首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osteocytes are embedded in the bone matrix, and they communicate with adjacent osteocytes, osteoblasts, and osteoclasts through the osteocyte lacunocanalicular system. Osteocytes are believed to be essential for the maintenance of bone homeostasis because they regulate mechanical sensing and mineral metabolism in mammalian bones; however, osteocyte morphology in other vertebrates has not been well documented. We conducted a comparative study on the morphology of osteocytes and the lacunocanalicular system of the following vertebrates: two teleost fishes [medaka (Oryzias latipes), and zebrafish (Danio rerio)], three amphibians [African clawed frog (Xenopus laevis), black-spotted pond frog (Rana nigromaculata), and Japanese fire-bellied newt (Cynops pyrrhogaster)], two reptiles [four-toed tortoise (Testudo horsfieldii) and green iguana (Iguana iguana)], and two mammals (laboratory mouse C57BL6 and human). The distribution of the osteocyte lacunocanalicular system in all these animals was investigated using the modified silver staining and the fluorescein-conjugated phalloidin staining methods. Bones of medaka had few osteocytes (acellular bone). Bones of zebrafish contained osteocytes (cellular bone) but had a poorly developed osteocyte lacunocanalicular system. Bones of Xenopus laevis, a freshwater species, and of other amphibians, reptiles, and mammals contained numerous osteocytes and a well-developed lacunocanalicular system. The present study indicates that development of the osteocyte lacunocanalicular system differs between teleost fishes and land vertebrates, but this pattern is not directly related to aquatic habitat.  相似文献   

2.
Osteocytes, the most abundant cells in bone, were once thought to be inactive, but are now known to have multifunctional roles in bone, including in mechanotransduction, regulation of osteoblast and osteoclast function and phosphate homeostasis. Because osteocytes are embedded in a mineralized matrix and are challenging to study, there is a need for new tools and cell models to understand their biology. We have generated two clonal osteogenic cell lines, OmGFP66 and OmGFP10, by immortalization of primary bone cells from mice expressing a membrane-targeted GFP driven by the Dmp1-promoter. One of these clones, OmGFP66, has unique properties compared with previous osteogenic and osteocyte cell models and forms 3-dimensional mineralized bone-like structures, containing highly dendritic GFP-positive osteocytes, embedded in clearly defined lacunae. Confocal and electron microscopy showed that structurally and morphologically, these bone-like structures resemble bone in vivo, even mimicking the lacunocanalicular ultrastructure and 3D spacing of in vivo osteocytes. In osteogenic conditions, OmGFP66 cells express alkaline phosphatase (ALP), produce a mineralized type I collagen matrix, and constitutively express the early osteocyte marker, E11/gp38. With differentiation they express osteocyte markers, Dmp1, Phex, Mepe, Fgf23, and the mature osteocyte marker, Sost. They also express RankL, Opg, and Hif1α, and show expected osteocyte responses to PTH, including downregulation of Sost, Dmp1, and Opg and upregulation of RankL and E11/gp38. Live cell imaging revealed the dynamic process by which OmGFP66 bone-like structures form, the motile properties of embedding osteocytes and the integration of osteocyte differentiation with mineralization. The OmGFP10 clone showed an osteocyte gene expression profile similar to OmGFP66, but formed less organized bone nodule-like mineral, similar to other osteogenic cell models. Not only do these cell lines provide useful new tools for mechanistic and dynamic studies of osteocyte differentiation, function, and biomineralization, but OmGFP66 cells have the unique property of modeling osteocytes in their natural bone microenvironment. © 2019 American Society for Bone and Mineral Research  相似文献   

