首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several evidence suggest that pituitary adenylate cyclase activating polypeptides (PACAP-38 and -27) could function as hypophysiotropic factors. Both peptides interact with either the type I receptor, which preferentially binds the two PACAPs and has a much lower affinity for vasoactive intestinal polypeptide (VIP) or the type II receptor, which binds the two PACAPs and VIP with a nearly equal affinity. In addition to the stimulation of adenylyl cyclase (AC) activity, in different cell types PACAP causes an increase of cytosolic calcium levels ([Ca2+]i), consequent to phospholipase-C activation. In the present study, we investigated the effect of PACAP on cAMP formation and [Ca2+]i levels in 16 human nonfunctioning pituitary adenomas (NFPA). PACAP-38 increased cAMP formation in all tumors; the peptide stimulated either AC activity in membrane preparations from 26 ± 10 to 214 ± 179 pmol/mg prot/min (P < 0.01) or cAMP efflux from 12 ± 5.4 to 73.2 ± 32 pmol/well (P < 0.01) in cultured cells. The effect, detectable at concentrations higher than 1-10 pM, was maximal at 0.1-10 nM. While PACAP-38 and PACAP-27 were nearly equally effective and potent, 100-fold higher concentrations of VIP were required to obtain similar AC activation. GHRH and CRH were ineffective in any NFPA. The PACAP effect was not antagonized by a VIP antagonist, while PACAP fragment 6–27 amide partially reduced the stimulatory effects of both PACAP-27 and VIP in 2 out of 3 tumors tested. PACAP-38 caused a [Ca2+]i rise in cells obtained from 7 NFPA (from 110 ± 34 to 151 ± 40 nM [Ca2+]i, P < 0.05) while in the remaining 7 the peptide was ineffective at any concentrations tested (from 1 nM to 10 μM). In the responsive tumors, PACAP-38 effect was not consequence of phospholipase-C activation since removal of extracellular Ca2+ as well as blockade of L-type Ca2+ channels by dihydropyridine antagonists abolished [Ca2+]i increase triggered by the peptide. These data indicate that PACAP is by far the most potent activator of cAMP formation in NFPA and suggest a possible modulatory action of this peptide on cell growth.  相似文献   

2.
Many studies have demonstrated that astrocytes respond with fluctuations in intracellular calcium concentration ([Ca2+]i) and membrane potential following the application of a number of ligands. Moreover, calcium (Ca2+) waves that spread through astrocytic syncitia have been described in numerous reports. We had the rare opportunity to study Ca2+ responses in astrocytes obtained from a patient diagnosed with Rasmussen's encephalitis, a rare form of intractable epilepsy. Using the ratiometric fluorescent indicator fura-2, we observed large spontaneous [Ca2+]i oscillations. The mean time between initial rise in [Ca2+]i and the return to baseline was 5.1 ± 0.19 minutes (SEM; n = 201) and [Ca2+]i increased to a mean level of 271 ± 8 nM (SEM; n = 201) from a baseline of 136 ± 6 nM (SEM; n = 201). Removal of Ca2+ from the perfusion solution combined with the addition of the Ca2+ chelator EGTA (2 mM) completely but reversibly eliminated all oscillations suggesting the fluctuations were dependent on Ca2+ flux across the membrane. The percentage of cells undergoing spontaneous changes in [Ca2+]i decreased over time in culture. At 10–11 days post-surgery, approximately 70% of the cells were exhibiting this behavior, and by day 23 transients were no longer observed. We did not observe comparable spontaneous [Ca2+]i oscillations in rat cortical astrocytes. The potential that the spontaneous [Ca2+]i oscillations observed may be a unique feature of epileptic tissues is discussed. GLIA 21:332–337, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
Hypothalamic astrocytes play a critical role in the regulation and support of many different neuroendocrine events, and are affected by oestradiol. Both nuclear and membrane oestrogen receptors (ERs) are expressed in astrocytes. Upon oestradiol activation, membrane‐associated ER signals through the type 1a metabotropic glutamate receptor (mGluR1a) to induce an increase of free cytoplasmic calcium concentration ([Ca2+]i). Because the expression of oxytocin receptors (OTRs) is modulated by oestradiol, we tested whether oestradiol also influences oxytocin signalling. Oxytocin at 1, 10, and 100 nm induced a [Ca2+]i flux measured as a change in relative fluorescence [ΔF Ca2+ = 330 ± 17 relative fluorescent units (RFU), ΔF Ca2+ = 331 ± 22 RFU, and ΔF Ca2+ = 347 ± 13 RFU, respectively] in primary cultures of female post‐pubertal hypothalamic astrocytes. Interestingly, OTRs interacted with mGluRs. The mGluR1a antagonist, LY 367385 (20 nm ), blocked the oxytocin (1 nm )‐induced [Ca2+]i flux (ΔF Ca2+ = 344 ± 19 versus 127 ± 11 RFU, P < 0.001). Conversely, the mGluR1a receptor agonist, (RS)‐3,5‐dihydroxyphenyl‐glycine (100 nm ), increased the oxytocin (1 nm )‐induced [Ca2+]i response (ΔF Ca2+ = 670 ± 31 RFU) compared to either compound alone (P < 0.001). Because both oxytocin and oestradiol rapidly signal through the mGluR1a, we treated hypothalamic astrocytes sequentially with oxytocin and oestradiol to determine whether stimulation with one hormone affected the subsequent [Ca2+]i response to the second hormone. Oestradiol treatment did not change the subsequent [Ca2+]i flux to oxytocin (P > 0.05) and previous oxytocin exposure did not affect the [Ca2+]i response to oestradiol (P > 0.05). Furthermore, simultaneous oestradiol and oxytocin stimulation failed to yield a synergistic [Ca2+]i response. These results suggest that the OTR signals through the mGluR1a to release Ca2+ from intracellular stores and rapid, nongenomic oestradiol stimulation does not influence OTR signalling in astrocytes.  相似文献   

