首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Purpose

Angiotensin II (AngII) and IL-1β are involved in cardiovascular diseases through the induction of inflammatory pathways. HuR is an adenylate- and uridylate-rich element (ARE)-binding protein involved in the mRNA stabilization of many genes. This study investigated the contribution of HuR to the increased expression of COX-2 induced by AngII and IL-1β and its consequences on VSMC migration and remodelling.

Experimental Approach

Rat and human VSMCs were stimulated with AngII (0.1 μM) and/or IL-1β (10 ng·mL−1). Mice were infused with AngII or subjected to carotid artery ligation. mRNA and protein levels were assayed by quantitative PCR, Western blot, immunohistochemistry and immunofluorescence. Cell migration was measured by wound healing and transwell assays.

Key Results

In VSMCs, AngII potentiated COX-2 and tenascin-C expressions and cell migration induced by IL-1β. This effect of AngII on IL-1β-induced COX-2 expression was accompanied by increased COX-2 3′ untranslated region reporter activity and mRNA stability, mediated through cytoplasmic HuR translocation and COX-2 mRNA binding. These effects were blocked by ERK1/2 and HuR inhibitors. VSMC migration was reduced by blockade of ERK1/2, HuR, COX-2, TXAS, TP and EP receptors. HuR, COX-2, mPGES-1 and TXAS expressions were increased in AngII-infused mouse aortas and in carotid-ligated arteries. AngII-induced tenascin-C expression and vascular remodelling were abolished by celecoxib and by mPGES-1 deletion.

Conclusions and Implications

The synergistic induction of COX-2 by AngII and IL-1β in VSMCs involves HuR through an ERK1/2-dependent mechanism. The HuR/COX-2 axis participates in cell migration and vascular damage. HuR might be a novel target to modulate vascular remodelling.  相似文献   

2.

Background and purpose:

Prostaglandin F (PGF) is implicated in the pathogenesis of inflammatory bowel disease and colorectal cancer. This study investigates the effects of PGF on electrophysiological parameters in isolated human colonic mucosa.

Experimental approach:

Ion transport was measured as changes in short-circuit current across human colonic epithelia mounted in Ussing chambers. Colonic crypts were isolated by calcium chelation and cyclic adenosine monophosphate (cAMP) was measured by ELISA.

Key Results:

PGF stimulated chloride secretion in a concentration-dependent manner with an EC50 of 130 nM. The PGF induced increase in chloride secretion was inhibited by AL8810 (10 µM), a specific PGF receptor antagonist. In addition, PGF (1 µM) significantly increased levels of cAMP in isolated colonic crypts.

Conclusions and implications:

PGF stimulated chloride secretion in samples of human colon in vitro through a previously unrecognizd cAMP-mediated mechanism. These findings have implications for inflammatory states.  相似文献   

3.

Background and Purpose

The lymphatic system maintains tissue homeostasis by unidirectional lymph flow, maintained by tonic and phasic contractions within subunits, ‘lymphangions’. Here we have studied the effects of the inflammatory cytokine IL-1β on tonic contraction of rat mesenteric lymphatic muscle cells (RMLMC).

Experimental Approach

We measured IL-1β in colon-conditioned media (CM) from acute (AC-CM, dextran sodium sulfate) and chronic (CC-CM, T-cell transfer) colitis-induced mice and corresponding controls (Con-AC/CC-CM). We examined tonic contractility of RMLMC in response to CM, the cytokines h-IL-1β or h-TNF-α (5, 10, 20 ng·mL−1), with or without COX inhibitors [TFAP (10−5 M), diclofenac (0.2 × 10−5 M)], PGE2 (10−5 M)], IL-1-receptor antagonist, Anakinra (5 μg·mL−1), or a selective prostanoid EP4 receptor antagonist, GW627368X (10−6 and 10−7 M).

Key Results

Tonic contractility of RMLMC was reduced by AC- and CC-CM compared with corresponding control culture media, Con-AC/CC-CM. IL-1β or TNF-α was not found in Con-AC/CC-CM, but detected in AC- and CC-CM. h-IL-1β concentration-dependently decreased RMLMC contractility, whereas h-TNF-α showed no effect. Anakinra blocked h-IL-1β-induced RMLMC relaxation, and with AC-CM, restored contractility to RMLMC. IL-1β increased COX-2 protein and PGE2 production in RMLMC.. PGE2 induced relaxations in RMLMC, comparable to h-IL-1β. Conversely, COX-2 and EP4 receptor inhibition reversed relaxation induced by IL-1β.