3.
To understand in situ behavior of osteocytes, we characterized a model of osteocytes in their native bone matrix and demonstrated real-time biologic activity of osteocytes while bending the bone matrix. Using 43 male Sprague-Dawley rats, dumbbell-shaped explants were harvested from stainless steel femoral implants after 6-12 weeks and incubated in culture medium or fixed. Sixteen specimens were used to determine bone volume density (BV/TV), volumetric bone mineral density (BMD) and histology for different implantation periods. Osteocyte viability was evaluated by L-lactate dehydrogenase (LDH) activity in 12 cultured explants. Confocal microscopy was used to assess tracer diffusion in three explants and changes in osteocyte pH of a mechanically loaded explant. From 6 to 12 weeks, explant BV/TV and volumetric BMD trended up 92.5% and 101%, respectively. They were significantly and highly correlated. Tissues were uniformly intramembranous and all bone cell types were present. Explants maintained LDH activity through culture day 8. Diffusion at 200 microM was limited to 1,209 Da. Explants appeared capable of reproducing complex bone biology. This model may be useful in understanding osteocyte mechanotransduction in the context of a physiologically relevant bone matrix.  相似文献   

4.
Studies on primary osteocytes, which compose >90–95% of bone cells, embedded throughout the mineralized matrix, are a major challenge because of their difficult accessibility and the very rare models available in vitro. We engineered a 3D culture method of primary human osteoblast differentiation into osteocytes. These 3D‐differentiated osteocytes were compared with 2D‐cultured cells and with human microdissected cortical osteocytes obtained from bone cryosections. Human primary osteoblasts were seeded either within the interspace of calibrated biphasic calcium phosphate particles or on plastic culture dishes and cultured for 4 wk in the absence of differentiation factors. Osteocyte differentiation was assessed by histological and immunohistological analysis after paraffin embedding of culture after various times, as well as by quantitative RT‐PCR analysis of a panel of osteoblast and osteocyte markers after nucleic acid extraction. Histological analysis showed, after only 1 wk, the presence of an osteoid matrix including many lacunae in which the cells were individually embedded, exhibiting characteristics of osteocyte‐like cells. Real‐time PCR expression of a set of bone‐related genes confirmed their osteocyte phenotype. Comparison with plastic‐cultured cells and mature osteocytes microdissected from human cortical bone allowed to assess their maturation stage as osteoid‐osteocytes. This model of primary osteocyte differentiation is a new tool to gain insights into the biology of osteocytes. It should be a suitable method to study the osteoblast‐osteocyte differentiation pathway, the osteocyte interaction with the other bone cells, and orchestration of bone remodeling transmitted by mechanical loading and shear stress. It should be used in important cancer research areas such as the cross‐talk of osteocytes with tumor cells in bone metastasis, because it has been recently shown that gene expression in osteocytes is strongly affected by cancer cells of different origin. It could also be a very efficient tool for drug testing and bone tissue engineering applications.  相似文献   

5.
《BONE》2013,55(2):250-257
Osteocytes are ideally positioned to detect and respond to mechanical and hormonal stimuli and to coordinate the function of osteoblasts and osteoclasts. However, evidence supporting the involvement of osteocytes in specific aspects of skeletal biology has been limited mainly due to the lack of suitable experimental approaches. Few crucial advances in the field in the past several years have markedly increased our understanding of the function of osteocytes. The development of osteocytic cell lines initiated a plethora of in vitro studies that have provided insights into the unique biology of osteocytes and continue to generate novel hypotheses. Genetic approaches using promoter fragments that direct gene expression to osteocytes allowed the generation of mice with gain or loss of function of particular genes revealing their role in osteocyte function. Furthermore, evidence that Sost/sclerostin is expressed primarily in osteocytes and inhibits bone formation by osteoblasts, fueled research attempting to identify regulators of this gene as well as other osteocyte products that impact the function of osteoblasts and osteoclasts. The discovery that parathyroid hormone (PTH), a central regulator of bone homeostasis, inhibits sclerostin expression generated a cascade of studies that revealed that osteocytes are crucial target cells of the actions of PTH. This review highlights these investigations and discusses their significance for advancing our understanding of the mechanisms by which osteocytes regulate bone homeostasis and for developing therapies for bone diseases targeting osteocytes. This article is part of a Special Issue entitled "The Osteocyte".  相似文献   

