首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein-linked, endo-beta-N-acetylglucosaminidase H-sensitive oligosaccharides were isolated from several trypanosomatids incubated with [U-14C]glucose. Structural analysis of the compounds revealed that Man9GlcNAc2 was the oligosaccharide transferred from dolichol-P-P derivatives to proteins in Trypanosoma dionisii, Trypanosoma conorhini, Leptomonas samueli and Herpetomonas samuelpessoai and Man6GlcNAc2 in Blastocrithidia culicis and Leishmania adleri. In all cases, transiently glucosylated compounds were detected: Glc1Man7-9GlcNAc2 in T. dionisii, T. conorhini, L. samueli; Glc1Man9GlcNAc2 in H. samuelpessoai, Glc1Man6GlcNAc2 in B. culicis and Glc1Man6GlcNAc2 and Glc1Man5GlcNAc2 in L. adleri. The mechanism of protein glycosylation in T. dionisii and T. conorhini appeared to be similar to that described before for Trypanosoma cruzi epimastigotes, although some differences were found between the structures of the main isomers of Man7GlcNAc2 and Man8GlcNAc2 present in T. conorhini and T. cruzi. Differences between the mechanisms of glycosylation occurring in Leishmania mexicana and L. adleri were also found: Man6GlcNAc2 in the latter microorganism was demannosylated to Man5GlcNAc2, a step not detected in the former parasite. A novel substituent in N-linked high mannose-type oligosaccharides was found in L. samueli and H. samuelpessoai: galactose in the furanose configuration. In the latter trypanosomatid, Man9GlcNAc2 was demannosylated only to Man8GlcNAc2, whereas in all other parasites in which the same oligosaccharide was transferred to proteins, Man5-7GlcNAc2 were also detected.  相似文献   

2.
We have studied the relationship between phagocytosis and cytotoxicity of human polymorphonuclear leucocytes (PMN) to sensitized Trypanosoma cruzi. Assays were done simultaneously using [3H]-uridine labelled epimastigotes as target cells. Phagocytosis was evaluated by the uptake and cytotoxicity by the release of parasite associated [3H]-uridine. Both reactions reached maximum levels at the same effector- to target-cell ratio and antibody concentration. Uptake of epimastigotes by PMN was highest at 30 min and intracellular disruption and release of parasite debris took place later. In conditions that precluded repeated uptake of sensitized radiolabelled T. cruzi, the release profile of [3H]-uridine from PMN that contained intracellular parasites was similar to that of the standard cytotoxic assay. However, as the ingestion phase was separated from the release step, no lag in the onset of the reaction was observed. Although we cannot rule out extracellular killing, the results of this study demonstrate that the bulk of damaged T. cruzi epimastigotes had been previously internalized by the PMN.  相似文献   

3.
We searched for the presence of glycophosphatidylinositol (GPI)-anchored proteins in epimastigotes and metacyclic trypomastigotes of Trypanosoma cruzi, by treatment of parasite lysates with the GPI-specific phospholipase C of Trypanosoma brucei. Upon treatment, several proteins (70-90 kDa) in metacyclics, but none in epimastigotes, reacted with antibodies to the cross-reacting determinant (CRD), an epitope revealed on the variant surface glycoproteins of T. brucei following removal of the diacylglycerol moiety from their GPI-anchor. Since these T. cruzi metacyclic proteins also lost their original amphiphilicity, as judged by Triton X-114 phase separation, it is very likely that they are linked to the membrane by GPI. One of these proteins is the 90 kDa protein, the major surface protein of G and Tulahuen strains, recognized by the monoclonal antibody 1G7. A variable portion of the 90 kDa molecules was resistant to solubilization by T. brucei lipase. The reasons for this are not clear but susceptibility appeared to increase with the age of the T. cruzi culture. Enzymes that solubilize GPI-anchored proteins were detected in epimastigotes and metacyclics, but the enzymatic activity in these forms was smaller than the activity detected in the same cell numbers of trypomastigotes of T. cruzi originated from infected mammalian cells or from T. brucei bloodstream forms. A preliminary characterization of these activities indicates that at least two classes of enzymes, one of them inhibited by o-phenanthroline, are present in epimastigotes and metacyclics. None of the reagents tested fully inhibited the phospholipases.  相似文献   

