首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Acute hyperinsulinemia produces sympathetic activation, vasodilation, and cardiovascular changes in healthy young men. Postmenopausal period is accompanied by sympathetic, vascular and cardiovascular changes. Nevertheless, the effects of acute insulin infusion were not known in postmenopausal women. To study this aspect, 26 postmenopausal healthy women were submitted to an euglycemic hyperinsulinemic clamp performed during 120 min. Heart rate (HR: ECG), blood pressure (BP: oscillometric method), forearm blood flow (FBF: plethysmography), plasma norepinephrine (NE), plasma epinephrine (EP), and cardiovascular autonomic modulation (spectral analysis of R-R interval and BP variabilities) were measured before and during the clamp. Glycemia was kept similar to baseline during the clamp (84.6+/-1.2mg/dl versus 87.1+/-1.6 mg/dl), while plasma insulin increased significantly to a level of 89.3+/-5.6 microU/ml. Insulin infusion significantly increased plasma NE (+45+/-17 pg/ml), EP (+20+/-9 pg/ml), and low to high frequency ratio of R-R interval variability (LH/HF: 1.2+/-0.4), but did not change low frequency component of BP variability. FBF (+0.7+/-0.2 ml min(-1)100ml(-1)) was also significantly enhanced by hyperinsulinemia. HR and systolic BP increased with insulin infusion (+4+/-1 bat/min and +6+/-2 mmHg, respectively, P<0.05), while diastolic BP did not change. In conclusion, in healthy postmenopausal women, acute hyperinsulinemia produces sympathetic activation, and vasodilation, which results in HR and systolic BP enhancements, with no change in diastolic BP. This pattern of response is similar to the one usually observed in healthy young men.  相似文献   

2.
We investigated the role played by the exercise pressor reflex in sympathetic regulation of the renal circulation in rats. In mid-collicular decerebrate rats, mean arterial pressure (MAP), heart rate (HR), left renal cortical blood flow (RCBF) and left renal sympathetic nerve activity (RSNA) were recorded before and during 30 s of static contraction of the left triceps surae muscles evoked by electrical stimulation of the tibial nerve, which activates both metabo- and mechanosensitive muscle afferents, and during 30 s of passive stretch of the left Achilles tendon, which selectively activates mechanosensitive muscle afferents. Static contraction (n = 17, +344 +/- 34 g developed tension) significantly (P < 0.05) increased MAP (+14 +/- 3 mmHg), HR (+6 +/- 1 beats min(-1)) and RSNA (n = 11, +19 +/- 5%) and significantly decreased renal cortical vascular conductance (RCVC, n = 11, -11 +/- 2%). Passive stretch (n = 20, +378 +/- 11 g) also significantly increased MAP (+11 +/- 2 mmHg), HR (+7 +/- 2 beats min(-1)) and RSNA (n = 15, +14 +/- 4%) and significantly decreased RCVC (n = 11, -12 +/- 3%). RCBF showed no significant changes during static contraction or passive stretch. Renal denervation abolished the decrease in RCVC during contraction (n = 12) or stretch (n = 13). These data indicate that both the exercise pressor reflex and its mechanically sensitive component, the muscle mechanoreflex, induced renal cortical vasoconstriction through sympathetic activation in rats.  相似文献   

3.
Although square-wave sustained and R wave-triggered pulsatile stimuli have been used to assess carotid baroreflex (CBR) function in humans, it remains unclear whether these different stimulus protocols elicit comparable responses and whether CBR responses adapt during prolonged stimulation. Thus, we measured muscle sympathetic nerve activity (MSNA), heart rate (HR) and mean arterial pressure (MAP) in response to +30 Torr neck pressure (NP) and -30 Torr neck suction (NS) delivered for 20 s either as a sustained or pulsatile stimulus. CBR-mediated changes in MSNA, HR and MAP were similar with sustained and pulsatile stimuli. The time course of MSNA and HR responses identified that significant changes occurred during the initial 5 s and were better maintained over 20 s with NP than with NS. Changes in MAP exhibited a slower onset with the peak increase during NP occurring at 10 s (sustained, 7 +/- 1 mmHg; pulsatile, 7 +/- 1 mmHg; P > 0.05) and the nadir during NS occurring at 20 s (sustained, -7 +/- 1 mmHg; pulsatile, -9 +/- 2 mmHg; P > 0.05). These data demonstrate that sustained and pulsatile NP and NS produce comparable CBR-mediated responses. Furthermore, despite MSNA and HR returning towards baseline during NS, CBR-mediated changes in MAP are well maintained over 20 s of NS and NP.  相似文献   