Conclusions and Implications

The IL-1β-induced decrease in RMLMC tonic contraction was COX-2 dependent, and mediated by PGE2. In experimental colitis, IL-1β and tonic lymphatic contractility were causally related, as this cytokine was critical for the relaxation induced by AC-CM and pharmacological blockade of IL-1β restored tonic contraction.  相似文献   

4.
5.

Background and Purpose

Hydroxamate derivatives have attracted considerable attention because of their broad pharmacological properties. Recent studies reported their potential use in the treatment of cardiovascular diseases, arthritis and infectious diseases. However, the mechanisms of the anti-inflammatory effects of hydroxamate derivatives remain to be elucidated. In an effort to develop a novel pharmacological agent that could suppress abnormally activated macrophages, we investigated a novel aliphatic hydroxamate derivative, WMJ-S-001, and explored its anti-inflammatory mechanisms.

Experimental Approach

RAW264.7 macrophages were exposed to LPS in the absence or presence of WMJ-S-001. COX-2 expression and signalling molecules activated by LPS were assessed.

Key Results

LPS-induced COX-2 expression was suppressed by WMJ-S-001. WMJ-S-001 inhibited p38MAPK, NF-κB subunit p65 and CCAAT/enhancer-binding protein (C/EBP)β phosphorylation in cells exposed to LPS. Treatment of cells with a p38MAPK inhibitor (p38MAPK inhibitor III) markedly inhibited LPS-induced p65 and C/EBPβ phosphorylation and COX-2 expression. LPS-increased p65 and C/EBPβ binding to the COX-2 promoter region was suppressed in the presence of WMJ-S-001. In addition, WMJ-S-001 suppression of p38MAPK, p65 and C/EBPβ phosphorylation, and subsequent COX-2 expression were restored in cells transfected with a dominant-negative (DN) mutant of MAPK phosphatase-1 (MKP-1). WMJ-S-001 also caused an increase in MKP-1 activity in RAW264.7 macrophages.

Conclusions and Implications

WMJ-S-001 may activate MKP-1, which then dephosphorylates p38MAPK, resulting in a decrease in p65 and C/EBPβ binding to the COX-2 promoter region and COX-2 down-regulation in LPS-stimulated RAW264.7 macrophages. The present study suggests that WMJ-S-001 may be a potential drug candidate for alleviating LPS-associated inflammatory diseases.  相似文献   

6.

Aim:

To investigate the effects Astragalus polysaccharides (APS) on tumor necrosis factor (TNF)-α-induced inflammatory reactions in human umbilical vein endothelial cells (HUVECs) and to elucidate the underlying mechanisms.

Methods:

HUVECs were treated with TNF-α for 24 h. The amounts of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were determined with Western blotting. HUVEC viability and apoptosis were detected using cell viability assay and Hoechst staining, respectively. Reactive oxygen species (ROS) production was measured by DHE staining. Monocyte and HUVEC adhesion assay was used to detect endothelial cell adhesive function. NF-κB activation was detected with immunofluorescence.

Results:

TNF-α (1-80 ng/mL) caused dose- and time-dependent increases of ICAM-1 and VCAM-1 expression in HUVECs, accompanied by significant augmentation of IκB phosphorylation and NF-κB translocation into the nuclei. Pretreatment with APS (10 and 50 μg/mL) significantly attenuated TNFα-induced upregulation of ICAM-1 VCAM-1 and NF-κB translocation. Moreover, APS significantly reduced apoptosis, ROS generation and adhesion function damage in TNF-α-treated HUVECs.

Conclusion:

APS suppresses TNFα-induced adhesion molecule expression by blocking NF-κB signaling and inhibiting ROS generation in HUVECs. The results suggest that APS may be used to treat and prevent endothelial cell injury-related diseases.  相似文献   

7.
8.
9.
10.
11.

Background and Purpose

Acute liver failure (ALF) is a severe and potentially lethal clinical syndrome. 3,3′-Diindolylmethane (DIM) is a natural plant-derived compound with anti-cancer activities. Recently, DIM has also been shown to have anti-inflammatory properties. Here, we tested the hypothesis that DIM would suppress endotoxin-induced ALF.