6.
INTRODUCTION: External mechanical forces on cells are known to influence cytoskeletal structure and thus cell shape. Mechanical loading in long bones is unidirectional along their long axes, whereas the calvariae are loaded at much lower amplitudes in different directions. We hypothesised that if osteocytes, the putative bone mechanosensors, can indeed sense matrix strains directly via their cytoskeleton, the 3D shape and the long axes of osteocytes in fibulae and calvariae will bear alignment to the different mechanical loading patterns in the two types of bone. MATERIALS AND METHODS: We used confocal laser scanning microscopy and nano-computed tomography to quantitatively determine the 3D morphology and alignment of long axes of osteocytes and osteocyte lacunae in situ. RESULTS: Fibular osteocytes showed a relatively elongated morphology (ratio lengths 5.9:1.5:1), whereas calvarial osteocytes were relatively spherical (ratio lengths 2.1:1.3:1). Osteocyte lacunae in fibulae had higher unidirectional alignment than the osteocyte lacunae in calvariae as demonstrated by their degree of anisotropy (3.33 and 2.10, respectively). The long axes of osteocyte lacunae in fibulae were aligned parallel to the principle mechanical loading direction, whereas those of calvarial osteocyte lacunae were not aligned in any particular direction. CONCLUSIONS: The anisotropy of osteocytes and their alignment to the local mechanical loading condition suggest that these cells are able to directly sense matrix strains due to external loading of bone. This reinforces the widely accepted role of osteocytes as mechanosensors, and suggests an additional mode of mechanosensing besides interstitial fluid flow. The relatively spherical morphology of calvarial osteocytes suggests that these cells are more mechanosensitive than fibular osteocytes, which provides a possible explanation of efficient physiological load bearing for the maintenance of calvarial bone despite its condition of relative mechanical disuse.  相似文献   

7.
In order to gain insight into the mechanisms underlying the dynamic changes in bone metabolism and bone quality after parathyroidectomy (PTX) in secondary hyperparathyroid patients with high levels of parathyroid hormone (PTH), we performed bone histomorphometric analysis with tetracycline labeling in iliac bone biopsy specimens taken before and after PTX, with special attention paid to osteocytes. At 2 to 4 weeks after PTX, PTH concentrations decreased markedly with evident reductions in bone turnover markers. Histomorphometry revealed that at 2 to 4 weeks following PTX, the osteoclast surface decreased to nearly 0%, with a substantial increase in osteoid volume and a reduction in fibrosis volume. Labeling with tetracycline was observed not only at the mineralization front on the bone surface but also around the osteocyte lacunar walls and canaliculi within both the basic multicellular units (BMUs) and bone structural units (BSUs), suggesting that mineralization was taking place along the lacunocanalicular system after PTX. The tetracycline‐labeled area was much greater in the BSUs than in the BMUs and at the mineralization front, and the tetracycline labeling in the BSUs was markedly increased after PTX compared with that in the low‐ and high‐PTH control groups without PTX. The osteocyte number was decreased significantly after PTX, concomitant with an increase in the number of empty lacunae and a reduction of lacunar volume. Thus the increased osteocyte death and mineralization around the lacunocanalicular system in association with a rapid decline in PTH may underlie the changes in bone metabolism and quality that occur following PTX. © 2010 American Society for Bone and Mineral Research.  相似文献   