4.
In order to examine efferent sympathetic nerve control of the peripheral circulation during exercise, muscle sympathetic nerve activity (MSNA), calf blood flow (CBF), heart rate (HR), blood pressure (BP) and oxygen uptake were measured during combined foot and forearm exercise. An initial period of rhythmic foot exercise (RFE) (60 min-1 at 10% of maximal voluntary contraction (MVC) was followed by the addition of rhythmic handgrip exercise (RFE+OCCL) (60 min at 30% of MVC) and by forearm ischaemia after handgrip exercise while continuing RFE (RFE + OCCL). During RFE, CBF in the working leg, HR and oxygen increased respectively by 560%, 121% and 144% when compared with the control rest period, but MSNA (burst rate) was reduced by 13% (P > 0.05) and BP was unchanged. During RFE+RHG, HR, BP and oxygen uptake were greater than during RFE alone. There was no change in CBF, but a significant increase occurred in calf vascular resistance (CVR) and MSNA increased to 121% of the control level. During RFE + OCCL, MSNA, CVR and BP were all higher than during RFE alone, whereas HR and oxygen uptake decreased slightly, although they remained higher than the control values. The increase in CVR in the working leg and the rise in BP during RFE+RHG or RFE+OCCL might be linked to enhancement of MSNA, which may have been reflexly evoked by input from muscle metabolic receptors in the working forearm.  相似文献   

5.
The purpose of this study was to determine the effect of the size of the stimulus area on the muscle sympathetic nerve activity (MSNA), systolic arterial blood pressure (SAP), and heart rate responses to the cold pressor test. To accomplish this, these variables were measured before (control), during, and after 1.5 min of ice water immersion of either one or both hands in nine healthy subjects (aged 19-27 years). The cold stimulus elicited significant increases above control levels in all three variables under both conditions (P less than 0.05). Immersion of both hands produced a much greater increase in total MSNA (+366%) than immersion of a single hand (+187%) (P less than 0.05). However, the magnitudes of the increases in SAP and heart rate during two-hand immersion (29 +/- 6 mmHg and 10 +/- 2 beats min-1) were not significantly different from the responses during the one-hand trials (24 +/- 5 mmHg and 6 +/- 2 beats min-1, P greater than 0.05). There was a strong, direct relationship between total MSNA and SAP responses during one-hand immersion (r = 0.93, P less than 0.001) but not during immersion of both hands (r = 0.66, P = 0.08). These findings indicate that during the cold pressor test the magnitude of the increase in sympathetic discharge to skeletal muscle, but not the systolic blood pressure response, is influenced by the size of the tissue area exposed to the stimulus.  相似文献   

6.
In order to examine efferent sympathetic nerve control of the peripheral circulation during exercise, muscle sympathetic nerve activity (MSNA), calf blood flow (CBF), heart rate (HR), blood pressure (BP) and oxygen uptake were measured during combined foot and forearm exercise. An initial period of rhythmic foot exercise (RFE) (60 min-1 at 10% of maximal voluntary contraction (MVC) was followed by the addition of rhythmic handgrip exercise (RFE + OCCL) (60 min at 30% of MVC) and by forearm ischaemia after handgrip exercise while continuing RFE (RFE + OCCL). During RFE, CBF in the working leg, HR and oxygen increased respectively by 560%, 121% and 144% when compared with the control rest period, but MSNA (burst rate) was reduced by 13% (P > 0.05) and BP was unchanged. During RFE + RHG, HR, BP and oxygen uptake were greater than during RFE alone. There was no change in CBF, but a significant increase occurred in calf vascular resistance (CVR) and MSNA increased to 121% of the control level. During RFE + OCCL, MSNA, CVR and BP were all higher than during RFE alone, whereas HR and oxygen uptake decreased slightly, although they remained higher than the control values. The increase in CVR in the working leg and the rise in BP during RFE + RHG or RFE + OCCL might be linked to enhancement of MSNA, which may have been reflexly evoked by input from muscle metabolic receptors in the working forearm.  相似文献   