Experimental Approach

We investigated the therapeutic potential of DIM in a mouse model of D-galactosamine/Lipopolysaccharide (GalN/LPS)-induced ALF. The efficacy of DIM treatment was assessed by survival, liver histopathology, serum levels of alanine transaminase, pro-inflammatory cytokines and number of activated liver macrophages. Effects of DIM on the expression of two miRNAs, 106a and 20b, and their predicted target gene were measured by qRT-PCR and Western blotting. Effects of DIM on the release of TNF-α from RAW264.7 macrophages transfected with mimics of these miRNAs and activated by LPS was assessed by elisa.

Key Results

DIM treatment protected mice from ALF symptoms and reduced the number of activated liver macrophages. DIM increased expression of miR-106a and miR-20b in liver mononuclear cells and decreased expression of their predicted target gene IL-1 receptor-associated kinase 4 (IRAK4), involved in signalling from Toll-like receptor 4 (TLR4). In vitro transfection of RAW264.7 cells using miRNA mimics of miR-106a and 20b decreased expression of IRAK4 and of TNF-α secretion, following LPS stimulation.

Conclusions and Implications

DIM attenuated GalN/LPS-induced ALF by regulating the expression of unique miRNAs that target key molecules in the TLR4 inflammatory pathway. DIM may represent a potential novel hepatoprotective agent.  相似文献   

12.

Background and Purpose

Dehydrodiconiferyl alcohol (DHCA), a lignan compound isolated from Cucurbita moschata, has previously been shown to contain anti-adipogenic and antilipogenic effects on 3T3-L1 cells and mouse embryonic fibroblasts. As some of phytochemicals derived from natural plants show anti-inflammatory or antioxidative activities, we determined whether DHCA affects the production of pro-inflammatory mediators and also investigated its underlying mechanisms.

Experimental Approach

Raw264.7, a murine macrophage cell line, and primary murine macrophages derived from bone marrow cells were treated with LPS in the presence of DHCA. Furthermore, cells were treated with LPS and palmitate in the presence of DHCA to examine its effect on inflammasomes. The production of various pro-inflammatory mediators was examined and the underlying mechanisms investigated using a variety of molecular biological techniques. To test whether DHCA exhibits anti-inflammatory effects in vivo, mouse dextran sodium sulfate (DSS)-induced colitis model was used.

Key Results

DHCA reduced the production of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β and CCL2) and mediators (iNOS, COX-2 and ROS) by down-regulating the activity of I-κB kinase and, subsequently, the DNA binding activity of NF-κB. Moreover, DHCA effectively suppressed the palmitate-mediated activation of inflammasomes, which resulted in decreased production of IL-1β. DHCA also showed therapeutic effects in the mouse DSS-induced colitis model by suppressing the production of TNF-α and IL-1β and thus preventing weight loss and colon shrinkage.

Conclusions and Implications

Our data suggest that DHCA is a novel phytochemical that by regulating key molecules involved in inflammation and oxidative stress might exert a broad range of anti-inflammatory activities.  相似文献   

13.

BACKGROUND AND PURPOSE

There is growing evidence that inflammation plays a major role in the pathogenesis of neural damage caused by deposition of amyloid β (Aβ) in the brain. Nimodipine has received attention as a drug that might improve learning and reduce cognitive deficits in Alzheimer''s disease, but the mechanism of action is poorly known. In this study, we tested the hypothesis that nimodipine inhibited Aβ-stimulated IL-1β release from microglia.

EXPERIMENTAL APPROACH

Cultures of N13 microglia cells or primary mouse microglia were treated with nimodipine, and intracellular accumulation and release of IL-1β in response to Aβ or to the P2 receptor agonists ATP and benzoyl ATP (BzATP) were measured. Accumulation of IL-1β was measured in vivo after intrahippocampal inoculation of Aβ in the absence or presence of nimodipine. The effect of nimodipine on Aβ-triggered cytotoxicity was also investigated.

KEY RESULTS

We show here that nimodipine dose-dependently inhibited Aβ-stimulated IL-1β synthesis and release from primary microglia and microglia cell lines. Furthermore, nimodipine also inhibited Aβ-induced IL-1βin vivo accumulation at concentrations known to be reached in the CNS. Finally, nimodipine protected microglia from Aβ-dependent cytotoxicity.