4.
Trypomastigote cells of Trypanosoma cruzi incubated with [U-14C]glucose accumulated dolichol-P-P-linked Man7GlcNAc2 and Man9GlcNAc2. Evidence is presented indicating that both oligosaccharides were transferred to asparagine residues in proteins. On the other hand, intracellular amastigotes behaved as epimastigotes, i.e., only Man9GlcNAc2 accumulated and was transferred to proteins under similar incubation conditions. Intracellular amastigotes differed, therefore, from amastigotes obtained from an axenic culture, which behaved as trypomastigotes. A similar processing of protein-linked Man9GlcNAc2 and Man8GlcNAc2 occurred in epimastigotes and trypomastigotes but the structure of the main Man7GlcNAc2 isomer produced by demannosylation of the above mentioned oligosaccharides differed from that of the Man7GlcNAc2 transferred in trypomastigotes and amastigotes from axenic cultures. The infective trypomastigote stage of the parasite showed, therefore, an alteration in the mechanism of protein N-glycosylation when compared to the other stages, namely epimastigote (insect vector stage) and amastigote (mammalian intracellular stage). Complex-type, asparagine-bound oligosaccharides were found to be synthesized in both epimastigotes and trypomastigotes but the amounts of those compounds were extremely low when compared to those of high mannose-type oligosaccharides.  相似文献   

5.
The antibody-dependent cellular cytotoxicity activity of normal human blood cells against epimastigotes of Trypanosoma cruzi was measured by the release of incorporated [3H]uridine. Sera from patients with chronic Chagas' disease were used to sensitize the parasites to the lytic activity of the effector cells. Different steps of peripheral blood cell purification were employed, and different cell subpopulations were tested as effectors in the system. The main cytotoxic activity was detected in the granulocyte-rich fraction.  相似文献   

6.
The susceptibility of Trypanosoma cruzi epimastigotes to lysis by normal or immune sera in a complement-dependent reaction has been reported, but the effects induced directly by immune serum depleted of complement remain unstudied. The aim of this work was to study the ultrastructural alterations induced in T. cruzi epimastigotes by immune mouse or rabbit sera with or without complement. A local isolate of T. cruzi (Queretaro) was used in all experiments. Immune sera were raised in both mouse and rabbit by immunization with T. cruzi epimastigote antigens. Light microscopy showed intense agglutination of epimastigotes when incubated with decomplemented mouse or rabbit immune sera. A distinctive ultrastructural feature of this agglutination pattern was the fusion of plasma membranes and a pattern of intercrossing between subpellicular microtubules. Agglutination was associated with fragmentation of nuclear membranes and swelling of cytoplasm, Golgi cisternae, endoplasmic reticulum, mitochondria and kinetoplast membranes. Agglutinated parasites also incorporated trypan blue stain. Results of [3H]-thymidine incorporation confirmed that epimastigotes exposed to specific antibodies in the absence of complement were incapable of proliferating. Ultrastructural changes observed in epimastigote micrographs incubated with decomplemented immune mouse sera were statistically significant (P<0.001) when compared with results obtained from images after incubation with decomplemented normal mouse sera.  相似文献   

7.
Induction of a glycosylphosphatidylinositol (GPI) deficiency in Trypanosoma cruzi by the heterologous expression of Trypanosoma brucei GPI-phospholipase C (GPI-PLC) results in decreased expression of major surface proteins (N. Garg, R. L. Tarleton, and K. Mensa-Wilmot, J. Biol. Chem. 272:12482-12491, 1997). To further explore the consequences of a GPI deficiency on replication and differentiation of T. cruzi, the in vitro and in vivo behaviors of GPI-PLC-expressing T. cruzi were studied. In comparison to wild-type controls, GPI-deficient T. cruzi epimastigotes exhibited a slight decrease in overall growth potential in culture. In the stationary phase of in vitro growth, GPI-deficient epimastigotes readily converted to metacyclic trypomastigotes and efficiently infected mammalian cells. However, upon conversion to amastigote forms within these host cells, the GPI-deficient parasites exhibited a limited capacity to replicate and subsequently failed to differentiate into trypomastigotes. Mice infected with GPI-deficient parasites showed a substantially lower rate of mortality, decreased tissue parasite burden, and a moderate tissue inflammatory response in comparison to those of mice infected with wild-type parasites. The decreased virulence exhibited by GPI-deficient parasites suggests that inhibition of GPI biosynthesis is a feasible strategy for chemotherapy of infections by T. cruzi and possibly other intracellular protozoan parasites.  相似文献   