7.
The relative contribution of sympathetic nervous system (SNS)-induced increase in peripheral vascular resistance on central artery blood pressure (BP) and aortic wave reflection (augmentation index; AIx) is not completely understood. Central BP and wave reflection characteristics were measured using radial artery applanation tonometry before, during a 3-min cold pressor test (CPT), and 90 and 180-s post-CPT in 15 young, healthy adults (25 +/- 1 years). The CPT resulted in a greater magnitude of change in the estimated aortic systolic (31 vs. 23%, P < 0.05) and pulse (31 vs. 13%, P < 0.05) BP compared with the change in brachial artery BP. Additionally, the CPT resulted in an increased mean arterial pressure (MAP) (P < 0.05) and AIx (10 +/- 2 vs. 26 +/- 2%, P < 0.05). The change in MAP during the CPT was correlated to the change in AIx (r = 0.73, P < 0.01) and inversely related to roundtrip duration of the reflected wave to the periphery and back (r = -0.57, P < 0.05). The present study suggests that cold pressor testing results in a significant increase in arterial wave reflection intensity, possibly due to an increased MAP. However, the greater increase in systolic and pulse BP in the central compared with the peripheral circulation suggests that increased central artery wave reflection intensity contributes to increased left ventricular myocardial oxygen demand during CPT-induced hypertension.  相似文献   

8.
We aimed to investigate the interaction between the arterial baroreflex and muscle metaboreflexes (as reflected by alterations in the dynamic responses shown by muscle sympathetic nerve activity (MSNA), mean arterial blood pressure (MAP) and heart rate (HR)) in humans. In nine healthy subjects (eight male, one female) who performed a sustained 1 min handgrip exercise at 50 % maximal voluntary contraction followed by forearm occlusion, a 5 s period of neck pressure (NP) (30 and 50 mmHg) or neck suction (NS)(-30 and -60 mmHg) was used to evaluate carotid baroreflex function at rest (CON) and during post-exercise muscle ischaemia (PEMI). In PEMI (as compared with CON): (a) the augmentations in MSNA and MAP elicited by 50 mmHg NP were both greater; (b) MSNA seemed to be suppressed by NS for a shorter period, (c) the decrease in MAP elicited by NS was smaller, and (d) MAP recovered to its initial level more quickly after NS. However, the HR responses to NS and NP were not different between PEMI and CON. These results suggest that during muscle metaboreflex activation, the dynamic arterial baroreflex response is modulated, as exemplified by the augmentation of the MSNA response to arterial baroreflex unloading (i.e. NP) and the reduction in the suppression of MSNA induced by baroreceptor stimulation (i.e. NS).  相似文献   

9.
To investigate whether sympathetic responses are correlated with central laterality or handedness, muscle sympathetic nerve activity (MSNA), heart rate (HR) and blood pressure (BP) were compared between right (RA) and left arm (LA) grip exercise with volitional maximum effort (MVHG) for 2 min and post-exercise arterial occlusion (PEAO) in right- and left-handed volunteers. MVHG and PEAO led to a greater increase in MSNA in RA than in LA exercise (180 vs. 150%, P=0.004; 140 vs. 85%, P=0.005). MVHG elevated HR to a significantly lesser extent in RA than in LA (35 vs. 46%, P=0.030), and the difference was maintained during PEAO. The BP rise during MVHG and PEAO was the same in RA and in LA. Muscle sympathetic nerve activity, HR and BP responses during MVHG and PEAO showed no difference between the dominant and non-dominant arm. These results suggested that the effects of central motor command and metaboreflex on sympathetic outflow to the vasculature and the heart may be selectively modulated partly by hemispherical laterality.  相似文献   