4.
The activation of GABAB receptors of adrenal chomaffin cells produces an increase of [Ca2+]i measured by fura-2 AM techniques. GABAB agonists 3-aminopropylphosphinic acid or (-)baclofen, at concentrations of 0.5 mM, increased basal Ca2+, values 332 ± 60.9 and 306 ± 40.5 nM, respectively, in cells suspended in a 2.5 mM Ca2+ buffer. The GABAB-induced increase of [Ca2+]i seemed to have two different components. The first was due to an entry from the extracellular medium mainly through L-type voltage-dependent Ca2+ channels as the dihydropiridine nifedipine 50 μM was able to decrease it more than 60%, while ω-conotoxin, which blocks N-type channels, did not produce any change in the GABAB-evoked Ca2+ increment. The second component was due to a release of Ca2+ from intracellular pools and was about one-third of the total GABAB-induced increase of [Ca2+]i. GABAB receptors stimulated inositol 1,4,5-trisphosphate-sensitive and not the caffeine-sensitive Ca2+ store. In a low Ca2+ buffer after treatment with 2 μM angiotensin II, neither 0.5 mM 3-APPA nor baclofen were able to produce an additional increase of [Ca2+]i, whereas 4 mM caffeine had no effect on GABAB response. This intracellular Ca2+ mobilization could be due to inositol 1,4,5-trisphosphate accumulation produced by the activation of GABAB receptors. In fact, the specific agonists after 10 minutes incubation produced a dosedependent increase of inositol 1,4,5-trisphosphate. The maximal effect was obtained at 100 μM baclofen and 3-APPA, and it was 3.63 ± 0.75 and 3.2 ± 1.5 times the basal levels (7.3 ± 0.3 pmol/106 cells), respectively. In the absence of extracellular Ca2+, GABAB-evoked catecholamine secretion and cyclic AMP formation were reduced more than 70%, suggesting an important role of extracellular Ca2+ in GABAB mechanisms in adrenal chromaffin cells. © 1995 Wiley-Liss, Inc.  相似文献   

5.
The effect of glutamatergic agonists on the intracellular free Ca2+ concentration ([Ca2+]i) of neuropile glial cells and Retzius neurones in intact segmental ganglia of the medicinal leech Hirudo medicinalis was investigated by using iontophoretically injected fura-2. In physiological Ringer solution the [Ca2+]i levels of both cell types were almost the ssame (glial cells: 58 ± 30 nM, n = 51; Retzius neurones: 61 ± 27 nM, n = 64). In both cell types glutamate, kainate, and quisqualate induced an increase in [Ca2+]i which was inhibited by 6,7-dinitroquinoxaline-2,3-dione (DNQX). This increase was caused by a Ca2+ influx from the extracellular space because the response was greatly diminished upon removal of extracellular Ca2+. The glutamate receptors of neuropile glial cells and Retzius neurones differed with respect to the relative effectiveness of the agonists used, as well as with regard to the inhibitory strenght of DNQX. In Retzius neurones the agonist-induced [Ca2+]i increase was abolished after replacing extracellular Na+ by organic cations or by mM amounts of Ni2+, whereas in glial cells the [Ca2+]i increase was largely preserved under both conditions. It is concluded that in Retzius neurones the Ca2+ influx is predominantly mediated by voltage-dependent Ca2+ channels, whereas in neuropile glial cells the major influx occurs via the ion channels that are associated with the glutamate receptors.  相似文献   

