vivo morphine administration. The selective MR agonist aldosterone was ineffective in this respect. Prior in vivo morphine treatment also enhanced the stimulatory in vitro effect of corticotropin releasing hormone (CRH) on adenylyl cyclase in cultured GABA neurons. However, the enhanced CRH receptor functioning was not potentiated by in vitro corticosterone exposure. Activation of GR by corticosterone did not facilitate the increase in D1 receptor efficacy induced by sustained activation of muscarinic receptors in cultured striatal neurons. These data indicate that previous intermittent morphine administration induces a long-lasting synergistic effect of corticosterone on enhanced striatal DA neurotransmission at the level of postsynaptic D1 receptors. Moreover, the induction of this neuroadaptation seems to display opioid receptor selectivity and its long-term expression may be confined to D1 receptors. Since exposure to drugs of abuse or stressors not only increase striatal DA release but also plasma corticosterone levels, we hypothesize that this adaptive phenomenon in DA-sensitive GABA neurons is involved in the expression of morphine-induced long-term behavioral sensitization to drugs of abuse and stressors. Synapse 25:381–388, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
Results of previous studies suggested that incertohypothalamic dopamine (IHDA) neurons located in the medial zona incerta (MZI) project to the central nucleus of the amygdala (cAMY), horizontal diagonal band of Broca (HDB), and paraventricular nucleus (PVN). The overall goal of the present study was to determine the relative contribution of IHDA neurons to the DA innervation of these brain regions. A combined fluorescent and in situ hybridization histochemical procedure was employed to localize the retrograde tracer fluoro-gold (FG) in cells expressing tyrosine hydroxylase (TH) mRNA in the MZI following its iontophoretic injection into either the cAMY, HDB or PVN. For comparison, the numbers of dual labeled FG/TH mRNA neurons in the midbrain were also determined. One week after unilateral injection of FG into the cAMY, cells containing FG+TH mRNA were found in the ipsilateral MZI, substantia nigra zona compacta (SNC) and ventral tegmental area (VTA). The total numbers of cells labeled with FG varied with the size of the injection site, but the ratio of dual labeling in the MZI to that of the SNC–VTA remained constant across animals at approximately 1:6. FG injections into the HDB resulted in a ratio of dual labeled cells in the ipsilateral MZI and VTA of approximately 1:2, but no dual labeled cells were found in the SNC. Dual labeled cells were only found in the ipsilateral MZI in animals receiving FG injections in the PVN. Thus, DA terminals in the PVN originate exclusively from IHDA neurons in the MZI, whereas these neurons provide only a portion of the DA innervation of the cAMY and HDB. The similar distribution of dual labeled cells in the MZI following FG injections into the cAMY, HDB and PVN suggests that perikarya of IHDA neurons projecting to these regions are not organized into distinct groups.  相似文献   

15.
The c-fos gene is expressed in the central nervous system in response to various neuronal stimuli. Using in situ hybridization, we examined the effects of chronic morphine treatment and withdrawal on c-fos mRNA in the rat brain, and particularly within identified striatal neurons. Morphine dependence was induced by subcutaneous implantation of two pellets of morphine for 6 days and withdrawal was precipitated by administration of naltrexone. Placebo animals and morphine-dependent rats showed a very weak c-fos mRNA expression in all the structures studied. Our study emphasized the spatial variations in c-fos mRNA expression, and also revealed a peak expression of c-fos mRNA at 1 h after naltrexone-precipitated withdrawal in the projection areas of dopaminergic neurons, noradrenergic neurons and in several regions expressing opiate receptors. Interestingly, morphine withdrawal induces c-fos mRNA expression in the two efferent populations of the striatum (i.e. striatonigral and striatopallidal neurons) both in the caudate putamen and nucleus accumbens. Moreover, the proportions of activated neurons during morphine withdrawal are different in the caudate putamen (mostly in striatopallidal neurons) and in the shell and core parts of the nucleus accumbens (mostly in striatonigral neurons). The activation of striatopallidal neurons suggests a predominant dopaminergic regulation on c-fos gene expression in the striatum during withdrawal. On the contrary, c-fos induction in striatonigral neurons during withdrawal seems to involve a more complex regulation like opioid-dopamine interactions via the mu opioid receptor and the D1 dopamine receptor coexpressed on this neuronal population or the implication of other neurotransmitter systems.  相似文献   