8.
In vitro incubation of Trypanosoma cruzi (Y strain) with 3-allyl-beta-lapachone was followed by: (1) growth inhibition of epimastigotes, (2) damage to cellular membranes, especially of the mitochondria, alterations in the chromatin structure and swelling of mitochondria, (3) increase in the respiratory rate, (4) increase in the rate of H2O2 generation by the epimastigotes, (5) increase of the rate of lipid peroxidation as detected by malonyldialdehyde formation, (6) decrease or total disappearance of trypomastigotes from mouse-infected blood. This drug might therefore be useful in preventing transmission of Chagas' disease during blood transfusion. It is not, however, active against infections in mice.  相似文献   

9.
Glucosamine (GlcN), like N‐acetylglucosamine (GlcNAc), is salvaged into the hexosamine pathway and is converted to UDP‐GlcNAc. Golgi N‐glycan branching enzymes produce N‐glycans, using UDP‐GlcNAc as a substrate, which attach to the T cell receptor (TCR) and cytotoxic T‐lymphocyte antigen‐4 (CTLA‐4). These findings suggest that GlcN exerts the immunoregulation through TCR signalling, which could be involved not only in cytokine production but also activated T cell apoptosis. In fact, a preliminary study showed that GlcN reduced the number of CD3+ T cells of NC/Nga mice with AD‐like skin lesions. Therefore, whether apoptosis of T cells would be one of the potential molecular mechanisms of GlcN‐induced immunosuppression was investigated. Cultured human primary along with Jurkat T cells and purified T cells from NC/Nga mice with or without Df‐induced AD‐like skin lesion were used for the study. Glucosamine treatment increased the number of T cells expressing β1,6GlcNAc‐branched N‐glycans, with reduced ZAP‐70 phosphorylation and enhanced CTLA‐4 expression. Glucosamine treatment reduced the number of activated T cells from both the human primary and Jurkat cells and the dermatitis‐induced mice. The expression of FasL and activated caspases, particularly caspase‐3, was increased, whereas the phosphorylation of PI3K, Akt and NF‐κB was decreased by GlcN treatment. Therefore, in addition to down‐regulating TCR signalling and promoting CTLA‐4 expression, GlcN may also suppress T cell function by enhancing apoptosis of activated T cells, through both extrinsic and intrinsic apoptotic signalling pathways, which were regulated by the inhibition of PI3K/Akt and NF‐κB phosphorylation.  相似文献   

10.
Dolichol-P- and dolichol-P-P-linked saccharides were isolated from several trypanosomatid flagellates incubated with [U-14C]glucose. Formation of Glc-P-dolichol and Man-P-dolichol was observed in Herpetomonas muscarum and Leishmania adleri, whereas only the latter derivative was synthesized in Trypanosoma dionisii and Leptomonas samueli. The main and largest dolichol-P-P-linked oligosaccharide formed in Trypanosoma conorhini, T. dionisii, L. samueli, Herpetomonas samuelpessoai and H. muscarum appeared to be Man9GlcNAc2, whereas in Blastocrithidia culicis it was Man6GlcNAc2. In L. adleri there were two main oligosaccharides linked to dolichol-P-P, Man6GlcNAc2 and Man5GlcNAc2. The The structures of the oligosaccharides were identical with those of the intermediates in the formation of Glc3Man9GlcNAc2-P-P-dolichol in higher eucaryotes. It was concluded that similarly to Trypanosoma cruzi, Crithidia fasciculata and Leishmania mexicana, no glucosylated derivatives of dolichol-P-P were formed in the additional seven trypanosomatids studied here. The results obtained suggest that the defective step could be in some cases the formation of Glc-P-dolichol and in others, the transfer of glucose residues from the latter compound to dolichol-P-P-linked oligosaccharides.  相似文献   

11.
Highly purified acidocalcisomes from Trypanosoma cruzi epimastigotes were obtained by differential centrifugation and iodixanol gradient ultracentrifugation. Lipid analysis of acidocalcisomes revealed the presence of low amounts of 3beta-hydroxysterols and predominance of phospholipids. Alkylacyl phosphatidylinositol (16:0/18:2), diacyl phosphatidylinositol (18:0/18:2), diacyl phosphatidylcholine (16:0/18:2; 16:1/18:2; 16:2/18:2; 18:1/18:2 and 18:2/18:2), and diacyl phosphatidylethanolamine (16:0/18:2 and 16:1/18:2) were the only phospholipids characterized by electrospray ionization-mass spectrometry (ESI-MS). Incubation of epimastigotes with [(3)H]-mannose and isolation of acidocalcisomes allowed the detection of a glycoinositolphospholipid (GIPL) in these organelles. The sugar content of the acidocalcisomal GIPL was similar to that of the GIPL present in a microsomal fraction but the amount of galactofuranose and inositol with respect to the other monosaccharides was lower, suggesting a different chemical structure. Taken together, these results indicate that acidocalcisomes of T. cruzi have a distinct lipid and carbohydrate composition.  相似文献   