6.
We compared the effectiveness of Ca2+ entering by Na+/Ca2+ exchange with that of Ca2+ entering by channels produced by membrane depolarization with K+ in inducing catecholamine release from bovine adrenal chromaffin cells. The Ca2+ influx through the Na+/Ca2+ exchanger was promoted by reversing the normal inward gradient of Na+ by preincubating the cells with ouabain to increase the intracellular Na+ and then removing Na+ from the external medium. In this way we were able to increase the cytosolic free Ca2+ concentration ([Ca2+]c) by Na+/Ca2+ exchange to 325 ± 14 nM, which was similar to the rise in [Ca2+]c observed upon depolarization with 35 mM K+ of cells not treated with ouabain. After incubating the cells with ouabain, K+ depolarization raised the [Ca2+]c to 398 ± 31 nM, and the recovery of [Ca2+]c to resting levels was significantly slower. Reversal of the Na+ gradient caused an −6-fold increase in the release of noradrenaline or adrenaline, whereas K+ depolarization induced a 12-fold increase in noradrenaline release but only a 9-fold increase in adrenaline release. The ratio of noradrenaline to adrenaline release was 1.24 ± 0.23 upon reversal of the Na+/Ca2+ exchange, whereas it was 1.83 ± 0.19 for K+ depolarization. Reversal of the Na+/Ca2+ exchange appeared to be as efficient as membrane depolarization in inducing adrenaline release, in that the relation of [Ca2+]c to adrenaline release was the same in both cases. In contrast, we found that for the same average [Ca2+]c, the Ca2+ influx through voltage-gated channels was much more efficient than the Ca2+ entering through the Na+/Ca2+ exchanger in inducing noradrenaline release from chromaffin ceils. This greater effectiveness of membrane depolarization in stimulating noradrenaline release suggests that there is a pool of noradrenaline vesicles which is more accessible to Ca2+ entering through voltage-gated Ca2+ channels than to Ca2+ entering through the Na+/Ca2+ exchanger, whereas the adrenaline vesicles do not distinguish between the source of Ca2+.  相似文献   

7.
Mechanical stimulation of a single cell in a primary mixed glial cell culture induced a wave of increased intracellular calcium concentration ([Ca2+]i) that was communicated to surrounding cells. Following propagation of the Ca2+ wave, many cells showed asynchronous oscillations in [Ca2+]i. Dantrolene sodium (10 μM) inhibited the increase in [Ca2+]i associated with this Ca2+ wave by 60-80%, and prevented subsequent Ca2+ oscillations. Despite the markedly decreased magnitude of the increase in [Ca2+]i, the rate of propagation and the extent of communication of the Ca2+ wave were similar to those prior to the addition of dantrolene. Thapsigargin (10 nM to 1 μM) induced an initial increase in [Ca2+]i ranging from 100 nM to 500 nM in all cells that was followed by a recovery of [Ca2+]i to near resting levels in most cells. Transient exposure to thapsigargin for 2 min irreversibly blocked communication of a Ca2+ wave from the stimulated cell to adjacent cells. Glutamate (50 μM) induced an initial increase in [Ca2+]i in most cells that was followed by sustained oscillations in [Ca2+]i in some cells. Dantrolene (10 μM) inhibited this initial [Ca2+]i increase caused by glutamate by 65-90% and abolished subsequent oscillations. Thapsigargin (10 nM to 1 μm) abolished the response to glutamate in over 99% of cells. These results suggest that while both dantrolene and thapsigargin inhibit intracellular Ca2+ release, only thapsigargin affects the mechanism that mediates intercellular communication of Ca2+ waves. These findings are consistent with the hypothesis that inositol trisphosphate (IP3) mediates the propagation of Ca2+ waves whereas Ca2+ -induced Ca2+ release amplifies Ca2+ waves and generates subsequent Ca2+ oscillations.  相似文献   

