首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.
The distribution, morphology and nuclear subdivisions of the putative catecholaminergic and serotonergic systems within the brain of the highveld gerbil were identified following immunohistochemistry for tyrosine hydroxylase and serotonin. The aim of the present study was to investigate possible differences in the complement of nuclear subdivisions of these systems when comparing those of the highveld gerbil with those of the laboratory rat. The highveld gerbil was chosen as it is relatively closely related to the laboratory rat, but the Gerbillinae and Murinae lineages diverged over 20 million years ago. Moreover, even though brain sizes are similar, the life history and phenotypes between these two species are substantially different. The gerbils used in the present study were caught from the wild, which is again another contrast to the laboratory rat. While these differences may lead to the prediction of significant differences in the nuclear complement of these systems, we found that all nuclei identified in both systems in the laboratory rat in several earlier studies had direct homologs in the brain of the highveld gerbil. Moreover, there were no additional nuclei in the brain of the highveld gerbil that are not found in the laboratory rat. The only discernable difference between the two species was a greater density and number of catecholaminergic neurons in the olfactory bulb of the highveld gerbil. Thus, the evolution of nuclear parcellation in these systems appears to demonstrate a form of phylogenetic constraint related to the order Rodentia.  相似文献   

2.
The distribution, morphology and nuclear subdivisions of the cholinergic, putative catecholaminergic and serotonergic systems within the brains of two species of African mole-rat (Cape dune mole-rat -Bathyergus suillus; highveld mole-rat -Cryptomys hottentotuspretoriae) were identified following immunohistochemistry for acetylcholinesterase, tyrosine hydroxylase and serotonin. The aim of the present study was to investigate possible differences in the complement of nuclear subdivisions of these systems by comparing those of the mole-rats to published studies of other rodents. The mole-rats used exhibit a major reduction of the visual system and live a subterranean lifestyle. These wild caught animals also have differing social systems, the Cape dune mole-rat is strictly solitary whereas the highveld mole-rat occurs in social familial units. While these differences, especially that of phenotype, may lead to the prediction of significant differences in the nuclear complement of these systems, we found that all nuclei identified in all three systems in the laboratory rat and other rodents had direct homologs in the brains of the mole-rats studied. There were no additional nuclei in the brains of the mole-rats that are not found in the laboratory rat or other rodents and vice versa. The mole-rats are phylogenetically distant from the laboratory rat, but are still part of the order Rodentia. We conclude that changes in the nuclear organization of the systems studied appear to demonstrate a form of constraint related to the phylogenetic level of the order.  相似文献   

3.
The distribution, morphology and nuclear subdivisions of the putative catecholaminergic and serotonergic systems within the brain of the greater canerat (sometimes spelt cane rat) were identified following immunohistochemistry for tyrosine hydroxylase and serotonin. The aim of the present study was to investigate possible differences in the complement of nuclear subdivisions of these systems when comparing those of the greater canerat with reports of these systems in other rodents. The greater canerat was chosen for investigation as it is a large rodent (around 2.7kg body mass) and has an average brain mass of 13.75g, more than five times larger than that of the laboratory rat. The greater canerats used in the present study were caught from the wild, which is again another contrast to the laboratory rat. While these differences, especially that of size, may lead to the prediction of significant differences in the nuclear complement of these systems, we found that all nuclei identified in both systems in the laboratory rat and other rodents in several earlier studies had direct homologs in the brain of the greater canerat. Moreover, there were no additional nuclei in the brain of the greater canerat that are not found in the laboratory rat or other rodents. It is noted that the locus coeruleus of the laboratory rat differs in appearance to that reported for several other rodent species. The greater canerat is phylogenetically distant from the laboratory rat, but still a member of the order Rodentia. Thus, changes in the nuclear organization of these systems appears to demonstrate a form of constraint related to the phylogenetic level of the order.  相似文献   

