首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 466 毫秒
1.
In pancreatic beta-cells, glucose metabolism signals insulin secretion by altering the cellular array of messenger molecules. ATP is particularly important, given its role in regulating cation channel activity, exocytosis, and events dependent upon its hydrolysis. Uncoupling protein (UCP)-2 is proposed to catalyze a mitochondrial inner-membrane H(+) leak that bypasses ATP synthase, thereby reducing cellular ATP content. Previously, we showed that overexpression of UCP-2 suppressed glucose-stimulated insulin secretion (GSIS) in isolated islets (1). The aim of this study was to identify downstream consequences of UCP-2 overexpression and to determine whether insufficient insulin secretion in a diabetic model was correlated with increased endogenous UCP-2 expression. In isolated islets from normal rats, the degree to which GSIS was suppressed was inversely correlated with the amount of UCP-2 expression induced. Depolarizing the islets with KCl or inhibiting ATP-dependent K(+) (K(ATP)) channels with glybenclamide elicited similar insulin secretion in control and UCP-2-overexpressing islets. The glucose-stimulated mitochondrial membrane ((m)) hyperpolarization was reduced in beta-cells overexpressing UCP-2. ATP content of UCP-2-induced islets was reduced by 50%, and there was no change in the efflux of Rb(+) at high versus low glucose concentrations, suggesting that low ATP led to reduced glucose-induced depolarization, thereby causing reduced insulin secretion. Sprague-Dawley rats fed a diet with 40% fat for 3 weeks were glucose intolerant, and in vitro insulin secretion at high glucose was only increased 8.5-fold over basal, compared with 28-fold in control rats. Islet UCP-2 mRNA expression was increased twofold. These studies provide further strong evidence that UCP-2 is an important negative regulator of beta-cell insulin secretion and demonstrate that reduced (m) and increased activity of K(ATP) channels are mechanisms by which UCP-2-mediated effects are mediated. These studies also raise the possibility that a pathological upregulation of UCP-2 expression in the prediabetic state could contribute to the loss of glucose responsiveness observed in obesity-related type 2 diabetes in humans.  相似文献   

2.
Seino S  Iwanaga T  Nagashima K  Miki T 《Diabetes》2000,49(3):311-318
The regulation of insulin secretion from pancreatic beta-cells depends critically on the activities of their plasma membrane ion channels. ATP-sensitive K+ channels (K(ATP) channels) are present in many cells and regulate a variety of cellular functions by coupling cell metabolism with membrane potential. The activity of the K(ATP) channels in pancreatic beta-cells is regulated by changes in the ATP and ADP concentrations (ATP/ADP ratio) caused by glucose metabolism. Thus, the K(ATP) channels are the ATP and ADP sensors in the regulation of glucose-induced insulin secretion. K(ATP) channels are also the target of sulfonylureas, which are widely used in the treatment of type 2 diabetes. Molecular cloning of the two subunits of the pancreatic beta-cell K(ATP) channel, Kir6.2 (an inward rectifier K+ channel member) and SUR1 (a receptor for sulfonylureas), has provided great insight into its structure and function. Kir6.2 subunits form the K+ ion-permeable pore and primarily confer inhibition of the channels by ATP, while SUR1 subunits confer activation of the channels by MgADP and K+ channel openers, such as diazoxide, as well as inhibition by sulfonylureas. The SUR1 subunits also enhance the sensitivity of the channels to ATP. To determine the physiological roles of K(ATP) channels directly, we have generated two kinds of genetically engineered mice: mice expressing a dominant-negative form of Kir6.2 specifically in the pancreatic beta-cells (Kir6.2G132S Tg mice) and mice lacking Kir6.2 (Kir6.2 knockout mice). Studies of these mice elucidated various roles of the K(ATP) channels in endocrine pancreatic function: 1) the K(ATP) channels are the major determinant of the resting membrane potential of pancreatic beta-cells, 2) both glucose- and sulfonylurea-induced membrane depolarization of beta-cells require closure of the K(ATP) channels, 3) both glucose- and sulfonylurea-induced rises in intracellular calcium concentration in beta-cells require closure of the K(ATP) channels, 4) both glucose- and sulfonylurea-induced insulin secretions are mediated principally by the K(ATP) channel-dependent pathway, 5) the K(ATP) channels are important for beta-cell survival and architecture of the islets, 6) the K(ATP) channels are important in the differentiation of islet cells, and 7) the K(ATP) channels in glucose-responsive cells generally participate in coupling glucose sensing with cell excitability. Interestingly, despite the severe defect in glucose-induced insulin secretion, Kir6.2 knockout mice show only a very mild impairment in glucose tolerance. However, when the knockout mice become obese with age, they develop fasting hyperglycemia and glucose intolerance, while neither fasting hyperglycemia nor glucose intolerance is evident in the aged knockout mice without obesity, suggesting that both the genetic defect in glucose-induced insulin secretion and the acquired insulin resistance due to environmental factors are necessary to develop diabetes in Kir6.2 knockout mice. Thus, Kir6.2G132S Tg mice and Kir6.2 knockout mice provide a model of type 2 diabetes and clarify the various roles of K(ATP) channels in endocrine pancreatic function.  相似文献   