10.
There is accumulating evidence that angiotensin II may exert its hypertensive effect through increasing sympathetic drive. However, this action may be dependent on the dose of angiotensin II as well as salt intake. We determined the effect of different doses of angiotensin II and different levels of salt intake on neurogenic pressor activity. We also examined the effect of renal denervation. New Zealand White rabbits were instrumented to continuously measure arterial pressure. The depressor response to the ganglionic blocker pentolinium tartrate (5 mg kg(-1)) was used to assess pressor sympathetic drive on days 0, 7 and 21 of a 20 or 50 ng kg(-1) min(-1) continuous i.v. angiotensin II infusion. A 50 ng kg(-1) min(-1) infusion caused an immediate increase in pressure (23 +/- 5 mmHg), whereas a 20 ng kg(-1) min(-1) infusion caused a slow increase in pressure, peaking by day 12 (17 +/- 4 mmHg). The ganglionic blockade profiles indicated sympathoinhibition in the 50 ng kg(-1) min(-1) group by day 7 and sympathoinhibition in the 20 ng kg(-1) min(-1) group at day 21, corresponding to the development of hypertension. Animals receiving increased dietary salt (0.9% NaCl in drinking water), however, showed a similar slow increase in pressure with 20 ng kg(-1) min(-1) angiotensin II (16 +/- 5 mmHg) but no sympathoinhibition at day 21. Bilateral renal denervation delayed the onset but not the extent of hypertension in this group. We conclude that different doses of angiotensin II produce distinct profiles of hypertension and associated changes in pressor sympathetic drive and that increased dietary salt intake disrupts the normal sympathoinhibitory response to angiotensin II-based hypertension.  相似文献   

11.
During static muscle contraction, activation of opioid receptors alters the extracellular glutamate concentrations within the rostral ventrolateral medulla (RVLM). In addition, microdialysis of glutamate in the ventrolateral medulla (VLM) increases the release of norepinephrine (NE), dopamine (DA), and serotonin (5-HT). Therefore, we hypothesized that extracellular concentrations of these monoamines as well as cardiovascular responses during static skeletal muscle contraction would be modulated following administration of [D-Ala(2)]methionine enkephalinamide (DAME), an opioid receptor agonist, into the RVLM. Microdialysis of 100 microM DAME into the RVLM of 10 rats significantly (P<0.01) decreased extracellular levels (in pg/10 microl) of NE (from 3.3+/-0.3 to 1.9+/-0.3), DA (from 5.5+/-0.2 to 3.7+/-0.3), and 5-HT (from 6.1+/-0.8 to 3.6+/-0.2) during static exercise. After microdialysis of DAME, the exercise pressor reflex also significantly (P<0.01) decreased mean arterial pressure (MAP) by 13+/-3 mmHg and heart rate (HR) by 16+/-6 bpm, compared with control (MAP=22+/-4 mmHg and HR=31+/-7 bpm). Subsequently, after 30 min microdialysis of naloxone, an opioid receptor antagonist, muscle contraction increased the extracellular monoamine levels (in pg/10 microl, 3.8+/-0.3 NE; 5.2+/-0.3 DA; and 5.5+/-0.4 5-HT) similar to the control groups and evoked a reversal of cardiovascular responses. Similarly, 30 min of microdialyzing naloxone, added to the perfusing medium containing DAME, reversed the attenuating effects of DAME on monoamines, MAP, and HR during a muscle contraction. Furthermore, microdialysis of 100 microM naloxone alone for 30 min potentiated cardiovascular responses and monoamine levels during a muscle contraction. In summary, the present data demonstrates that microdialysis of DAME into RVLM attenuates the exercise pressor reflex mediated increases in MAP, HR and extracellular levels of biogenic monoamines. A subsequent microdialysis of naloxone reversed the effects suggesting that an opioidergic mechanism within RVLM modulates the exercise pressor reflex. Overall, the present study provides further insights into the opioidergic modulation of the exercise pressor reflex.  相似文献   

12.
Previous studies have suggested that melatonin alters sympathetic outflow in humans. The purpose of the present study was to determine in humans the effect of melatonin on sympathetic nerve activity and arterial blood pressure during orthostatic stress. Fifty minutes after receiving a 3 mg tablet of melatonin or placebo (different days), muscle sympathetic nerve activity (MSNA), arterial blood pressure, heart rate, forearm blood flow and thoracic impedance were measured for 10 min at rest and during 5 min of lower body negative pressure (LBNP) at -10 and -40 mmHg ( n = 11). During LBNP, MSNA responses were attenuated after melatonin at both -10 and -40 mmHg ( P < 0.03). Specifically, during the placebo trial, MSNA increased by 33 ± 8 and 251 ± 70 % during -10 and -40 mmHg, respectively, but increased by only 8 ± 7 and 111 ± 35 % during -10 and -40 mmHg with melatonin, respectively. However, arterial blood pressure and forearm vascular resistance responses were unchanged by melatonin during LBNP. MSNA responses were not affected by melatonin during an isometric handgrip test (30 % maximum voluntary contraction) and a cold pressor test. Plasma melatonin concentration was measured at 25 min intervals for 125 min in six subjects. Melatonin concentration was 14 ± 11 pg ml−1 before ingestion and was significantly increased at each time point (peaking at 75 min; 1830 ± 848 pg ml−1). These findings indicate that in humans, a high concentration of melatonin can attenuate the reflex sympathetic increases that occur in response to orthostatic stress. These alterations appear to be mediated by melatonin-induced changes to the baroreflexes.  相似文献   