CONCLUSION AND IMPLICATIONS

These data suggest that alleviation of symptoms of Alzheimer''s disease following nimodipine administration might be due to an anti-inflammatory effect and point to a novel role for nimodipine as a centrally acting anti-inflammatory drug.  相似文献   

14.

BACKGROUND AND PURPOSE

Endocannabinoids have both anti-inflammatory and neuroprotective properties against harmful stimuli. We previously demonstrated that the endocannabinoid 2-arachidonoylglycerol (2-AG) protects hippocampal neurons by limiting the inflammatory response via a CB1 receptor-dependent MAPK/NF-κB signalling pathway. The purpose of the present study was to determine whether PPARγ, an important nuclear receptor, mediates 2-AG-induced inhibition of NF-κB phosphorylation and COX-2 expression, and COX-2-enhanced miniature spontaneous excitatory postsynaptic currents (mEPSCs).

EXPERIMENTAL APPROACH

By using a whole-cell patch clamp electrophysiological recording technique and immunoblot analysis, we determined mEPSCs, expression of COX-2 and PPARγ, and phosphorylation of NF-kB in mouse hippocampal neurons in culture.

KEY RESULTS

Exogenous and endogenous 2-AG-produced suppressions of NF-κB-p65 phosphorylation, COX-2 expression and excitatory synaptic transmission in response to pro-inflammatory interleukin-1β (IL-1β) and LPS were inhibited by GW9662, a selective PPARγ antagonist, in hippocampal neurons in culture. PPARγ agonists 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) and rosiglitazone mimicked the effects of 2-AG on NF-κB-p65 phosphorylation, COX-2 expression and mEPSCs, and these effects were eliminated by antagonism of PPARγ. Moreover, exogenous application of 2-AG or elevation of endogenous 2-AG by inhibiting its hydrolysis with URB602 or JZL184, selective inhibitors of monoacylglycerol lipase (MAGL), prevented the IL-1β- and LPS-induced reduction of PPARγ expression. The 2-AG restoration of the reduced PPARγ expression was blocked or attenuated by pharmacological or genetic inhibition of the CB1 receptor.

CONCLUSIONS AND IMPLICATIONS

Our results suggest that CB1 receptor-dependent PPARγ expression is an important and novel signalling pathway in endocannabinoid 2-AG-produced resolution of neuroinflammation in response to pro-inflammatory insults.

LINKED ARTICLES

This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-7  相似文献   

15.

Aim:

Proteinuria is not only a common marker of renal disease, but also involved in renal tubulointerstitial inflammation and fibrosis. The aim of this study was to investigate the mechanisms underlying the protective effects of enalapril, an ACEI, against nephropathy in rats.

Methods:

Wistar rats underwent unilateral right nephrectomy, and then were treated with BSA (5 g·kg−1·d−1, ip), or BSA plus enalapril (0.5 g·kg−1·d−1, po) for 9 weeks. The renal lesions were evaluated using histology and immunohistochemistry. The expression of NLRP3, caspase-1, IL-1β and IL-18 was analyzed using immunohistochemistry, RT-PCR and Western blot.

Results:

BSA-overload resulted in severe proteinuria, which peaked at week 7, and interstitial inflammation with prominent infiltration of CD68+ cells (macrophages) and CD3+ cells (T lymphocytes), particularly of CD20+ cells (B lymphocytes). BSA-overload markedly increased the expression of NLRP3, caspase-1, IL-1β and IL-18 in the proximal tubular epithelial cells, and in inflammatory cells as well. Furthermore, the expression of IL-1β or IL-18 was significantly correlated with proteinuria (IL-1β: r=0.757; IL-18: r=0.834). These abnormalities in BSA-overload rats were significantly attenuated by concurrent administration of enalapril.

Conclusion:

Enalapril exerts protective effects against BSA-overload nephropathy in rats via suppressing NLRP3 inflammasome expression and tubulointerstitial inflammation.  相似文献   

16.

Background and purpose:

α- and β-amyrin are pentacyclic triterpenes found in plants and are known to exhibit pronounced anti-inflammatory effects. Here, we evaluated the effects of a 1:1 mixture of α- and β-amyrin (α,β-amyrin) on an experimental model of colitis in mice.