3.
4.
Nutrients such as glucose stimulate insulin release from pancreatic beta-cells through both ATP-sensitive K+ channel-independent and -dependent mechanisms, which are most likely interrelated. Although little is known of the molecular basis of ATP-sensitive K+ channel-independent insulinotropic nutrient actions, mediation by cytosolic long-chain acyl-CoA has been implicated. Because protein acylation might be a sequel of cytosolic long-chain acyl-CoA accumulation, we examined if this reaction is engaged in nutrient stimulation of insulin release, using cerulenin, an inhibitor of protein acylation. In isolated rat pancreatic islets, cerulenin inhibited the glucose augmentation of Ca2+-stimulated insulin release evoked by a depolarizing concentration of K+ in the presence of diazoxide and Ca2+-independent insulin release triggered by a combination of forskolin and phorbol ester under stringent Ca2+-free conditions. Cerulenin inhibition of glucose effects was concentration dependent, with a 50% inhibitory concentration (IC50) of 5 microg/ml and complete inhibition at 100 microg/ml. Cerulenin also inhibited augmentation of insulin release by alpha-ketoisocaproate, a mitochondrial fuel. Furthermore, cerulenin abolished augmentation of both Ca2+-stimulated and Ca2+-independent insulin release by 10 micromol/l palmitate, which causes palmitoylation of cellular proteins. In contrast, cerulenin did not attenuate insulin release elicited by nonnutrient secretagogues, such as a depolarizing concentration of K+, activators of protein kinases A and C, and mastoparan. Glucose oxidation, ATP content in islets, and palmitate oxidation were not affected by cerulenin. In conclusion, cerulenin inhibits nutrient augmentation of insulin release with a high selectivity. The finding is consistent with a prominent role of protein acylation in the process of beta-cell nutrient sensing.  相似文献   

5.
When fed a high-energy (HE) diet, diabetes-prone (DP) Psammomys obesus develop type 2 diabetes with altered glucose-stimulated insulin secretion (GSIS). Beta-cell stimulus-secretion coupling was investigated in islets isolated from DP P. obesus fed a low-energy (LE) diet (DP-LE) and after 5 days on a HE diet (DP-HE). DP-LE islets cultured overnight in 5 mmol/l glucose displayed glucose dose-dependent increases in NAD(P)H, mitochondrial membrane potential, ATP/(ATP + ADP) ratio, cytosolic calcium concentration ([Ca(2+)](c)), and insulin secretion. In comparison, DP-HE islets cultured overnight in 10 mmol/l glucose were 80% degranulated and displayed an increased sensitivity to glucose at the level of glucose metabolism, [Ca(2+)](c), and insulin secretion. These changes in DP-HE islets were only marginally reversed after culture in 5 mmol/l glucose and were not reproduced in DP-LE islets cultured overnight in 10 mmol/l glucose, except for the 75% degranulation. Diabetes-resistant P. obesus remain normoglycemic on HE diet. Their beta-cell stimulus-secretion coupling was similar to that of DP-LE islets, irrespective of the type of diet. Thus, islets from diabetic P. obesus display an increased sensitivity to glucose at the level of glucose metabolism and a profound beta-cell degranulation, both of which may affect their in vivo GSIS.  相似文献   