8.
Osteocytes are surrounded by hard bone matrix. Therefore, it has not previously been possible to demonstrate the real architecture of the osteocyte network in bone. We previously reported that it is possible to observe osteocytes in bone by labeling the cells with fluorescence and using confocal laser scanning (CLS) microscopy. In this study, we for the first time conducted an extensive analysis of the morphology and morphometry of the three-dimensional (3D) osteocyte structure using three-dimensionally reconstructed fluorescent images. Sixteen-day-old embryonic chick calvariae were stained with fluorescently labeled phalloidin and observed using a confocal laser scanning microscope. Morphometry of osteocytes in the calvaria was analyzed using extensive three-dimensional reconstructing software IMARIS, process length measuring software NEURON TRACER and cell surface area-/cell volume-analyzing software SURPASS. From the IMARIS-derived images, we found that the average of 10 osteocytes is 52.7 +/- 5.7 processes, and the point-to-point distance between centers of the osteocytes was 24.1 +/- 2.8 microm. In addition, we could calculate that each osteocyte spans an average of 4180 +/- 673 microm3 of bone volume. NEURON TRACER showed that the length of osteocyte processes was 0.26 +/- 0.02 microm per 1 microm3 bone compartment. In addition, SURPASS indicated that the surface area of osteocytes was 0.36 +/- 0.03 microm2 per 1 microm3 bone compartment and that the volume ratio of osteocyte cell body to bone compartment was 9.42% +/- 1.18%. Together, the average total length of the processes, the average surface area, and the average volume of one osteocyte were 1070 +/- 145 microm, 1509 +/- 113 microm2, and 394 +/- 49 microm3, respectively. It is possible to reconstruct the real architecture of the osteocyte network and obtain morphometric data from fluorescently labeled osteocytes in chick calvaria.  相似文献   

9.
The osteocyte is the most abundant cell type of bone. There are approximately 10 times as many osteocytes as osteoblasts in adult human bone, and the number of osteoclasts is only a fraction of the number of osteoblasts. Our current knowledge of the role of osteocytes in bone metabolism is far behind our insight into the properties and functions of the osteoblasts and osteoclasts. However, the striking structural design of bone predicts an important role for osteocytes in determining bone structure. Over the past several years, the role of osteocytes as the professional mechanosensory cells of bone, and the lacunocanalicular porosity as the structure that mediates mechanosensing have become clear. Strain-derived flow of interstitial fluid through this porosity seems to mechanically activate the osteocytes, as well as ensure transport of cell signaling molecules, nutrients, and waste products. This concept explains local bone gain and loss—as well as remodeling in response to fatigue damage—as processes supervised by mechanosensitive osteocytes. Alignment during remodeling seems to occur as a result of the osteocyte’s sensing different canalicular flow patterns around the cutting cone and reversal zone during loading, therefore determining the bone’s structure.  相似文献   

10.
Osteocytes are considered to act as mechanosensory cells in bone. They form a functional synctia in which their processes become interconnected to constitute a three-dimensional (3D) network. Previous studies reported that in mice, the two-dimensional osteocyte network becomes progressively more regular as they grow, although the key factors governing the arrangement of the osteocyte network during bone growth remain unknown. In this study, we characterized the 3D formation of the osteocyte network during bone growth.Morphological skeletal changes have been reported to occur in response to mechanical loading and unloading. In order to evaluate the effect of mechanical unloading on osteocyte network formation, we subjected newborn mice to sciatic neurectomy in order to immobilize their left hind limb as an unloading model. The osteocyte network was visualized by staining osteocyte cell bodies and processes with fluorescently labeled phalloidin. First, we compared the osteocyte network in the femora of embryonic and 6-week-old mice in order to understand the morphological changes that occur with normal growth and mechanical loading. In embryonic mice, the osteocyte network in the femur cortical bone displayed a random cell body distribution, non-directional orientation of cell processes, and irregularly shaped cells. In 6-week-old mice, the 3D network contained spindle-shaped osteocytes, which were arranged parallel to the longitudinal axis of the femur. In addition, more and longer cell processes radiated from each osteocyte. Second, we compared the cortical osteocyte networks of 6-week-old mice that had or had not undergone sciatic neurectomy in order to evaluate the effect of unloading on osteocyte network formation. The osteocyte network formation in both cortical bone and cancellous bone was affected by mechanical loading. However, there were differences in the extent of network formation between cortical bone and cancellous bone in response to mechanical loading with regard to the orientation, nuclear shape and branch formation.  相似文献   