Experimental approach:

Colitis was induced in Swiss male mice by trinitrobenzene sulphonic acid (TNBS) and followed up to 72 h; animals were treated systemically with α,β-amyrin, dexamethasone or vehicle. Macro- and microscopic damage, myeloperoxidase activity and cytokine levels were assessed in colons. Histological sections were immunostained for cyclooxygenase-2 (COX-2), vascular endothelial growth factor, phospho-p65 nuclear factor-κB (NF-κB) and phospho-cyclic AMP response element-binding protein (CREB)

Key results:

TNBS-induced colitis was associated with tissue damage, neutrophil infiltration and time-dependent increase of inflammatory mediators. Treatment with α,β-amyrin (3 mg·kg−1, i.p.) or dexamethasone (1 mg·kg−1, s.c.) consistently improved tissue damage scores and abolished polymorphonuclear cell infiltration. α,β-Amyrin, like dexamethasone, significantly diminished interleukin (IL)-1β levels and partially restored IL-10 levels in colon tissues 72 h after colitis induction, but only α,β-amyrin reduced vascular endothelial growth factor expression by immunohistochemistry. The colonic expression of COX-2 at 24 h and that of phospho-NF-κB and phospho-CREB (peaking at 6 h) after colitis induction were consistently inhibited by both α,β-amyrin and dexamethasone.

Conclusions and implications:

Systemic administration of α,β-amyrin exerted a marked and rapid inhibition of TNBS-induced colitis, related to the local suppression of inflammatory cytokines and COX-2 levels, possibly via inhibition of NF-κB and CREB-signalling pathways. Taken together, our data suggest a potential use of α,β-amyrin to control inflammatory responses in bowel disease.  相似文献   

17.

Aim:

To examine the effects of quercetin, a natural antioxidant, on high glucose (HG)-induced apoptosis of cultured dorsal root ganglion (DRG) neurons of rats.

Methods:

DRG neurons exposed to HG (45 mmol/L) for 24 h were employed as an in vitro model of diabetic neuropathy. Cell viability, reactive oxygen species (ROS) level and apoptosis were determined. The expression of NF-кB, IкBα, phosphorylated IкBα and Nrf2 was examined using RT PCR and Western blot assay. The expression of hemeoxygenase-1 (HO-1), IL-6, TNF-α, iNOS, COX-2, and caspase-3 were also examined.

Results:

HG treatment markedly increased DRG neuron apoptosis via increasing intracellular ROS level and activating the NF-κB signaling pathway. Co-treatment with quercetin (2.5, 5, and 10 mmol/L) dose-dependently decreased HG-induced caspase-3 activation and apoptosis. Quercetin could directly scavenge ROS and significantly increased the expression of Nrf-2 and HO-1 in DRG neurons. Quercetin also dose-dependently inhibited the NF-κB signaling pathway and suppressed the expression of iNOS, COX-2, and proinflammatory cytokines IL-6 and TNF-α.

Conclusion:

Quercetin protects rat DRG neurons against HG-induced injury in vitro through Nrf-2/HO-1 activation and NF-κB inhibition, thus may be beneficial for the treatment of diabetic neuropathy.  相似文献   

18.

BACKGROUND AND PURPOSE

Lung macrophages are critically involved in respiratory diseases. This study assessed the effects of the PDE4 inhibitor roflumilast and its active metabolite, roflumilast N-oxide on the release of a range of chemokines (CCL2, 3, 4, CXCL1, 8, 10) and of TNF-α, from human lung macrophages, stimulated with bacterial lipopolysaccharide LPS.

EXPERIMENTAL APPROACH

Lung macrophages isolated from resected human lungs were incubated with roflumilast, roflumilast N-oxide, PGE2, the COX inhibitor indomethacin, the COX-2 inhibitor NS-398 or vehicle and stimulated with LPS (24 h). Chemokines, TNF-α, PGE2 and 6-keto PGF were measured in culture supernatants by immunoassay. COX-2 mRNA expression was assessed with RT-qPCR. PDE activities were determined in macrophage homogenates.