6.
7.
Carnitine palmitoyltransferase I, which is expressed in the pancreas as the liver isoform (LCPTI), catalyzes the rate-limiting step in the transport of fatty acids into the mitochondria for their oxidation. Malonyl-CoA derived from glucose metabolism regulates fatty acid oxidation by inhibiting LCPTI. To examine directly whether the availability of long-chain fatty acyl-CoA (LC-CoA) affects the regulation of insulin secretion in the beta-cell and whether malonyl-CoA may act as a metabolic coupling factor in the beta-cell, we infected INS(832/13) cells and rat islets with an adenovirus encoding a mutant form of LCPTI (Ad-LCPTI M593S) that is insensitive to malonyl-CoA. In Ad-LCPTI M593S-infected INS(832/13) cells, LCPTI activity increased sixfold. This was associated with enhanced fatty acid oxidation, at any glucose concentration, and a 60% suppression of glucose-stimulated insulin secretion (GSIS). In isolated rat islets in which LCPTI M593S was overexpressed, GSIS decreased 40%. The impairment of GSIS in Ad-LCPTI M593S-infected INS(832/13) cells was not recovered when cells were incubated with 0.25 mmol/l palmitate, indicating the deep metabolic influence of a nonregulated fatty acid oxidation system. At high glucose concentration, overexpression of a malonyl-CoA-insensitive form of LCPTI reduced partitioning of exogenous palmitate into lipid esterification products and decreased protein kinase C activation. Moreover, LCPTI M593S expression impaired K(ATP) channel-independent GSIS in INS(832/13) cells. The LCPTI M593S mutant caused more pronounced alterations in GSIS and lipid partitioning (fat oxidation, esterification, and the level of nonesterified palmitate) than LCPTI wt in INS(832/13) cells that were transduced with these constructs. The results provide direct support for the hypothesis that the malonyl-CoA/CPTI interaction is a component of a metabolic signaling network that controls insulin secretion.  相似文献   

8.
Increased beta-cell sensitivity to glucose precedes the loss of glucose-induced insulin secretion in diabetic animals. Changes at the level of beta-cell glucose sensor have been described in these situations, but it is not clear whether they fully account for the increased insulin secretion. Using a euglycemic-normolipidemic 60% pancreatectomized (60%-Px) mouse model, we have studied the ionic mechanisms responsible for increased beta-cell glucose sensitivity. Two weeks after Px (Px14 group), Px mice maintained normoglycemia with a reduced beta-cell mass (0.88 +/- 0.18 mg) compared with control mice (1.41 +/- 0.21 mg). At this stage, the dose-response curve for glucose-induced insulin release showed a significant displacement to the left (P < 0.001). Islets from the Px14 group showed oscillatory electrical activity and cytosolic Ca2+ ([Ca2+]i) oscillations in response to glucose concentrations of 5.6 mmol/l compared with islets from the control group at 11.1 mmol/l. All the above changes were fully reversible both in vitro (after 48-h culture of islets from the Px14 group) and in vivo (after regeneration of beta-cell mass in islets studied 60 days after Px). No significant differences in the input resistance and ATP inhibition of ATP-sensitive K+ (K(ATP)) channels were found between beta-cells from the Px14 and control groups. The dose-response curve for glucose-induced MTT (C,N-diphenyl-N'-4,5-dimethyl thiazol 2 yl tetrazolium bromide) reduction showed a significant displacement to the left in islets from the Px14 group (P < 0.001). These results indicate that increased glucose sensitivity in terms of insulin secretion and Ca2+ signaling was not due to intrinsic modifications of K(ATP) channel properties, and suggest that the changes are most likely to be found in the glucose metabolism.  相似文献   