4.
The distribution, morphology and nuclear organization of the cholinergic, putative catecholaminergic and serotonergic systems within the brain of the Cape porcupine (Hystrix africaeaustralis) were identified following immunohistochemistry for choline acetyltransferase, tyrosine hydroxylase and serotonin. The aim of the present study was to investigate possible differences in the complement of nuclear subdivisions of these systems in the Cape porcupine in comparison with previous studies of these systems in other rodents. The Cape porcupine is the largest rodent in which these systems have been examined and has an adult body mass of 10-24kg and an average brain mass of approximately 37g, around 15 times larger than the laboratory rat. The Cape porcupines were taken from the wild and while these differences, especially that of mass, may lead to the prediction of a significant difference in the nuclear organization or number within these systems, all the nuclei observed in all three systems in the laboratory rat and in other rodents had direct homologues in the brain of the Cape porcupine. Moreover, there were no additional nuclei in the brain of the Cape porcupine that are not found in the laboratory rat or other rodents studied and vice versa. It is noted that the medial septal nucleus of the Cape porcupine appeared qualitatively to have a reduced number of neurons in comparison to the laboratory rat and other rodents. The locus coeruleus of the laboratory rat differs in location to that observed for the Cape porcupine and several other rodent species. The Cape porcupine is distantly related to the laboratory rat, but still a member of the order Rodentia; thus, changes in the organization of these systems appears to demonstrate a form of constraint related to the phylogenetic level of the order.  相似文献   

5.
The current study describes the nuclear parcellation and neuronal morphology of the cholinergic, catecholaminergic and serotonergic systems within the brain of a representative species of microbat. While these systems have been investigated in detail in the laboratory rat, and examined in several other mammalian species, no chiropterans, to the author's knowledge, have been examined. Using immunohistochemical stains for choline-acetyltransferase, tyrosine hydroxylase and serotonin, we were able to observe and document these systems in relation to the cytoarchitecture. The majority of cholinergic nuclei typically found in mammals were evident in the microbat, however we could not find evidence for choline-acetyltransferase immunopositive neurons in the Edinger–Westphal nucleus, parabigeminal nucleus, and the medullary tegmental field, as seen in several other mammalian species. A typically mammalian appearance of the catecholaminergic nuclei was observed, however, the anterior hypothalamic groups (A15 dorsal and ventral), the dorsal and dorsal caudal subdivisions of the ventral tegmental area (A10d and A10dc), and the ventral (pars reticulata) substantia nigra (A9v) were not present. The serotonergic nuclei were similar to that reported in all eutherian mammalian species studied to date. The overall complement of nuclei of these systems in the microbat, while different to the species examined in other orders of mammals, resembles most closely the complement seen in earlier studies of insectivore species, and is clearly distinguished from that seen in rodents, carnivores and primates. This data is discussed in terms of the phylogenetic relationships of the chiropterans.  相似文献   

6.
The current study describes the nuclear parcellation and neuronal morphology of the cholinergic, catecholaminergic and serotonergic systems within the brain of a representative species of microbat. While these systems have been investigated in detail in the laboratory rat, and examined in several other mammalian species, no chiropterans, to the author's knowledge, have been examined. Using immunohistochemical stains for choline-acetyltransferase, tyrosine hydroxylase and serotonin, we were able to observe and document these systems in relation to the cytoarchitecture. The majority of cholinergic nuclei typically found in mammals were evident in the microbat, however we could not find evidence for choline-acetyltransferase immunopositive neurons in the Edinger–Westphal nucleus, parabigeminal nucleus, and the medullary tegmental field, as seen in several other mammalian species. A typically mammalian appearance of the catecholaminergic nuclei was observed, however, the anterior hypothalamic groups (A15 dorsal and ventral), the dorsal and dorsal caudal subdivisions of the ventral tegmental area (A10d and A10dc), and the ventral (pars reticulata) substantia nigra (A9v) were not present. The serotonergic nuclei were similar to that reported in all eutherian mammalian species studied to date. The overall complement of nuclei of these systems in the microbat, while different to the species examined in other orders of mammals, resembles most closely the complement seen in earlier studies of insectivore species, and is clearly distinguished from that seen in rodents, carnivores and primates. This data is discussed in terms of the phylogenetic relationships of the chiropterans.  相似文献   