12.
The membrane-attached form of the variant surface glycoprotein (mf-VSG) of bloodstream forms of Trypanosoma brucei is anchored to the plasma membrane by a hydrophobic C-terminal lipo-oligosaccharide containing ethanolamine. Analysis by polyacrylamide gel electrophoresis showed that several different cloned T. brucei strains (strain EATRO 110 and variants 117 and 118 of strain 427) incorporated [3H]ethanolamine into both mf-VSG and the soluble VSG derived from it, but not into other proteins. Other trypanosomatids, e.g. Leishmania mexicana promastigotes, T. cruzi epimastigotes, and T. brucei procyclic forms, did not incorporate ethanolamine into cellular proteins. Thus, [3H]ethanolamine can be used as a specific biosynthetic label for T. brucei VSG polypeptides. The time course of incorporation of [3H]ethanolamine into VSG showed a lag period of about 15 min. Double-labelling experiments using [3H]ethanolamine and H3[32P]O4 demonstrated that ethanolamine labelled only the C-terminal moiety and was not incorporated into other portions of the VSG molecule. Cellular uptake of ethanolamine occurred via a specific carrier-mediated transport system having a Vmax of 132 pmol min-1 mg-1 protein and a Km of 3.7 microM. The properties of this transport system are consistent with the possibility that ethanolamine is derived entirely from the host.  相似文献   

13.
Trypanosoma brucei glycosylphosphatidylinositol phospholipase C (GPIPLC) is expressed in the bloodstream stage of the life cycle, but not in the procyclic form. It is capable of hydrolyzing GPI-anchored proteins and phosphatidylinositol (PI) in vitro. Several roles have been proposed for GPIPLC in vivo, in the release of variant surface glycoprotein during differentiation or in the regulation of GPI and PI levels, but none has been substantiated. To explore GPIPLC function in vivo, tetracycline-inducible GPIPLC gene (GPIPLC) conditional knock-out bloodstream form and tetracycline-inducible GPIPLC-expressing procyclic cell lines were constructed. We were unable to generate GPIPLC null mutants. Cleavage of GPI-anchored proteins was abolished in extracts from uninduced conditional knock-outs and was restored upon induction. Despite the barely detectable level of GPIPLC activity in uninduced conditional knock-out bloodstream forms, their growth was not affected. GPI-protein cleavage activity could be induced in procyclic cell extracts, up to wild-type bloodstream levels. Myo-[3H]inositol incorporation into [3H]inositol monophosphate was about 14-fold lower in GPIPLC conditional knock-out bloodstream forms than in the wild type. Procyclic cells expressing GPIPLC showed a 28-fold increase in myo-[3H]inositol incorporation into [3H]inositol monophosphate and a 1.5-fold increase in [3H]inositol trisphosphate levels, suggesting that GPIPLC may regulate levels of inositol phosphates, by cleavage of PI and phosphatidylinositol 4,5-bisphosphate.  相似文献   