11.
Osteocytes are essential regulators of bone homeostasis. However, they are difficult to study due to their location within the bone mineralised matrix. Although several techniques have been published for the isolation of osteocytes from mouse bone, no such technique has been described for human osteocytes. We have therefore developed a protocol for the isolation of osteocytes from human trabecular bone samples acquired during surgery. The cells were digested from the bone matrix by sequential collagenase and ethylenediaminetetraacetic acid (EDTA) digestions and the cells from later digests displayed characteristic dendritic osteocyte morphology when cultured ex vivo. Furthermore, the cells expressed characteristic osteocyte marker genes, such as E11, dentin matrix protein 1 (DMP1), SOST, matrix extracellular phosphoglycoprotein (MEPE) and phosphate regulating endopeptidase homologue, X-linked (PHEX). In addition, genes associated with osteocyte perilacunar remodelling, including matrix metallopeptidase-13 (MMP13), cathepsin K (CTSK) and carbonic anhydrase 2 (CAR2) were expressed. The cells also responded to parathyroid hormone (PTH) by downregulating SOST mRNA expression and to 1α,25-dihydroxyvitamin D3 (1,25D) by upregulating fibroblast growth factor 23 (FGF23) mRNA expression. Therefore, the cells behave in a similar manner to osteocytes in vivo. These cells represent an important tool in enhancing current knowledge in human osteocyte biology.  相似文献   

12.
Dentin matrix protein 1 (DMP‐1) is a key molecule in controlling osteocyte formation and phosphate homeostasis. Based on observations that full‐length DMP‐1 is not found in bone, but only cleaved fragments of 37 and 57 kDa are present, and in view of the finding that mutations in the 57‐kDa fragment result in disease, we hypothesized that the 57‐kDa C‐terminal fragment is the functional domain of DMP‐1. To test this hypothesis, a 3.6‐kb type I collagen promoter was used to express this 57‐kDa C‐terminal fragment for comparison with full‐length DMP‐1 in Dmp1 null osteoblasts/osteocytes. Not only did expression of the full‐length DMP‐1 in bone cells fully rescue the skeletal abnormalities of Dmp1 null mice, but the 57‐kDa fragment also had similar results. This included rescue of growth plate defects, osteomalacia, abnormal osteocyte maturation, and the abnormal osteocyte lacunocanalicular system. In addition, the abnormal fibroblast growth factor 23 (FGF‐23) expression in osteocytes, elevated circulating FGF‐23 levels, and hypophosphatemia were rescued. These results show that the 57‐kDa C‐terminal fragment is the functional domain of DMP‐1 that controls osteocyte maturation and phosphate metabolism. © 2011 American Society for Bone and Mineral Research.  相似文献   

13.
In biological tissues such as bone, cell function and activity crucially depend on the physical properties of the extracellular matrix which the cells synthesize and condition. During bone formation and remodeling, osteoblasts get embedded into the matrix they deposit and differentiate to osteocytes. These cells form a dense network throughout the entire bone material. Osteocytes are known to orchestrate bone remodeling. However, the precise role of osteocytes during mineral homeostasis and their potential influence on bone material quality remains unclear. To understand the mutual influence of osteocytes and extracellular matrix, it is crucial to reveal their network organization in relation to the properties of their surrounding material. Here we visualize and topologically quantify the osteocyte network in mineralized bone sections with confocal laser scanning microscopy. At the same region of the sample, synchrotron small‐angle X‐ray scattering is used to determine nanoscopic bone mineral particle size and arrangement relative to the cell network. Major findings are that most of the mineral particles reside within less than a micrometer from the nearest cell network channel and that mineral particle characteristics depend on the distance from the cell network. The architecture of the network reveals optimization with respect to transport costs between cells and to blood vessels. In conclusion, these findings quantitatively show that the osteocyte network provides access to a huge mineral reservoir in bone due to its dense organization. The observed correlation between the architecture of osteocyte networks and bone material properties supports the hypothesis that osteocytes interact with their mineralized vicinity and thus, participate in bone mineral homeostasis.  相似文献   

14.
An isolation method for osteocytes is described. After removal of the periostea, bone cells were isolated from calvariae of 18-day-old chicken embryos by alternating treatments with collagenase and EDTA. Osteocytes were purified from the heterogeneous bone cell population with the help of the osteocyte-specific MAb OB 7.3 bound to protein G-conjugated magnetic beads. The purity of the osteocyte population ultimately obtained was more than 95%. Osteocytes were found to adhere rapidly to glass or plastic substrates. They showed numerous processes of various types. These processes could branch and make contact with those of other osteocytes. After 1-2 days of culture, the isolated osteocytes formed a network of apparently interconnected cell processes very similar to the osteocyte network in bone.  相似文献   