8.
In the CA1 region of the hippocampus, ischemia or high-frequency stimulation of the glutamatergic input induces neuronal calcium uptake that is reflected as a decrease of the extracellular concentration of calcium ([Ca2+]ec. In this study, the effects of theophylline on these [Ca2+]ec shifts were examined in doses (20 mg/kg iv) where theophylline is mainly acting by blocking adenosine receptors. By using calcium-sensitive microelectrodes, [Ca2+]ec was concomitantly recorded in stratum pyramidale (SP) and stratum radiatum (SR) of the CA1 in adult Wistar rats, before, during, and for 6 h after transient forebrain ischemia. During ischemia (4-vessel occlusion, 20 min), the [Ca2+]ec decrease in SR preceded (by 11± 4 s; mean ± SEM) the [Ca2+]ec decrease in SP. Administration of theophylline prior to ischemia reduced the time from vessel-occlusion to the ischemic decrease in [Ca2+]ec (from 3.0±0.3 to 0.9±0.1 min; mean±SEM;p<0.01). During electrically evoked burst firing, the [Ca2+]ec shift was augmented by theophylline in nonischemic controls (by 29±4%; mean±SEM’p<0.05). After 6 h of reflow, i.e., at a time-point when the evoked calcium uptake is enhanced, theophylline had no effect on evoked [Ca2+]ec shifts. In summary, during ischemia the uptake of calcium into CA1 pyramidal cells started in the dendrites and preceded that in the cell bodies. Removal of adenosine inhibition by theophylline accelerated ischemic calcium uptake and enhanced electrically evoked calcium uptake in control animals. In contrast, in the postischemic phase adenosine inhibition was lost with a secondary enhancement of the evoked calcium uptake that may be one critical factor in the development of delayed neuronal death.  相似文献   

9.
A. Bordey  P. Feltz  J. Trouslard 《Glia》1994,11(3):277-283
Variations in intracellular free calcium concentration (Δ[Ca2+]i) were measured in intact and isolated human astrocytoma cells (U373 MG) loaded with fura-2 acetoxymethylester. Microperfusion of 50 nM substance P (SP), applied for 1 s, increased [Ca2+]i by 351 nM from a stable basal level of [Ca2+]i of 26 nM. The peak Δ[Ca2+]i induced by SP was dose dependent with a threshold of 10-3 nM, an ED50 of 1.3 nM and a maximal effect for concentrations of SP greater than 100 nM. The NKI receptor agonist, [Sar9Met(O2)11]SP, mimicked the effect of SP, while the NK2 and NK3 selective receptor agonists, [N110]NKA(4-10) and senktide, respectively, had no effect. The Δ[Ca2+]i induced by SP was unaffected by 100 μM cadmium or by removal of extracellular calcium ions. Caffeine up to 30 mM had no effect on [Ca2+]i. In contrast, thapsigargin increased resting [Ca2+]i by 92 nM and reduced the Δ[Ca2+]i induced by SP. A pertussis treatment (500 ng/ml-24 h) did not modify the Δ[Ca2+]i induced by SP. We conclude that SP, acting on a NK1 receptor, mobilizes cytosolic calcium from an intracellular calcium pool which can be partially depleted by thapsigargin. © 1994 Wiley-Liss, Inc.  相似文献   