7.
This study investigated the nuclear organization of four immunohistochemically identifiable neural systems (cholinergic, catecholaminergic, serotonergic and orexinergic) within the brain of the African pygmy mouse (Mus minutoides). The African pygmy mice studied had a brain mass of around 275 mg, making these the smallest rodent brains to date in which these neural systems have been investigated. In contrast to the assumption that in this small brain there would be fewer subdivisions of these neural systems, we found that all nuclei generally observed for these systems in other rodent brains were also present in the brain of the African pygmy mouse. As with other rodents previously studied in the subfamily Murinae, we observed the presence of cortical cholinergic neurons and a compactly organized locus coeruleus. These two features of these systems have not been observed in the non-Murinae rodents studied to date. Thus, the African pygmy mouse displays what might be considered a typical Murinae brain organization, and despite its small size, the brain does not appear to be any less complexly organized than other rodent brains, even those that are over 100 times larger such as the Cape porcupine brain. The results are consistent with the notion that changes in brain size do not affect the evolution of nuclear organization of complex neural systems. Thus, species belonging to the same order generally have the same number and complement of the subdivisions, or nuclei, of specific neural systems despite differences in brain size, phenotype or time since evolutionary divergence.  相似文献   

8.
The distribution of orexinergic cell bodies and terminal networks within the brains of two species of African mole rat (Cape-dune mole rat--Bathyergus suillus and highveld mole rat--Cryptomys hottentotus) were identified using immunohistochemistry for orexin-A. The aim of the study was to investigate possible differences in the nuclear complement and terminal distribution of this system by comparing those of the mole rats to published studies of other rodents and mammals. The wild-caught mole rats used in this study live a subterranean lifestyle and are well known for their regressed visual system, which may lead to the prediction of differences in the distribution of the cell bodies and the terminal networks; however, we found that both species of mole rat displayed orexinergic nuclei limited to the hypothalamus in regions similar to those previously reported for other rodent and mammalian species. No immunoreactive neurons could be identified, in either species of mole rat within the anterior hypothalamic paraventricular nucleus, as has been reported for Murid rodents. The terminal networks, while remaining similar between the species, are more strongly expressed in the Cape-dune mole rat than in the highveld mole rat.  相似文献   

9.
The organization of the nuclear subdivisions of the cholinergic, putative catecholaminergic and serotonergic systems of the brain of the elephant shrew (Elephantulus myurus) were determined following immunohistochemistry for choline acetyltransferase, tyrosine hydroxylase and serotonin, respectively. This was done in order to determine if differences in the nuclear organization of these systems in comparison to other mammals were evident and how any noted differences may relate to specialized behaviours of the elephant shrew. The elephant shrew belongs to the order Macroscelidea, and forms part of the Afrotherian mammalian cohort. In general, the organization of the nuclei of these systems resembled that described in other mammalian species. The cholinergic system showed many features in common with that seen in the rock hyrax, rodents and primates; however, specific differences include: (1) cholinergic neurons were observed in the superior and inferior colliculi, as well as the cochlear nuclei; (2) cholinergic neurons were not observed in the anterior nuclei of the dorsal thalamus as seen in the rock hyrax; and (3) cholinergic parvocellular nerve cells forming subdivisions of the laterodorsal and pedunculopontine tegmental nuclei were not observed at the midbrain/pons interface as seen in the rock hyrax. The organization of the putative catecholaminergic system was very similar to that seen in the rock hyrax and rodents except for the lack of the rodent specific C3 nucleus, the dorsal division of the anterior hypothalamic group (A15d) and the compact division of the locus coeruleus (A6c). The nuclear organization of the serotonergic system was identical to that seen in all eutherian mammals studied to date. The additional cholinergic neurons found in the cochlear nucleus and colliculi may relate to a specific acoustic signalling system observed in elephant shrews expressed when the animals are under stress or detect a predator. These neurons may then function to increase attention to this type of acoustic signal termed foot drumming.  相似文献   

10.
The nuclear organization of the cholinergic, catecholaminergic, serotonergic and orexinergic systems in the brains of three species of strepsirrhine primates is presented. We aimed to investigate the nuclear complement of these neural systems in comparison to those of simian primates, megachiropterans and other mammalian species. The brains were coronally sectioned and immunohistochemically stained with antibodies against choline acetyltransferase, tyrosine hydroxylase, serotonin and orexin-A. The nuclei identified were identical among the strepsirrhine species investigated and identical to previous reports in simian primates. Moreover, a general similarity to other mammals was found, but specific differences in the nuclear complement highlighted potential phylogenetic interrelationships. The central feature of interest was the structure of the locus coeruleus complex in the primates, where a central compactly packed core (A6c) of tyrosine hydroxylase immunopositive neurons was surrounded by a shell of less densely packed (A6d) tyrosine hydroxylase immunopositive neurons. This combination of compact and diffuse divisions of the locus coeruleus complex is only found in primates and megachiropterans of all the mammalian species studied to date. This neural character, along with variances in a range of other neural characters, supports the phylogenetic grouping of primates with megachiropterans as a sister group.  相似文献   