15.
Osteocytes project long, slender processes throughout the mineralized matrix of bone, where they connect and communicate with effector cells. The interconnected cellular projections form the functional lacunocanalicular system, allowing fluid to pass for cell‐to‐cell communication and nutrient and waste exchange. Prevention of mineralization in the pericellular space of the lacunocanalicular pericellular space is crucial for uninhibited interstitial fluid movement. Factors contributing to the ability of the pericellular space of the lacunocanalicular system to remain open and unmineralized are unclear. Immunofluorescence and immunogold localization by transmission electron microscopy demonstrated perlecan/Hspg2 signal localized to the osteocyte lacunocanalicular system of cortical bone, and this proteoglycan was found in the pericellular space of the lacunocanalicular system. In this study we examined osteocyte lacunocanalicular morphology in mice deficient in the large heparan sulfate proteoglycan perlecan/Hspg2 in this tissue. Ultrastructural measurements with electron microscopy of perlecan/Hspg2‐deficient mice demonstrated diminished osteocyte canalicular pericellular area, resulting from a reduction in the total canalicular area. Additionally, perlecan/Hspg2‐deficient mice showed decreased canalicular density and a reduced number of transverse tethering elements per canaliculus. These data indicated that perlecan/Hspg2 contributed to the integrity of the osteocyte lacunocanalicular system by maintaining the size of the pericellular space, an essential task to promote uninhibited interstitial fluid movement in this mechanosensitive environment. This work thus identified a new barrier function for perlecan/Hspg2 in murine cortical bone. © 2011 American Society for Bone and Mineral Research.  相似文献   

16.
Osteocytes are the most abundant cells in bone and the only cells embedded in the bone mineral matrix. They form an extended, three-dimensional (3D) network, whose processes interconnecting the cell bodies reside in thin canals, the canaliculi. Together with the osteocyte lacunae, the canaliculi form the lacuno-canalicular network (LCN). As the negative imprint of the cellular network within bone tissue, the LCN morphology is considered to play a central role for bone mechanosensation and mechanotransduction. However, the LCN has neither been visualized nor quantified in an adequate way up to now. On this account, this article summarizes the current state of knowledge of the LCN morphology and then reviews different imaging methods regarding the quantitative 3D assessment of bone tissue in general and of the LCN in particular. These imaging methods will provide new insights in the field of bone mechanosensation and mechanotransduction and thus, into processes of strain sensation and transduction, which are tightly associated with osteocyte viability and bone quality.  相似文献   

17.
Osteocytes form an extensive cellular network throughout the hard tissue matrix of the skeleton, which is known to regulate skeletal structure. However due to limitations in imaging techniques, the magnitude and complexity of this network remain undefined.We have used data from recent papers obtained by new imaging techniques, in order to estimate absolute and relative quantities of the human osteocyte network and form a more complete understanding of the extent and nature of this network.We estimate that the total number of osteocytes within the average adult human skeleton is ~ 42 billion and that the total number of osteocyte dendritic projections from these cells is ~ 3.7 trillion. Based on prior measurements of canalicular density and a mathematical model of osteocyte dendritic process branching, we calculate that these cells form a total of 23 trillion connections with each other and with bone surface cells. We estimate the total length of all osteocytic processes connected end-to-end to be 175,000 km. Furthermore, we calculate that the total surface area of the lacuno-canalicular system is 215 m2. However, the residing osteocytes leave only enough space for 24 mL of extracellular fluid. Calculations based on measurements in lactation-induced murine osteocytic osteolysis indicate a potential total loss of ~ 16,000 mm3 (16 mL) of bone by this process in the human skeleton. Finally, based on the average speed of remodelling in the adult, we calculate that 9.1 million osteocytes are replenished throughout the skeleton on a daily basis, indicating the dynamic nature of the osteocyte network.We conclude that the osteocyte network is a highly complex communication network, and is much more vast than commonly appreciated. It is at the same order of magnitude as current estimates of the size of the neural network in the brain, even though the formation of the branched network differs between neurons and osteocytes. Furthermore, continual replenishment of large numbers of osteocytes in the process of remodelling allows therapeutic changes to the continually renewed osteoblast population to be rapidly incorporated into the skeleton.  相似文献   