10.
The regulation of intracellular Ca2+ was investigated in cultured astrocytes from the trisomy 16 (Ts16) mouse, an animal model for Down syndrome and Alzheimer's disease (AD). The cytoplasmic ionized Ca2+ concentration ([Ca2+]cyt) was determined using digital imaging of fura-2-loaded cells. The relative Ca2+ content of internal endoplasmic reticulum (ER) stores was estimated from the magnitude of the transient increase in [Ca2+]cyt induced by cyclopiazonic acid (CPA), an inhibitor of Ca2+ sequestration into ER stores. At rest, the average [Ca2+]cyt was 140 nM in euploid (normal) astrocytes, but over twice as high, 320 nM, in Ts16 cells. In the absence of extracellular Ca2+, CPA induced a transient increase in [Ca2+]cyt to over 1200 nM in Ts16 astrocytes as compared to only 500 nM in euploid cells, indicating an increased amount of Ca2+ in the Ts16 astrocyte ER. In contrast to euploid astrocytes, both resting [Ca2+]cyt and the amount of Ca2+ in the ER stores varied widely among individual Ts16 astrocytes. These results show that Ts16 produces a dysregulation of Ca2+ homeostasis leading to increased cytoplasmic and stored Ca2+. Since increases in [Ca2+]cyt have been implicated in the etiology of neurodegenerative diseases, including AD, this finding of abnormal Ca2+ homeostasis in a genetic model of human neurological disorders suggests that Ca2+ dysregulation may be a common feature underlying neurodegenerative processes. GLIA 19:352–368, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
We have described a patient with a thyrotrophin-secreting pituitary adenoma and correlated a detailed physiological and anatomical investigation of the surgically resected tumour with its in vivo regulation. Thyrotrophin secretion was inhibited by circulating thyroid hormones, dopaminergic agonists and the somatostatin analogue SMS 201–995 but could not be stimulated by thyrotrophin-releasing hormone or further inhibited by exogenous triiodothyronine. Prolonged treatment with SMS 201–995 caused tumour shrinkage as shown by successive computed tomography scans but was accompanied by tumour desensitization and the development of diabetes mellitus. This is the first thyrotroph adenoma in which somatostatin receptors have been directly demonstrated and shown to completely block thyrotrophin-releasing hormone-induced inositol phospholipid accumulation when occupied. In addition, preincubation with triiodothyronine significantly inhibited thyrotrophin-releasing hormone-induced inositol phospholipid turnover in dispersed pituitary cells indicating that in this tumour, circulating thyroid hormones were exerting feedback inhibition at the level of the pituitary either by reducing the number of thyrotrophin-releasing hormone receptors and/or their coupling to second messenger pathways. In keeping with this hypothesis, the acute reduction in intrapituitary triiodothyronine by sodium ipodate in vivo had no effect on peripheral thyrotrophin over 6 h suggesting that the onset of the effect of triiodothyronine withdrawal on thyrotrophin secretion was suitably delayed. The importance of the inositol phospholipid second messenger pathway in transducing the secretory response in this tumour was further corroborated by electrophysiological studies which demonstrated thyrotrophin-releasing hormone-induced changes in K+ currents which are dependent on intracellular Ca2+ ions, presumably mobilized via the inositol phospholipids. In addition to thyrotrophin and α subunit, growth hormone mRNA and growth hormone were found throughout the tumour as were two populations of cells distinguished electron microscopically by the size of their secretory granules. Although acromegalic features are not unusual in thyrotroph adenomas, our patient showed no evidence of inappropriate growth hormone secretion during surgery or in response to pre- or post-operative insulin stress tests.  相似文献   

12.
Pyridostigmine, an acetylcholinesterase inhibitor, stimulates growth hormone (GH) release and is thought to act by inhibiting hypothalamic somatostatin release. There are few data concerning the effect of pyridostigmine on other pituitary hormones apart from GH. We have studied the effect of pyridostigmine on basal GH, thyrotrophin (TSH), prolactin, adrenocorticotrophin and cortisol release, and thyrotrophin-releasing hormone (TRH)-stimulated TSH and prolactin release, in two studies involving nine healthy male subjects. Pyridostigmine stimulated GH release in all subjects but had no effect on adrenocortocotrophin or cortisol levels, or basal or TRH-stimulated TSH and prolactin levels. There are some data to suggest that somatostatin inhibits TRH-stimulated TSH release. Our findings, however, suggest that either endogenous somatostatin tone has little effect on the TSH response to TRH compared to its effects on GH or pyridostigmine acts through a mechanism other than altering somatostatin tone. Pyridostigmine did not alter adrenocorticotrophin or cortisol levels in the presence of a clear action on GH release, providing further evidence that the previously reported effects of cholinergic drugs on cortisol release are stress-related.  相似文献   

13.
The involvement of L‐type Ca2+ channels in both ‘basal’ and ‘stimulated’ growth hormone (GH) secretion is well established; however, knowledge regarding the involvement of non‐L‐type Ca2+ channels is lacking. We investigated whether non‐L‐type Ca2+ channels regulate GH secretion from anterior pituitary (AP) cells. To this end, GH secretion was monitored from dissociated AP cells, which were incubated for 15 min with 2 mm K+ (‘basal’ secretion) or 60 mm K+ (‘stimulated’ secretion). The role of non‐L‐type Ca2+ influx was investigated using specific channel blockers, including ω‐agatoxin‐IVA, ω‐conotoxin GVIA or SNX‐482, to block P/Q‐, N‐ or R‐type Ca2+ channels, respectively. Our results demonstrate that P/Q‐, N‐ and R‐type Ca2+ channels contributed 21.2 ± 1.9%, 20.2 ± 7.6% and 11.4 ± 1.8%, respectively, to ‘basal’ GH secretion and 18.3 ± 1.0%, 24.4 ± 5.4% and 14.2 ± 4.8%, respectively, to ‘stimulated’ GH secretion. After treatment with a ‘cocktail’ that comprised the previously described non‐L‐type blockers, non‐L‐type Ca2+ channels contributed 50.9 ± 0.4% and 45.5 ± 2.0% to ‘basal’ and ‘stimulated’ GH secretion, respectively. Similarly, based on the effects of nifedipine (10 μM), L‐type Ca2+ channels contributed 34.2 ± 3.7% and 54.7 ± 4.1% to ‘basal’ and ‘stimulated’ GH secretion, respectively. Interestingly, the relative contributions of L‐type/non‐L‐type Ca2+ channels to ‘stimulated’ GH secretion were well correlated with the relative contributions of L‐type/non‐L‐type Ca2+ channels to voltage‐gated Ca2+ influx in AP cells. Finally, we demonstrated that compartmentalisation of Ca2+ channels is important for GH secretion. Lipid raft disruption (methyl‐β‐cyclodextrin, 10 mm ) abrogated the compartmentalisation of Ca2+ channels and substantially reduced ‘basal’ and ‘stimulated’ GH secretion by 43.2 ± 3.4% and 58.4 ± 4.0%, respectively. In summary, we have demonstrated that multiple Ca2+ channel‐dependent pathways regulate GH secretion. The proper function of these pathways depends on their compartmentalisation within AP cell membranes.  相似文献   