13.
To investigate whether sympathetic responses are correlated with central laterality or handedness, muscle sympathetic nerve activity (MSNA), heart rate (HR) and blood pressure (BP) were compared between right (RA) and left arm (LA) grip exercise with volitional maximum effort (MVHG) for 2 min and post‐exercise arterial occlusion (PEAO) in right‐ and left‐handed volunteers. MVHG and PEAO led to a greater increase in MSNA in RA than in LA exercise (180 vs. 150%, P=0.004; 140 vs. 85%, P=0.005). MVHG elevated HR to a significantly lesser extent in RA than in LA (35 vs. 46%, P=0.030), and the difference was maintained during PEAO. The BP rise during MVHG and PEAO was the same in RA and in LA. Muscle sympathetic nerve activity, HR and BP responses during MVHG and PEAO showed no difference between the dominant and non‐dominant arm. These results suggested that the effects of central motor command and metaboreflex on sympathetic outflow to the vasculature and the heart may be selectively modulated partly by hemispherical laterality.  相似文献   

14.
The present study was designed to address the contribution of α-adrenergic modulation to the genesis of low-frequency (LF; 0.04-0.15 Hz) oscillations in R-R interval (RRi), blood pressure (BP) and muscle sympathetic nerve activity (MSNA) during different sympathetic stimuli. Blood pressure and RRi were measured continuously in 12 healthy subjects during 5 min periods each of lower body negative pressure (LBNP; -40 mmHg), static handgrip exercise (HG; 20% of maximal force) and postexercise forearm circulatory occlusion (PECO) with and without α-adrenergic blockade by phentolamine. Muscle sympathetic nerve activity was recorded in five subjects during LBNP and in six subjects during HG and PECO. Low-frequency powers and median frequencies of BP, RRi and MSNA were calculated from power spectra. Low-frequency power during LBNP was lower with phentolamine versus without for both BP and RRi oscillations (1.6 ± 0.6 versus 1.2 ± 0.7 ln mmHg(2), P = 0.049; and 6.9 ± 0.8 versus 5.4 ± 0.9 ln ms(2), P = 0.001, respectively). In contrast, the LBNP with phentolamine increased the power of high-frequency oscillations (0.15-0.4 Hz) in BP and MSNA (P < 0.01 for both), which was not observed during saline infusion. Phentolamine also blunted the increases in the LBNP-induced increase in frequency of LF oscillations in BP and RRi. Phentolamine decreased the LF power of RRi during HG (P = 0.015) but induced no other changes in LF powers or frequencies during HG. Phentolamine resulted in decreased frequency of LF oscillations in RRi (P = 0.004) during PECO, and a similar tendency was observed in BP and MSNA. The power of LF oscillation in MSNA did not change during any intervention. We conclude that α-adrenergic modulation contributes to LF oscillations in BP and RRi during baroreceptor unloading (LBNP) but not during static exercise. Also, α-adrenergic modulation partly explains the shift to a higher frequency of LF oscillations during baroreceptor unloading and muscle metaboreflex activation.  相似文献   