11.
The present study describes the organization of the nuclei of the cholinergic, catecholaminergic, serotonergic and orexinergic systems in the brains of two members of Euarchontoglires, Lepus capensis and Tupaia belangeri. The aim of the present study was to investigate the nuclear complement of these neural systems in comparison to previous studies on Euarchontoglires and generally with other mammalian species. Brains were coronally sectioned and immunohistochemically stained with antibodies against choline acetyltransferase, tyrosine hydroxylase, serotonin and orexin-A. The majority of nuclei revealed in the current study were similar between the species investigated and to mammals generally, but certain differences in the nuclear complement highlight potential phylogenetic interrelationships within the Euarchontoglires and across mammals. In the northern tree shrew the nucleus of the trapezoid body contained neurons immunoreactive to the choline acetyltransferase antibody with some of these neurons extending into the lamellae within the superior olivary nuclear complex (SON). The cholinergic nature of the neurons of this nucleus, and the extension of cholinergic neurons into the SON, has not been noted in any mammal studied to date. In addition, cholinergic neurons forming the medullary tegmental field were also present in the northern tree shrew. Regarding the catecholaminergic system, the cape hare presented with the rodent specific rostral dorsal midline medullary nucleus (C3), and the northern tree shrew lacked both the ventral and dorsal divisions of the anterior hypothalamic group (A15v and A15d). Both species were lacking the primate/megachiropteran specific compact portion of the locus coeruleus complex (A6c). The nuclei of the serotonergic and orexinergic systems of both species were similar to those seen across most Eutherian mammals. Our results lend support to the monophyly of the Glires, and more broadly suggest that the megachiropterans are more closely related to the primates than are any other members of Euarchontoglires studied to date.  相似文献   

12.
This study investigated the nuclear organization of four immunohistochemically identifiable neural systems (cholinergic, catecholaminergic, serotonergic and orexinergic) within the brains of three male Tasmanian devils (Sarcophilus harrisii), which had a mean brain mass of 11.6 g. We found that the nuclei generally observed for these systems in other mammalian brains were present in the brain of the Tasmanian devil. Despite this, specific differences in the nuclear organization of the cholinergic, catecholaminergic and serotonergic systems appear to carry a phylogenetic signal. In the cholinergic system, only the dorsal hypothalamic cholinergic nucleus could be observed, while an extra dorsal subdivision of the laterodorsal tegmental nucleus and cholinergic neurons within the gelatinous layer of the caudal spinal trigeminal nucleus were observed. Within the catecholaminergic system the A4 nucleus of the locus coeruleus complex was absent, as was the caudal ventrolateral serotonergic group of the serotonergic system. The organization of the orexinergic system was similar to that seen in many mammals previously studied. Overall, while showing strong similarities to the organization of these systems in other mammals, the specific differences observed in the Tasmanian devil reveal either order specific, or class specific, features of these systems. Further studies will reveal the extent of change in the nuclear organization of these systems in marsupials and how these potential changes may affect functionality.  相似文献   

13.
Based on previous work describing the distribution of somatostatin-28 (1-12) in the male alpaca (Lama pacos) diencephalon, and owing to the well known interactions between this peptide and the catecholaminergic system, the aims of this work are (1) to describe the distribution of putative catecholaminergic cell groups in the alpaca diencephalon and (2) to study the possible morphological basis of the interactions between these substances in the diencephalon of the alpaca by using double immunohistochemistry methods. Thus, the distribution of catecholaminergic cell groups in the alpaca diencephalon agrees with that previously described in the diencephalon of other mammalian species of the same order: the A11, A12, A13, A14 and A15d cell groups have been identified; however, we have observed an additional hitherto undescribed cell group containing tyrosine hydroxylase in the medial habenula. In addition, double-labelling procedures did not reveal neurons containing tyrosine hydroxylase and somatostatin, suggesting that the hypothalamic interactions between catecholamines and somatostatin at intra-cellular level must be carried out by a somatostatin molecule other than fragment (1-12). Otherwise, the overlapping distribution patterns of these substances would suggest some interconnections between groups of chemospecific neurons. These results could be the starting point for future studies on hypothalamic functions in alpacas, for example those concerning reproductive control, since other physiological studies have suggested that this species could have different regulatory mechanisms from other mammalian species. Our results support the Manger hypothesis that the same nuclear complement of neural systems exists in the brain of species of the same order.  相似文献   