14.
In order to evaluate the role of guanine nucleotide-dependent transducer proteins (G proteins) in hormone-mediated signal transduction in the anterior pituitary lobe, we examined the effect of gonadotropin-releasing hormone (GnRH) and thyrotropin-releasing hormone (TRH) on two parameters of G protein function, namely [35 S]GTPγS binding and low KmGTPase activity. Plasma membranes were prepared from anterior pituitary lobes of adult male rats using conventional procedures. GTP binding was determined by incubating 2 to 5 μg membrane protein with approximately 100,000 cpm [35 S]GTPγS in a buffer containing 20 mM Tris- HCl, 1 mM EDTA, 1 mM dithiothreitol, and 100 mM NaCI at a pH of 7.4 for 10 or 15 min at 37 °C GnRH agonist and TRH stimulated high affinity [35 S]GTPγS binding in a concentration-dependent manner. GTP binding was maximally stimulated by GnRH agonist (1 μM) and TRH (0.1 μM) by up to 27% and 34%, respectively. A time-course study revealed that 1 μM GnRH agonist stimulated GTP binding by 30% at 15 min; 0.1 μM TRH stimulated GTP binding by 23% at 1 min, 18% at 5 min and 25% at 10 min. A stable GTP analog, 5′-guanylylimidodiphosphate, inhibited GnRH- as well as TRH-stimulated GTP binding. GnRH antagonist did not affect GTP binding. However, in the presence of the antagonist, stimulation of GTP binding by the GnRH agonist was completely blocked. The low KmGTPase activity (EC 3.6.1.-), another parameter of G protein function, was assayed in 2 to 5 μg membrane protein using [γ-32 P]GTP at 37 °C in an ATP-regenerating buffer containing 1 μM unlabeled GTP. GnRH agonist (0.1 μM) and TRH (1 μM) maximally stimulated this GTPase activity by up to 50% and 40%, respectively. GnRH agonist (1 μM) stimulated the GTPase activity by 30% at 10 min and 48% at 30 min. TRH (1 μM) stimulated the GTPase activity at all time points monitored; stimulation was 46% at 5 min, 49% at 20 min, and 41% at 30 min. Interestingly, the GnRH antagonist stimulated GTPase activity by about 20%, but inhibited GnRH agonist-stimulated GTPase activity in a concentration-dependent manner. These results indicate that the binding of GnRH and TRH to their receptors results in interaction of the receptor with a G protein and activation of the G protein cycle.  相似文献   

15.
The action mechanism of gonadotropin-releasing hormone (GnRH) on the cytosolic free calcium concentration ([Ca2+]i) and high-threshold voltage-dependent Ca2+ channel activity was studied in human nonsecreting (NS) pituitary adenoma cells. [Ca2+]i was monitored in individual cells by dual emission microspectrofluorimetry using indo1 as intracellular fluorescent Ca2+ probe. The whole-cell recording patch-clamp technique was used to study Ca2+ channels. A short application of GnRH (1 to 100 nM) induced an increase in [Ca2+]i due to Ca2+ entry through plasma membrane voltage-sensitive L-type Ca2+ channels. Protein kinase C (PKC) depletion induced by a pretreatment with 1 μM PMA for 24 h abolished spontaneous Ca2+ transients and the action of GnRH on [Ca2+]i and Ca2+ channels. Phloretin (250 μM and staurosporine (20 nM), two protein kinase C inhibitors, inhibited Ca2+ channel activity, thereby suppressing the effect of GnRH. On the other hand, activation of PKC by a short application of phorbol myristate acetate (10 nM) stimulated Ca2+ influx through Ca2+ channels. These findings demonstrate that, in human NS adenoma cells, GnRH (1 to 100 nM) induces an increase in [Ca2+]i, principally due to Ca2+ entry through L-type voltage-activated Ca2+ channels. PKC regulates this mechanism as well as basal ion channel activity, thus exerting both positive and negative control of [Ca2+]i in stimulated and unstimulated NS adenoma cells.  相似文献   