16.
Buprenorphine is a synthetic opioid proposed as a potential treatment for drug abuse. Although buprenorphine is widely considered to be a partial agonist at opioid receptors, little is known of its electrophysiological effects in the central nervous system. Because buprenorphine has been reported to have limited hedonic effects in humans, and since activation of the dopaminergic system is thought to be critical to the reinforcing effects of drugs, we compared the ability of buprenorphine and morphine to activate dopamine neurons. We report here that buprenorphine and morphine are equally effective in increasing the impulse flow of dopamine cells in the ventral tegmental area. Extracellular single unit activity was recorded from dopaminergic (DA) neurons in the ventral tegmental area (VTA) of chloral hydrate anethestized rats. Standard physiological and anatomical criteria were used to identify DA neurons. Systemic injection of buprenorphine (5–200 μg/kg, i.v.) and morphine (1–10 mg/kg, i.v.) produced equal magnitudes of activation in a similar subset of DA neurons in the VTA (buprenorphine: 173%; morphine: 164%). Unlike morphine, the activation by buprenorphine was not reversed by the opioid antagonist naloxone (50–100 μg/kg, i.v.), but this is consistent with the known pharmacodynamics of buprenorphine at opioid receptors. These studies demonstrate that acute administration of buprenorphine has morphinelike effects on the impulse activity of DA neurons. The implications for use of buprenorphine as a clinical treatment for drug abuse are discussed. © 1994 Wiley-Liss, Inc.  相似文献   

17.
We previously showed that mouse sensory dorsal root ganglion (DRG) neurons chronically exposed to 1 microM D-ala2-D-leu5-enkephalin (DADLE) or morphine for > 2-3 days in culture become tolerant to the usual opioid inhibitory receptor-mediated effects, i.e. shortening of the duration of the calcium-dependent component of the action potential (APD), and supersensitive to opioid excitatory APD-prolonging effects elicited by low opioid concentrations. Whereas nanomolar concentrations of dynorphin(1-13) or morphine are generally required to prolong the APD of naive DRG neurons (by activating excitatory opioid receptors), femtomolar levels become effective after chronic opioid treatment. Whereas 1-30 nM naloxone or diprenorphine prevent both excitatory and inhibitory opioid effects but do not alter the APD of native DRG neurons, both opioid antagonists unexpectedly prolong the APD of most of the chronic opioid-treated cells. In the present study, chronic exposure of DRG neurons to 1 microM DADLE together with cholera toxin-B subunit (which selectively blocks GM1 ganglioside-regulated opioid excitatory, but not inhibitory, receptor functions) prevented the development of opioid excitatory supersensitivity and markedly attenuated tolerance to opioid inhibitory effects. Conversely, sustained exposure of DRG neurons to 1 nM DADLE, which selectively activates excitatory opioid receptor functions, resulted in characteristic opioid excitatory supersensitivity but no tolerance. These results suggest that 'dependence'-like properties can be induced in chronic opioid-treated sensory neurons in the absence of tolerance. On the other hand, development of some components of tolerance in these cells may require sustained activation of both excitatory, as well as inhibitory, opioid receptor functions.  相似文献   