18.
《BONE》2013,55(2):285-295
It is widely hypothesized that osteocytes are the mechano-sensors residing in the bone's mineralized matrix which control load induced bone adaptation. Owing to their inaccessibility it has proved challenging to generate quantitative in vivo experimental data which supports this hypothesis. Recent advances in in situ imaging, both in non-living and living specimens, have provided new insights into the role of osteocytes in the skeleton. Combined with the retrieval of biochemical information from mechanically stimulated osteocytes using in vivo models, quantitative experimental data is now becoming available which is leading to a more accurate understanding of osteocyte function. With this in mind, here we review i) state of the art ex vivo imaging modalities which are able to precisely capture osteocyte structure in 3D, ii) live cell imaging techniques which are able to track structural morphology and cellular differentiation in both space and time, and iii) in vivo models which when combined with the latest biochemical assays and microfluidic imaging techniques can provide further insight on the biological function of osteocytes.This article is part of a Special Issue entitled "The Osteocyte".  相似文献   

19.
The bone anabolic effect of parathyroid hormone (PTH) therapy is blunted when used in patients who were previously on bisphosphonate treatment. Osteocytes may play a role in the bisphosphonate silencing effect on PTH therapy since bisphosphonates have been shown to reach the lacunocanalicular system. In vivo osteocyte studies pose a significant challenge. For the current study, we developed a simple method to isolate RNA from cortical bone enriched with osteocytes. Our purpose was to investigate how zoledronate (ZA) treatment modulates the responses of osteocytes and the bone marrow (BM) to acute PTH treatment. Mice received ZA treatment for 3 months and a single PTH injection prior to death. Bone was histomorphometrically evaluated. Gene expression was assessed at the RNA level in osteocytes and BM. Endothelial progenitor cells (EPCs) and γδT cells were analyzed in the BM and blood using flow cytometry. We found that ZA treatment altered bone responses to PTH. Expression of Sfrp4, a Wnt antagonist, was significantly increased in ZA-affected osteocytes. BM EPCs were increased in response to acute PTH but not when treatment was combined with ZA. ZA treatment augmented EPCs in the BM but not in blood, which suggests that ZA treatment may have differential effects between the BM and blood. These findings indicate that osteocytes and BM EPCs in mice on ZA treatment respond differently to acute PTH from those not receiving ZA. This may partially explain the mechanisms of previous reports that ZA therapy attenuates the anabolic effect of PTH in bone.  相似文献   

20.
Despite osteocytes' ideal position to sense the local environment and thereby influence bone remodeling, the function of osteocytes in bone remains controversial. In this study, histomorphometric examination of male and female femoral middiaphyseal cortical bone was conducted to determine if bone's remodeling response, indicated by tissue porosity and accumulation of damage, is associated with osteocyte lacunar density (number of osteocyte lacunae per bone area). The results support the sensory role of the osteocyte network as the decline in osteocyte lacunar density in human cortical bone is associated with the accumulation of microcracks and increase in porosity with age. Porosity and microcrack density increased exponentially with a decline in osteocyte lacunar density indicating that a certain minimum number of osteocytes is essential for an "operational" network. No gender-related differences were found in the relationship of osteocyte lacunar density to age, porosity, or microcrack density. The coefficient of variation of osteocyte lacunar density increased linearly with age, indicating that aging bone tissue is characterized by increased heterogeneity in the spatial organization of osteocytes. Osteocyte lacunar density, porosity, and microcrack density exhibited the same exponential probability density distribution in the donor population, indicating their regulation by similar biological phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号