16.
Fluorescence videomicroscopy was used to monitor changes in the cytosolic free Ca2+ concentration ([Ca2+]i in the mouse muscle cell line C2C12 during in vitro myogenesis. Three different patterns of changes in [Ca2+]i were observed: (i) [Ca2+]i oscillations; (ii) faster Ca2+ events confined to subcellular regions (localized [Ca2+]i spikes) and (iii) [Ca2+]i spikes detectable in the entire myotube (global [Ca2+]i spikes). [Ca2+]i oscillations and localized [Ca2+]i spikes were detectable following the appearance of caffeine-sensitivity in differentiating C2C12 cells. Global [Ca2+]i spikes appeared later in the process of myogenesis in cells exhibiting coupling between voltage-operated Ca2+ channels and ryanodine receptors. In contrast to [Ca2+]i oscillations and localized [Ca2+]i spikes, the global events immediately stopped when cells were perfused either with a Ca2+-free solution, or a solution with TTX, TEA and verapamil. To explore further the mechanism of the global [Ca2+]i spikes, membrane currents and fluorescence signals were measured simultaneously. These experiments revealed that global [Ca2+]i spikes were correlated with an inward current. Moreover, while the depletion of the Ca2+ stores blocked [Ca2+]i oscillations and localized [Ca2]i spikes, it only reduced the amplitude of global [Ca2+]i spikes. It is suggested that, during the earlier stages of the myogenesis, spontaneous and repetitive [Ca2+]i changes may be based on cytosolic oscillatory mechanisms. The coupling between voltage-operated Ca2+ channels and ryanodine receptors seems to be the prerequisite for the appearance of global [Ca2+]i spikes triggered by a membrane oscillatory mechanism, which characterizes the later phases of the myogenic process.  相似文献   

17.
The aim of this study was to characterize plasma membrane pathways involved in the intracellular calcium ([Ca2+]i) response of small DRG neurons to mechanical stimulation and the modulation of these pathways by κ-opioids. [Ca2+]i responses were measured by fluorescence video microscopy of Fura-2 labeled lumbosacral DRG neurons obtained from adult rats in short-term primary culture. Transient focal mechanical stimulation of the soma, or brief superfusion with 300 nM capsaicin, resulted to [Ca2+]i increases which were abolished in Ca2+-free solution, but unaffected by lanthanum (25 μM) or tetrodotoxin (10−6 M). 156 out of 465 neurons tested (34%) showed mechanosensitivity while 55 out of 118 neurons (47%) were capsaicin-sensitive. Ninty percent of capsaicin-sensitive neurons were mechanosensitive. Gadolinium (Gd3+; 250 μM) and amiloride (100 μM) abolished the [Ca2+]i transient in response to mechanical stimulation, but had no effect on capsaicin-induced [Ca2+]i transients. The κ-opioid agonists U50,488 and fedotozine showed a dose-dependent inhibition of mechanically stimulated [Ca2+]i transients but had little effect on capsaicin-induced [Ca2+]i transients. The inhibitory effect of U50,488 was abolished by the κ-opioid antagonist nor-Binaltorphimine dihydrochloride (nor-BNI; 100 nM), and by high concentrations of naloxone (30–100 nM), but not by low concentrations of naloxone (3 nM). We conclude that mechanically induced [Ca2+]i transients in small diameter DRG somas are mediated by influx of Ca2+ through a Gd3+- and amiloride-sensitive plasma membrane pathway that is co-expressed with capsaicin-sensitive channels. Mechanical-, but not capsaicin-mediated, Ca2+ transients are sensitive to κ-opioid agonists.  相似文献   