KEY RESULTS

Expression of PDE4 in lung macrophages was increased after incubation with LPS. Roflumilast and roflumilast N-oxide concentration-dependently reduced the LPS-stimulated release of CCL2, CCL3, CCL4, CXCL10 and TNF-α from human lung macrophages, whereas that of CXCL1 or CXCL8 was not altered. This reduction by the PDE4 inhibitors was further accentuated by exogenous PGE2 (10 nM) but abolished in the presence of indomethacin or NS-398. Conversely, addition of PGE2 (10 nM), in the presence of indomethacin restored inhibition by roflumilast. LPS also increased PGE2 and 6-keto PGF release from lung macrophages which was associated with an up-regulation of COX-2 mRNA.

CONCLUSIONS AND IMPLICATIONS

Roflumilast and roflumilast N-oxide reduced LPS-induced release of CCL2, 3, 4, CXCL10 and TNF-α in human lung macrophages.  相似文献   

19.

BACKGROUND AND PURPOSE

The present study was designed to determine how diabetes in pregnancy affects vascular function in their offspring, the influence of age and whether COX activation is involved in this effect.

EXPERIMENTAL APPROACH

Relaxation responses to ACh were analysed in mesenteric resistance arteries from the offspring of control rats (O-CR) and those of diabetic rats (O-DR) at 3, 6 and 12 months of age. TxB2, PGE2 and PGF release were determined by enzyme immunoassay. COX-1 and COX-2 expression were measured by Western blot analysis.

KEY RESULTS

O-DR developed hypertension from 6 months of age compared with O-CR. In O-DR, relaxation responses to ACh were impaired in all ages studied and were restored by COX-2 inhibition. TP receptor blockade (SQ29548) restored ACh relaxation in arteries from 3-month-old O-DR while TP and EP receptor blockade (SQ29548 + AH6809) was required to restore it in 6-month-old O-DR. In 12-month-old O-DR, ACh relaxation was restored when TP, EP and FP receptors were blocked (SQ29548 + AH6809 + AL8810). ACh-stimulated TxB2 was higher in all O-DR. ACh-stimulated PGE2 release was increased in arteries from 6- and 12-month-old O-DR, whereas PGF was increased only in 12-month-old O-DR. COX-2, but not COX-1, expression was higher in O-DR than O-CR.

CONCLUSIONS AND IMPLICATIONS

The results indicate an age-dependent up-regulation of COX-2 coupled to an enhanced formation of vasoconstrictor prostanoids in resistance arteries from O-DR. This effect plays a key role in the pathogenesis of endothelial dysfunction, which in turn could contribute to the progression of vascular dysfunction in these rats.  相似文献   

20.

Aim:

To explore the signalling pathways involved in aldosterone-induced inflammation and fibrosis in rat vascular smooth muscle cells (VSMCs).

Methods:

Using Western blotting and real-time RT-PCR, we investigated the effects of aldosterone on the expression of cyclooxygenase-2 (Cox-2) and IL-6, two important proinflammatory factors, and TGFβ1, a critical profibrotic factor, in VSMCs.

Results:

Aldosterone treatment significantly increased the expression of Cox-2 and IL-6 and activation of p38MAPK and NF-κB. The expression of both Cox-2 and IL-6 could be blocked by the mineralocorticoid receptor (MR) antagonist spironolactone and the p38MAPK inhibitor SB203580. Also, the rapid phosphorylation of p38MAPK could be suppressed by SB203580 but not by spironolactone, implicating in nongenomic effects of aldosterone. Similar to SB203580 and spironolactone, the NF-κB inhibitor α-p-tosyl-L-lysine chloromethyl ketone (TLCK) markedly attenuated expression of Cox-2, indicating that MR, p38MAPK and NF-κB are associated with aldosterone-induced inflammatory responses. Furthermore, aldosterone enhanced expression of TGFβ1 in rat VSMCs. This result may be related to activation of the MR/ERK-Sp1 signalling pathway because PD98059, an ERK1/2 inhibitor, significantly blocked the rapid phosphorylation of ERK1/2 and function of Sp1 and led to reduced expression of TGFβ1. Spironolactone was also shown to significantly inhibit TGFβ1 and Sp1 expression but not ERK1/2 phosphorylation.

Conclusion:

These results suggest that aldosterone-induced inflammatory responses and fibrotic responses may be mediated by the MR/p38MAPK-NF-κB pathways and the MR/ERK-Sp1 pathways in VSMCs, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号