9.
One of the unique features of beta-cells is their relatively low expression of many antioxidant enzymes. This could render beta-cells susceptible to oxidative damage but may also provide a system that is sensitive to reactive oxygen species as signals. In isolated mouse islets and INS-1(832/13) cells, glucose increases intracellular accumulation of H2O2. In both models, insulin secretion could be stimulated by provision of either exogenous H2O2 or diethyl maleate, which raises intracellular H2O2 levels. Provision of exogenous H2O2 scavengers, including cell permeable catalase and N-acetyl-L-cysteine, inhibited glucose-stimulated H2O2 accumulation and insulin secretion (GSIS). In contrast, cell permeable superoxide dismutase, which metabolizes superoxide into H2O2, had no effect on GSIS. Because oxidative stress is an important risk factor for beta-cell dysfunction in diabetes, the relationship between glucose-induced H2O2 generation and GSIS was investigated under various oxidative stress conditions. Acute exposure of isolated mouse islets or INS-1(832/13) cells to oxidative stressors, including arsenite, 4-hydroxynonenal, and methylglyoxal, led to decreased GSIS. This impaired GSIS was associated with increases in a battery of endogenous antioxidant enzymes. Taken together, these findings suggest that H2O2 derived from glucose metabolism is one of the metabolic signals for insulin secretion, whereas oxidative stress may disturb its signaling function.  相似文献   

10.
Lin CW  Yan F  Shimamura S  Barg S  Shyng SL 《Diabetes》2005,54(10):2852-2858
ATP-sensitive K(+) channels (K(ATP) channels) of pancreatic beta-cells play key roles in glucose-stimulated insulin secretion by linking metabolic signals to cell excitability. Membrane phosphoinositides, in particular phosphatidylinositol 4,5-bisphosphates (PIP(2)), stimulate K(ATP) channels and decrease channel sensitivity to ATP inhibition; as such, they have been postulated as critical regulators of K(ATP) channels and hence of insulin secretion in beta-cells. Here, we tested this hypothesis by manipulating the interactions between K(ATP) channels and membrane phospholipids in a beta-cell line, INS-1, and assessing how the manipulations affect membrane excitability and insulin secretion. We demonstrate that disruption of channel interactions with PIP(2) by overexpressing PIP(2)-insensitive channel subunits leads to membrane depolarization and elevated basal level insulin secretion at low glucose concentrations. By contrast, facilitation of channel interactions with PIP(2) by upregulating PIP(2) levels via overexpression of a lipid kinase, phosphatidylinositol 4-phosphate 5 kinase, decreases the ATP sensitivity of endogenous K(ATP) channels by approximately 26-fold and renders INS-1 cells hyperpolarized, unable to secrete insulin properly in the face of high glucose. Our results establish an important role of the interaction between membrane phosphoinositides and K(ATP) channels in regulating insulin secretion.  相似文献   

11.
Guillam MT  Dupraz P  Thorens B 《Diabetes》2000,49(9):1485-1491
We previously reported that pancreatic islet beta-cells from GLUT2-null mice lost the first phase but preserved the second phase of glucose-stimulated insulin secretion (GSIS). Furthermore, we showed that the remaining secretory activity required glucose uptake and metabolism because it can be blocked by inhibition of oxidative phosphorylation. Here, we extend these previous studies by analyzing, in GLUT2-null islets, glucose transporter isoforms and glucokinase expression and by measuring glucose usage, GSIS, and glucose-stimulated insulin mRNA biosynthesis. We show that in the absence of GLUT2, no compensatory expression of either GLUT1 or GLUT3 is observed and that glucokinase is expressed at normal levels. Glucose usage by isolated islets was increased between 1 and 6 mmol/l glucose but was not further increased between 6 and 20 mmol/l glucose. Parallel GSIS measurements showed that insulin secretion was not stimulated between 2.8 and 6 mmol/l glucose but was increased by >4-fold between 6 and 20 mmol/l glucose. Stimulation by glucose of total protein and insulin biosynthesis was also markedly impaired in the absence of GLUT2. Finally, we re-expressed GLUT2 in GLUT2-null beta-cells using recombinant lentiviruses and demonstrated a restoration of normal GSIS. Together, these data show that in the absence of GLUT2, glucose can still be taken up by beta-cells, albeit at a low rate, and that this transport activity is unlikely to be attributed to GLUT1 or GLUT3. This uptake activity, however, is limiting for normal glucose utilization and signaling to secretion and translation. These data further demonstrate the key role of GLUT2 in murine beta-cells for glucose signaling to insulin secretion and biosynthesis.  相似文献   