14.
Information regarding the organization of the CNS in terms of neurotransmitter systems and spinal connections in the mouse is sparse, especially at the level of the brainstem. An overview is presented of monoaminergic and cholinergic systems in the brainstem and spinal cord that were visualized immunohistochemically in inbred C57BL/6 and outbred CD-1 mice. This information is complemented with data on spinal cord-projecting systems that were characterized using retrograde tracing, spinal hemisections, and double labeling techniques. Attention is given to differences in these systems related to spinal levels. The data are discussed with reference to studies in the rat, and to standardized information as provided in the atlas of the mouse brain. Although the overall organization of these systems in the mouse is largely similar to those in the rat, species differences are present in relative location, size and/or connectivity of cell groups. For example, catecholaminergic neurons in the (ventro)lateral pons (A5 and A7 cell groups) in the mouse project to the spinal cord mainly via contralateral, and not ipsilateral, pathways. The data further supplement information as provided in standardized brainstem sections of the C57BL/6 mouse [Paxinos, G., Franklin, K.B.J., 2001. The mouse brain in stereotaxic coordinates. Academic Press, San Diego], especially with respect to the size and/or location of the catecholaminergic retrorubral field (A8 group), A5, A1, and C1 cell groups, and the serotonergic B4 group, reticulotegmental nucleus (B9 group), lateral paragigantocellular nucleus and raphe magnus nucleus (B3 group). Altogether this study provides a comprehensive overview of the spatial relationships of neurochemically and anatomically defined neuronal systems in the mouse brainstem and spinal cord.  相似文献   

15.
The distribution of tyrosine hydroxylase (TH) in the brainstem of alpaca (Lama pacos) has been analysed using immunohistochemical methods. The following catecholaminergic cell nuclei have been detected: A1, C1, A2, C2 and area postrema in the medulla oblongata; A5, A6d, A7sc and A7d in the pons; as have several mesencephalic groups: A8, A9l, A9m, A9v, A9pc, A10, A10c, A10d and A10dc. This nuclear parcellation differs from that found in rodents, but agrees with the results reported in other members of the Artiodactyla order, such as giraffe or pig, and with the catecholaminergic distribution detected in species of other mammalian orders. Thus, these findings support the hypothesis that the animals included in the same order show the same nuclear complement in the neuromodulatory systems. In addition, it seems that other species share the same catecholaminergic groups as the alpaca, suggesting that a specific nuclear disposition was important and worth maintaining throughout evolution. Moreover, the distribution of TH has been compared with that of CGRP by double immunohistochemistry. Double-labelled neurons were very isolated and observed only in a few catecholaminergic groups: A1 and C2 in the medulla oblongata, A6d, A7sc and A7d in the pons, and A9l in the mesencephalon. However, interaction between TH and CGRP may be possible in more brainstem regions, particularly the area postrema. This interaction may prove important in the regulation of the specific cardiovascular control of alpacas given their morphological characteristics.  相似文献   

16.
The current study describes the nuclear organization and neuronal morphology of the cholinergic, putative catecholaminergic and serotonergic systems within the diencephalon, midbrain and pons of the giraffe using immunohistochemistry for choline acetyltransferase, tyrosine hydroxylase and serotonin. The giraffe has a unique phenotype (the long neck), a large brain (over 500 g) and is a non-domesticated animal, while previous studies examining the brains of other Artiodactyls have all been undertaken on domesticated animals. The aim of the present study was to investigate possible differences in the nuclear organization and neuronal morphology of the above-mentioned systems compared to that seen in other Artiodactyls and mammals. The nuclear organization of all three systems within the giraffe brain was similar to that of other Artiodactyls. Some features of interest were noted for the giraffe and in comparison to other mammals studied. The cholinergic neuronal somata of the laterodorsal tegmental nucleus were slightly larger than those of the pedunculopontine tegmental nucleus, a feature not described in other mammals. The putative catecholaminergic system of the giraffe appeared to lack an A15 dorsal nucleus, which is commonly seen in other mammals but absent in the Artiodactyls, had a large and expanded substantia nigra pars reticulata (A9 ventral), a small diffuse portion of the locus coerueleus (A6d), an expansive subcoeruleus (A7sc and A7d), and lacked the A4 nucleus of the locus coeruleus complex. The nuclear organization of the serotonergic system of the giraffe was identical to that seen in all other eutherian mammals studied to date. These observations in the giraffe demonstrate that despite significant changes in life history, phenotype, brain size and time of divergence, species within the same order show the same nuclear organization of the systems investigated.  相似文献   