15.
The study was designed to assess the effects of local heat (LH) application on postganglionic muscle sympathetic nerve activity (MSNA) measured by microneurography in healthy men. In the first protocol, MSNA of the left peroneal nerve, blood pressure (BP), heart rate (HR), and skin temperature of the shin (TSK) were recorded in nine men. In the second protocol, leg blood flow (LBF) was measured in the same subjects by strain-gauge plethysmography. In both protocols, after 10 min of rest in the supine position, a heated hydrocollator pack was applied to the shin and anterior foot for 15 min and recovery was monitored over a period of 20 min. TSK gradually increased from 31.7 ± 0.1 to 41.9 ± 0.5°C (mean ± SEM) during LH. No subject complained of pain, and BP and HR remained constant. The MSNA burst rate (16.1 ± 2.1 beats/min) during the control period decreased significantly (P < 0.05) to 72.0 ± 2.3% during LH. Total MSNA also decreased to 59.2 ± 2.6% (P < 0.05) during LH, but both immediately returned to baseline at recovery. In contrast, LBF in the left leg significantly and immediately increased (P < 0.05) after LH application and remained significantly elevated until the end of the recovery period. These results suggest that: (1) LH application significantly attenuates MSNA without any changes in HR and BP. (2) Other factors in addition to MSNA seem to control regional blood flow in the lower extremity during LH.  相似文献   

16.
Conscious chronically instrumented adult female sheep were used to determine whether direct action of prostaglandin E2 (PGE2) on the carotid sinus baroreceptors contributes to the pressor response observed during infusion of PGE2 into the common carotid artery (CCA). During infusion of PGE2 into the CCA caudal to an intact carotid sinus, into the CCA caudal to a denervated carotid sinus, and into the external carotid artery, mean arterial pressure (MAP) rose 17, 22, and 17 mmHg, respectively (P less than 0.01). Heart rate (HR) rose 6, 6, and 8 beats/min, respectively (P less than 0.05). Cardiac output (CO) was also measured by indicator dilution using indocyanine green. In these experiments with infusion of PGE2 into the external carotid artery, MAP rose 15 mmHg (P less than 0.01), HR increased 6 beats/min (P less than 0.05), CO did not change, and total peripheral resistance (TPR) increased 23% (P less than 0.01). With infusion of PGE2 past a denervated carotid sinus, MAP rose 20 mmHg (P less than 0.01), HR rose 4 beats/min (P less than 0.05), CO did not change, and TPR increased 29% (P less than 0.01). There were no statistically significant differences in MAP or HR responses when PGE2 was infused past an intact carotid sinus, past a denervated carotid sinus, or beyond the carotid sinus. There is no evidence that direct action of PGE2 on carotid sinus baroreceptors either augments or inhibits the observed pressor effect of intracarotid PGE2. Intracarotid PGE2 acts rostral to the carotid sinus to increase MAP, HR, and TPR in conscious sheep.  相似文献   

17.
Somatosensory afferents are represented within the cortical autonomic network (CAN). However, the representation of somatosensory afferents, and the consequent cardiovascular effects, may be modified by levels of baroreceptor input. Thus, we examined the cortical regions involved with processing somatosensory inputs during baroreceptor unloading. Neuroimaging sessions (functional magnetic resonance imaging [fMRI]) recorded brain activity during 30 mmHg lower-body negative pressure (LBNP) alone and combined with somatosensory stimulation (LBNP+SS) of the forearm (n = 14). Somatosensory processing was also assessed during increased sympathetic outflow via end-expiratory apnea. Heart rate (HR), blood pressure (BP), cardiac output (Q), and muscle sympathetic nerve activity (MSNA) were recorded during the same protocols in a separate laboratory session. SS alone had no effect on any cardiovascular or MSNA variable at rest. Measures of HR, BP, and Q during LBNP were not different compared with LBNP+SS. The rise in MSNA burst frequency was attenuated during LBNP+SS versus LBNP alone (8 vs. 12 bursts/min, respectively, P < 0.05). SS did not affect the change in MSNA during apnea. Activations within the insula and dorsal anterior cingulate cortex (ACC) observed during LBNP were not seen during LBNP+SS. Anterior insula and ACC activations occurring during apnea were not modified by SS. Thus, the absence of insular and dorsal ACC activity during LBNP+SS along with an attenuation of MSNA burst frequency suggest sympathoinhibitory effects of sensory stimulation during decreased baroreceptor input by a mechanism that includes conjoint insula-dorsal ACC regulation. These findings reveal that the level of baroreceptor input influences the forebrain organization of somatosensory afferents.  相似文献   