14.
Afferents to the nucleus accumbens septi utilizing glutamate or aspartate have been investigated in the rat by autoradiography following injection and retrograde transport of D[3H]aspartate. Parallel experiments with the intra-accumbal injection of [3H]GABA were employed to establish the transmitter-selective nature of the retrograde labelling found with D[3H]aspartate. The topography of cortical and thalamic perikarya labelled by D[3H]aspartate was extremely precise. D[3H]Aspartate labelled perikarya were found in layer V of agranular insular cortex; bilaterally within prelimbic and infralimbic subareas perikarya, but predominantly ipsilaterally. Ipsilateral labelling was observed in dorsal, ventral and posterior agranular insular cortices, and in perirhinal cortex. Injections into ventral accumbens labelled perikarya in ipsilateral entorhinal cortex, while infusion of D[3H]aspartate into anterior caudate-putamen resulted in labelling of perikarya in ipsilateral cingulate and lateral precentral cortices. Following infusion of D[3H]aspartate, ipsilateral midline thalamic nuclei contained the highest density of labelled perikarya; infusions centred on nucleus accumbens resulted in heavy retrograde labelling of the parataenial nucleus, but labelling was sparse from a lateral site and not observed after injection into anterior caudate-putamen. Less prominent labelling of perikarya was seen in other thalamic nuclei (mediodorsal, central medial, rhomboid, reuniens and centrolateral), mostly near the midline. Perikaryal labelling was also found in the ipsilateral amygdaloid complex, particularly in basolateral and lateral nuclei. Only weak labelling resulted in ventral subiculum. Numerous labelled cells were present bilaterally in anterior olfactory nucleus, although perikarya were more prominent ipsilaterally. Labelled perikarya were not consistently observed in other regions (ventral tegmental area, medial substantia nigra, raphe nuclei and locus coeruleus) known to innervate nucleus accumbens. Presumptive anterograde labelling was detected in ventral pallidum/substantia innominata, ventral tegmental area and medial substantia nigra. [3H]GABA was generally not retrogradely transported to the same regions labelled by D[3H]aspartate; an exception being the anterior olfactory nucleus, where large numbers of labelled perikarya were found. [3H]GABA failed to label perikarya in thalamus and amygdala, and a topographic distribution of label was absent in neocortex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
In this study, we characterized ceramide synthase (CerS) of the protozoan parasite Trypanosoma cruzi at the molecular and functional levels. TcCerS activity was detected initially in a cell-free system using the microsomal fraction of epimastigote forms of T. cruzi, [(3)H]dihydrosphingosine or [(3)H]sphingosine, and fatty acids or acyl-CoA derivatives as acceptor or donor substrates, respectively. TcCerS utilizes both sphingoid long-chain bases, and its activity is exclusively dependent on acyl-CoAs, with palmitoyl-CoA being preferred. In addition, Fumonisin B(1), a broad and well-known acyl-CoA-dependent CerS inhibitor, blocked the parasite's CerS activity. However, unlike observations in fungi, the CerS inhibitors Australifungin and Fumonisin B(1) did not affect the proliferation of epimastigotes in culture, even after exposure to high concentrations or after extended periods of treatment. A search of the parasite genome with the conserved Lag1 motif from Lag1p, the yeast acyl-CoA-dependent CerS, identified a T. cruzi candidate gene (TcCERS1) that putatively encodes the parasite's CerS activity. The TcCERS1 gene was able to functionally complement the lethality of a lag1Δ lac1Δ double deletion yeast mutant in which the acyl-CoA-dependent CerS is not detectable. The complemented strain was capable of synthesizing normal inositol-containing sphingolipids and is 10 times more sensitive to Fumonisin B(1) than the parental strain.  相似文献   

16.
Glucosamine (GlcN) and N-acetyl-d-glucosamine (GlcNAc) were assayed in vitro for their effects on proliferation, cytotoxicity and cytokine secretion in primary and secondary mixed lymphocyte cultures (MLCs). In addition, we studied the effect of GlcN and GlcNAc on the proliferation of purified CD4+ T cells exposed to immobilized anti-CD3 antibody. The present data show that GlcN, but not GlcNAc, inhibits CD4+ T-cell proliferation, the generation of alloreactive cytotoxic T lymphocytes (CTLs) and the secretion of interferon-gamma (IFN-gamma) and interleukin-5 (IL-5) in primary MLC. In secondary T helper-2 (Th2)-polarized MLC, GlcN, but not GlcNAc, inhibits IL-4 and IL-5 secretion, whereas no effect was found on IFN-gamma secretion in Th1-polarized MLC. Dendritic cells treated with GlcN showed a 75-80% decreased capacity for antigen cross-presentation and allostimulation. In cellular bioassays, GlcN was shown to inhibit the stimulatory activity of IL-4 and IL-2, as well as the cytotoxic activity of tumour necrosis factor-alpha (TNF-alpha). In conclusion, GlcN suppresses unprimed T-cell responses by interfering with antigen-presenting cell functions and by a direct inhibitory effect on T-cell proliferation. In addition, GlcN inhibits the secretion of cytokines in antigen-stimulated unprimed T cells and primed Th2-polarized cells.  相似文献   