18.
Zhang RX  Lao L  Wang L  Liu B  Wang X  Ren K  Berman BM 《Brain research》2004,1020(1-2):12-17
Our previous study showed that electroacupuncture (EA) significantly attenuated inflammatory hyperalgesia. It has also been reported that EA analgesia in uninjured animals is mediated by mu and delta opioid receptors at 2-15 Hz and by kappa opioid receptor at 100 Hz. Because persistent pain changes neural response to external stimulation, we hypothesized that (1) the mechanisms of EA anti-hyperalgesia may be different under conditions of persistent pain and that (2) combining EA with a sub-effective dose of morphine could enhance EA anti-hyperalgesia. Hyperalgesia, decreased paw withdrawal latency (PWL) to a noxious thermal stimulus, was induced by subcutaneously injecting complete Freund's adjuvant (CFA) into the hind paws of rats. Selective antagonists against mu (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-ThrNH2, CTOP), delta (naltrinodole, NTI) and kappa (nor-binaltorphimine, BNI) opioid receptors were administered intrathecally 10 min before each of two EA treatments at acupoint Huantiao (GB30), one immediately post and the other 2 h post-CFA. Morphine was given (i.p.) 40 min before the second EA treatment. PWL was measured before and 2.5 and 5 h post-CFA. Both 10 and 100 Hz EA-produced anti-hyperalgesia were blocked spinally by mu- and delta- but not kappa-receptor antagonists. EA combined with a sub-threshold dose of morphine (2.5 mg/kg) enhanced anti-hyperalgesia additively (10 Hz EA) or synergistically (100 Hz EA) compared to that produced by each component alone. These results suggest selective involvement of mu and delta, but not kappa, receptors in EA-produced anti-hyperalgesia in rats. A combined EA and opioid drug protocol may provide an improved treatment strategy for inflammatory pain.  相似文献   

19.
The effects of administration of antibodies against dynorphin1-17 (DYN1-17-AB) and dynorphin1-8 (DYN1-8-AB) were examined on the activity of dopaminergic (DA) neurons comprising the nigrostriatal, mesolimbic, tuberoinfundibular and periventricular-hypophysial systems in the male rat brain. DA neuronal activity was estimated by measuring the concentration of the dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in brain (striatum, nucleus accumbens, median eminence) and pituitary regions (intermediate lobe) containing terminals of these neurons. The intracerebroventricular administration of either DYN1-17-AB or DYN1-8-AB produced a time-related increase in the activity of tuberoinfundibular and periventricular-hypophysial DA neurons, but failed to alter the activity of nigrostriatal or mesolimbic DA neurons. The ability of both DYN1-17-AB and DYN1-8-AB to enhance the activity of tuberoinfundibular and periventricular-hypophysial DA neurons was reversed by the kappa opioid agonist U-50,488. These results indicate that DYN1-17-AB and DYN1-8-AB, presumably by binding endogenous dynorphins, remove a tonic inhibitory action of these opioid peptides on tuberoinfundibular and periventricular-hypophysial DA neurons.  相似文献   

20.
Neuronkinin-1 receptor (NK-1R), the neuropeptide substance P (SP) preferring receptor, is highly expressed in areas of the central nervous system (CNS) that are especially implicated in depression, anxiety, and stress. Repeated exposure to opioids may sensitize neuronal systems involved in stress response. We examined the effects of morphine, the principal metabolite of heroin, on the functional expression of NK-1R in the cortical neurons. NK-1R and mu-opioid receptor (MOR) are co-expressed in the cortical neurons. Morphine enhanced NK-1R expression in the cortical neurons at both the mRNA and protein levels. The upregulated NK-1R by morphine had functional activity, because morphine-treated cortical neurons had greater SP-induced Ca(2+) mobilization than untreated neurons. Blocking opioid receptors on the cortical neurons by naltrexone or CTAP (a mu-opioid receptor antagonist) abolished the morphine action. Investigation of the mechanism(s) responsible for the morphine action showed that morphine activated NK-1R promoter and induced the phosphorylation of p38 MAPK protein in the cortical neurons. These in vitro data provide a plausible cellular mechanism for opioid-mediated neurological disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号