18.
Static exercise has been thought to induce greater pressor response than dynamic exercise, but in contrast it has been recently reported that repetitive muscle contraction recruiting small muscles evokes greater response than sustained contraction. It remained unknown whether sustained contraction induces greater pressor response if large muscles were recruited. Nine subjects performed three types of isometric knee extensions recruiting the large muscle group, i.e., 2-min sustained (20% and 40% maximal voluntary contraction [MVC]) and 4-min repetitive (40% MVC, duty cycle = 1:1 s) muscle contractions. Compared under the equivalent TTI and exercising duration (2 min), the changes in femoral arterial blood flow and VO(2) from baseline (Delta BF, Delta VO(2)) were significantly less during sustained contraction than during repetitive contraction (sustained vs. repetitive; Delta BF: +92 +/- 195 vs. +1,174 +/- 269 ml.min(-1), Delta VO(2): +53 +/- 12 vs. +180 +/- 32 ml.min(-1), mean +/- SE, p < 0.05), although the change in mean arterial pressure (Delta MAP) was greater during sustained contraction (+24 +/- 3 vs. +19 +/- 3 mmHg). Compared under the equivalent TTI and peak tension (40% MVC), Delta BF and Delta VO(2) were less and Delta MAP was greater during sustained contraction (Delta BF: -296 +/- 176 vs. +868 +/- 272 ml.min(-1); Delta VO(2): +104 +/- 16 vs. + 212 +/- 46 ml.min(-1); Delta MAP: +37 +/- 8 vs. +20 +/- 4 mmHg). Moreover Delta MAP during postexercise occlusion of the active limb was significantly greater after sustained contraction than after repetitive contraction (+17.0 +/- 2.8 vs. +9.5 +/- 4.4 mmHg). These results demonstrated that pressor response is greater during sustained than during repetitive contraction, recruiting a large muscle group. This finding should be mainly due to the greater accumulation of metabolites in active muscles during sustained contraction.  相似文献   

19.
To determine the effect of prolonged angiotensin II (A-II) infusion on thirst, daily water intake by drinking was measured in dogs during a 4-day control period, a 4-day period of vehicle infusion without A-II, a 10-day period of A-II infusion, and a 4-day recovery period of vehicle infusion without A-II. During the control period and the periods of vehicle infusion in the absence of A-II, daily water intake by drinking in four dogs averaged 118 +/- 20 ml/day (mean +/- SE). During the 10-day period of A-II infusion at the rate of 13.0 ng/kg per min drinking increased to 269 +/- 49 ml/day (paired t; P less than 0.05). Angiotensin II infusion at the rate of 26.0 ng/kg per min produced a sustained increase in water intake in two dogs during an 8-day period of infusion. These results demonstrate that in dogs, prolonged infusion of angiotensin II stimulates the thirst mechanism and that the effect lasts for more than a few days.  相似文献   

20.
To examine a hypothesis of whether static muscle contraction produces a release of catecholamines from the adrenal medulla via reflex stimulation of preganglionic adrenal sympathetic nerve activity induced by receptors in the contracting muscle, we compared the reflex responses in a concentration of epinephrine (Ep) and norepinephrine (NEp) in arterial plasma during static contraction and during a mechanical stretch of the hindlimb triceps surae muscle in anesthetized cats. Static contraction was evoked by electrically stimulating the peripheral ends of the cut L(7) and S(1) ventral roots at 20 or 40 Hz. Mean arterial pressure (MAP) and heart rate (HR) increased 23 +/- 3.1 mmHg and 19 +/- 4.3 beats/min during static contraction. Ep in arterial plasma increased 0.18 +/- 0.072 ng/ml over the control of 0.14 +/- 0.051 ng/ml within 1 min from the onset of static contraction, and NEp increased 0.47 +/- 0.087 ng/ml over the control of 0.71 +/- 0.108 ng/ml. Following a neuromuscular blockade, although the same ventral root stimulation failed to produce the cardiovascular and plasma catecholamine responses, the mechanical stretch of the muscle increased MAP, HR, and plasma Ep, but not plasma NEp. With bilateral adrenalectomy, the baseline Ep became negligible (0.012 +/- 0.001 ng/ml) and the baseline NEp was lowered to 0.52 +/- 0.109 ng/ml. Neither static contraction nor mechanical stretch produced significant responses in plasma Ep and NEp following the adrenalectomy. These results suggest that static muscle contraction augments preganglionic adrenal sympathetic nerve activity, which in turn secretes epinephrine from the adrenal medulla into plasma. A muscle mechanoreflex from the contracting muscle may play a role in stimulation of the adrenal sympathetic nerve activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号