17.
Glycosylphosphatidylinositol (GPI) represents an important anchoring molecule for cell surface proteins. The first step in its synthesis is the transfer of N-acetylglucosamine (GlcNAc) from UDP-N-acetylglucosamine to phosphatidylinositol (PI). This chemically simple step is genetically complex because three or four genes are required in both yeast (GPI1, GPI2 and GPI3) and mammals (GPI1, PIG A, PIG H and PIG C), respectively. Here, we report cloning of a Plasmodium falciparum (P. falciparum) homologue of GPI1 (PfGPI1). Analysis showed that P. falciparum Gpi1p is somewhat more similar to the yeast proteins than human Gpi1p, showing 26 and 20% amino acid sequence identity with the Saccharomyces cerevisiae and Homo sapiens proteins, respectively. Multiple sequence alignment demonstrates also that the C-terminal half GPI1 proteins is much better conserved than the N-terminal half. The P. falciparum Gpi1p has a calculated molecular weight of 65 kDa and a predicted potential tyrosine phosphorylation site. The potential tyrosine phosphorylation site seems to occur in all other known Gpi1 proteins. Like the other GPI1 proteins, the predictive software revealed the absence of targeting signals such as organelle transit peptides, DNA binding sites, or N-terminal secretory signals. Hydrophobicity plots revealed multiple hydrophobic regions that could function as transmembrane segments. The cloned P. falciparum GPI1 gene complemented a gpi1 yeast mutant.  相似文献   

18.
Myocardial fibrosis can occur as a complication of chronic infection of the heart with Trypanosoma cruzi (Chagas' disease) and can lead to serious disability. To assess whether there might be a direct relationship between intracellular parasitization and subsequent tissue fibrosis in this disease, we tested serum-free conditioned media from cultures of fibroblasts, vascular smooth-muscle cells, and myocardial cells for fibroblast-stimulating activity. Conditioned media from all infected cultures, but not from uninfected cultures, stimulated fibroblast [3H]thymidine incorporation, DNA and protein synthesis, and cell proliferation. Fibroblast-stimulating activity was also detected in extracts of amastigotes but not of trypomastigotes or epimastigotes. We conclude that parasitization of mesenchymal cells, including myocardial cells, results in elaboration of a fibroblast-stimulating factor(s), perhaps of parasite origin. We postulate that this factor may play a role in initiation of myocardial fibrosis in Chagas' disease.  相似文献   

19.
SAG1 (P30) is the major surface protein of the Toxoplasma gondii tachyzoite, the life cycle stage associated with the acute phase of infection. The protein is inserted into the parasite's plasma membrane by a glycosyl-phosphatidylinositol anchor, a modification that is present on all T. gondii surface proteins characterized so far. Here we describe a detailed structural analysis of this anchor. GPI anchor peptides were isolated from [3H]glucosamine labeled purified P30 by protease digestion and phase partitioning. Neutral glycans were prepared from this material by dephosphorylation and deamination. Two glycoforms were characterized by gel filtration and high performance ion exchange chromatography in combination with exoglycosidase treatment. Both forms were shown to carry an N-acetylgalactosamine bound to the first mannose of the conserved three-mannosyl core. Glycan B carries an additional terminal hexose linked to GalNAc. To identify the nature of this hexose, bulk anchor peptide was prepared and glycans were purified by aminopropyl-HPLC. Highly purified glycans were subjected to MALDI-TOF-MS and, after derivatization, to FAB-MS and methylation linkage analysis. The structures of the two anchors found on SAG1 were determined to be: Man-alpha1,2-Man-alpha1,6-Man-[GalNAc-beta1,4-]-alpha1,4-GlcN-PI and Man-alpha1,2-Man-alpha1,6-Man [Glc-alpha1,4-GalNAc-beta1,4-]-alpha1,4-GlcN-PI. Comparison of these structures with free GPI glycolipid precursors characterized in T. gondii suggests that core modification of the anchor takes place prior to transfer to the protein.  相似文献   

20.
In pituitary glands of immature rats prelabeled in vitro with [3H]arachidonic acid, melatonin diminished the luteinizing hormone-releasing hormone (LHRH)-induced increase in [3H]diacylglycerol accumulation as well as [3H]arachidonic acid release from the tissue. Melatonin reduced also LHRH-stimulated incorporation of [3H]glycerol into pituitary [3H]diacylglycerol. The effect was day-time dependent: in the evening experiment melatonin was effective at 0.1 nM concentration while in the morning it had no effect even at 10 nM concentration. The effect of melatonin was also abolished by pretreatment with pertussis toxin. Diacylglycerol and/or arachidonic acid might serve as 2nd messengers transducing the effect of melatonin at the cellular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号