18.
Secretion of pituitary gonadotropins is regulated centrally by the hypothalamic decapeptide gonadotropin releasing hormone (GnRH). Using the immortalized hypothalamic GT1-7 neuron, we characterized pharmacologically the dynamics of cytosolic Ca2+ and GnRH release in response to K+-induced depolarization of GT1-7 neurons. Our results showed that K+ concentrations from 7.5 to 60 mM increased [Ca2+]cyt in a concentration-dependent manner. Resting [Ca2+]cyt in GT1-7 cells was determined to be 69.7 ± 4.0 nM (mean ± S.E.M.; N = 69). K+-induced increases in [Ca2+]cyt ranged from 58.2 nM at 7.5 mM [K+] to 347 nM at 60 mM [K+]. K+-induced GnRH release ranged from about 10 pg/ml at 7.5 mM [K+] to about 60 pg/ml at 45 mM [K+]. K+-induced increases in [Ca2+]cyt and GnRH release were enhanced by 1 μM BayK 8644, an L-type Ca2+ channel agonist. The BayK enhancement was completely inhibited by 1 μM nimodipine, an L-type Ca2+ channel antagonist. Nimodipine (1 μM) alone partially inhibited K+-induced increases in [Ca2+]cyt and GnRH release. Conotoxin (1 μM) alone had no effect on K+-induced GnRH release or [Ca2+]cyt, but the combination of conotoxin (1 μM) and nimodipine (1 μM) inhibited K+-induced increase in [Ca2+]cyt significantly more (p < 0.02) than nimodipine alone, suggesting that N-type Ca2+ channels exist in GT1-7 neurons and may be part of the response to K+. The response of [Ca2+]cyt to K+ was linear with increasing [K+] whereas the response of GnRH release to increasing [K+] appeared to be saturable. K+-induced increase in [Ca2+]cyt and GnRH release required extracellular [Ca2+]. These experiments suggest that voltage dependent N- and L-type Ca2+ channels are present in immortalized GT1-7 neurons and that GnRH release is, at least in part, dependent on these channels for release of GnRH.  相似文献   

19.
Thyrotropin-releasing hormone (TRH) has been found to be widely distributed in the mammalian central nervous system. Further, the concentration of the tripeptide increases following seizure activity, and TRH is known to have anticonvulsant effects. We have investigated the possibility that the anticonvulsant activity of TRH may be due, at least in part, to an attenuation of the glutamate-stimulated increases in intraneuronal Ca2+ ([Ca]i) that occur with epileptic activity. We find that the tripeptide does not itself excite neurons and that it is able to significantly reduce glutamate-stimulated increases in [Ca]i in cultured neurons derived from fetal rat forebrain. Increases in the concentration of TRH following seizure activity may represent an endogenous homeostatic mechanism for reducing glutamate-induced elevations in intraneuronal Ca2+.  相似文献   

20.
Rotenone is a toxin used to generate animal models of Parkinson’s disease; however, the mechanisms of toxicity in substantia nigra pars compacta (SNc) neurons have not been well characterized. We have investigated rotenone (0.05–1 μm ) effects on SNc neurons in acute rat midbrain slices, using whole‐cell patch‐clamp recording combined with microfluorometry. Rotenone evoked a tolbutamide‐sensitive outward current (94 ± 15 pA) associated with increases in intracellular [Ca2+] ([Ca2+]i) (73.8 ± 7.7 nm ) and intracellular [Na+] (3.1 ± 0.6 mm ) (all with 1 μm ). The outward current was not affected by a high ATP level (10 mm ) in the patch pipette but was decreased by Trolox. The [Ca2+]i rise was abolished by removing extracellular Ca2+, and attenuated by Trolox and a transient receptor potential M2 (TRPM2) channel blocker, N‐(p‐amylcinnamoyl) anthranilic acid. Other effects included mitochondrial depolarization (rhodamine‐123) and increased mitochondrial reactive oxygen species (ROS) production (MitoSox), which was also abolished by Trolox. A low concentration of rotenone (5 nm ) that, by itself, did not evoke a [Ca2+]i rise resulted in a large (46.6 ± 25.3 nm ) Ca2+ response when baseline [Ca2+]i was increased by a ‘priming’ protocol that activated voltage‐gated Ca2+ channels. There was also a positive correlation between ‘naturally’ occurring variations in baseline [Ca2+]i and the rotenone‐induced [Ca2+]i rise. This correlation was not seen in non‐dopaminergic neurons of the substantia nigra pars reticulata (SNr). Our results show that mitochondrial ROS production is a key element in the effect of rotenone on ATP‐gated K+ channels and TRPM2‐like channels in SNc neurons, and demonstrate, in these neurons (but not in the SNr), a large potentiation of rotenone‐induced [Ca2+]i rise by a small increase in baseline [Ca2+]i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号