17.
The current study details the nuclear parcellation and appearance of putative catecholaminergic and serotonergic neurons within the medulla oblongata of a sub-adult giraffe, using immunohistochemistry for tyrosine hydroxylase and serotonin. We hypothesized that the unusual phenotype of the giraffe, this being the long neck and potential axonal lengthening of these neurons, may pose specific problems in terms of the efficient functioning of these systems, as several groups of catecholaminergic and serotonergic neurons, especially of the medulla, are known to project to the entire spinal cord. This specific challenge may lead to observable differences in the nuclear parcellation and morphology of these systems in the giraffe. Our personal observations in the giraffe reveal that, as with other Artiodactyls, the spinal cord extends to the caudal end of the sacral vertebrae. Within the giraffe medulla we found evidence for five putative catecholaminergic (neurons containing tyrosine hydroxylase) and five serotonergic nuclei. In terms of both morphological appearance of the neurons and nuclear parcellation we did not find any evidence for features that may be considered affected by the phenotype of the giraffe. The nuclear parcellation and appearance of both the putative catecholaminergic and serotonergic systems in the medulla of the giraffe studied are strikingly similar to that seen in previous studies of other Artiodactyls. We interpret these findings in terms of a growing literature detailing order specific phylogenetic constraints in the evolution of these neuromodulatory systems.  相似文献   

18.
The current study details the nuclear parcellation and appearance of putative catecholaminergic and serotonergic neurons within the medulla oblongata of a sub-adult giraffe, using immunohistochemistry for tyrosine hydroxylase and serotonin. We hypothesized that the unusual phenotype of the giraffe, this being the long neck and potential axonal lengthening of these neurons, may pose specific problems in terms of the efficient functioning of these systems, as several groups of catecholaminergic and serotonergic neurons, especially of the medulla, are known to project to the entire spinal cord. This specific challenge may lead to observable differences in the nuclear parcellation and morphology of these systems in the giraffe. Our personal observations in the giraffe reveal that, as with other Artiodactyls, the spinal cord extends to the caudal end of the sacral vertebrae. Within the giraffe medulla we found evidence for five putative catecholaminergic (neurons containing tyrosine hydroxylase) and five serotonergic nuclei. In terms of both morphological appearance of the neurons and nuclear parcellation we did not find any evidence for features that may be considered affected by the phenotype of the giraffe. The nuclear parcellation and appearance of both the putative catecholaminergic and serotonergic systems in the medulla of the giraffe studied are strikingly similar to that seen in previous studies of other Artiodactyls. We interpret these findings in terms of a growing literature detailing order specific phylogenetic constraints in the evolution of these neuromodulatory systems.  相似文献   

19.
20.
Over the past decade much controversy has surrounded the hypothesis that the megachiroptera, or megabats, share unique neural characteristics with the primates. These observations, which include similarities in visual pathways, have suggested that the megabats are more closely related to the primates than to the other group of the Chiropteran order, the microbats, and suggests a diphyletic origin of the Chiroptera. To contribute data relevant to this debate, we used immunohistochemical techniques to reveal the architecture of the neuromodulatory systems of the Egyptian rousette (Rousettus aegypticus), an echolocating megabat. Our findings revealed many similarities in the nuclear parcellation of the cholinergic, putative catecholaminergic and serotonergic systems with that seen in other mammals including the microbat. However, there were 11 discrete nuclei forming part of these systems in the brain of the megabat studied that were not evident in an earlier study of a microbat. The occurrence of these nuclei align the megabat studied more closely with primates than any other mammalian group and clearly distinguishes them from the microbat, which aligns with the insectivores. The neural systems investigated are not related to such Chiropteran specializations as echolocation, flight, vision or olfaction. If neural characteristics are considered strong indicators of phylogenetic relationships, then the data of the current study strongly supports the diphyletic origin of Chiroptera and aligns the megabat most closely with primates in agreement with studies of other neural characters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号