12.
Roduit R  Masiello P  Wang SP  Li H  Mitchell GA  Prentki M 《Diabetes》2001,50(9):1970-1975
Endogenous lipid stores are thought to be involved in the mechanism whereby the beta-cell adapts its secretory capacity in obesity and diabetes. In addition, hormone-sensitive lipase (HSL) is expressed in beta-cells and may provide fatty acids necessary for the generation of coupling factors linking glucose metabolism to insulin release. We have recently created HSL-deficient mice that were used to directly assess the role of HSL in insulin secretion and action. HSL(-/-) mice were normoglycemic and normoinsulinemic under basal conditions, but showed an approximately 30% reduction of circulating free fatty acids (FFAs) with respect to control and heterozygous animals after an overnight fast. An intraperitoneal glucose tolerance test revealed that HSL-null mice were glucose-intolerant and displayed a lack of a rise in plasma insulin after a glucose challenge. Examination of plasma glucose during an insulin tolerance test suggested that HSL-null mice were insulin-resistant, because plasma glucose was barely lowered after the injection of insulin. Freshly isolated islets from HSL-deficient mice displayed elevated secretion at low (3 mmol/l) glucose, failed to release insulin in response to high (20 mmol/l) glucose, but had a normal secretion when challenged with elevated KCl. The phenotype of heterozygous mice with respect to the measured parameters in vitro was similar to that of wild type. Finally, the islet triglyceride content of HSL(-/-) mice was 2-2.5 fold that in HSL(-/+) and HSL(+/+) animals. The results demonstrate an important role of HSL and endogenous beta-cell lipolysis in the coupling mechanism of glucose-stimulated insulin secretion. The data also provide direct support for the concept that some lipid molecule(s), such as FFAs, fatty acyl-CoA or their derivatives, are implicated in beta-cell glucose signaling.  相似文献   

13.
We previously reported decreased glucose-stimulated insulin secretion (GSIS) in hormone-sensitive lipase-null mice (HSL(-/-)), both in vivo and in vitro. The focus of the current study was to gain further insight into the signaling role and regulation of lipolysis in islet tissue. The effect of glucagon-like peptide 1 (GLP-1) on GSIS was also studied, as GLP-1 could augment GSIS via protein kinase A activation of HSL and lipolysis. Freshly isolated islets from fasted and fed male HSL(-/-) and wild-type (HSL(+/+)) mice were studied at ages 4 and 7 months. Neutral cholesteryl ester hydrolase activity was markedly reduced in islets from both 4- and 7-month-old male HSL(-/-) mice, whereas a marked deficiency in triglyceride lipase activity became evident only in the older mice. The deficiencies in lipase activities were associated with higher islet triglyceride content and reduced lipolysis at basal glucose levels. Lipolysis was stimulated by high glucose in islets of both wild-type and HSL-null mice. Severe deficiencies in GSIS were found, but only in islets from 7-month-old, fasted, male HSL(-/-) mice. GSIS was less affected in 4-month-old fasted male HSL(-/-) mice and not reduced in female mice. Exogenous delivery of free fatty acids (FFAs) rescued GSIS, supporting the view that the lack of endogenous FFA supply for lipid-signaling processes in HSL(-/-) mice was responsible for the loss of GSIS. GLP-1 also rescued GSIS in HSL(-/-) mice, indicating that signaling via HSL is not a major pathway for its incretin effect. Thus, the secretory phenotype of HSL-null mice is gender dependent, increases with age, and is influenced by the nutritional state. Under most circumstances, the major determinant of lipolytic flux in the beta-cell involves an enzyme(s) other than HSL that is acutely activated by glucose. Our results support the view that the availability of endogenous FFA through HSL and an additional enzyme(s) is involved in providing lipid moieties for beta-cell signaling for secretion in response to glucose.  相似文献   

14.
Nunemaker CS  Zhang M  Satin LS 《Diabetes》2004,53(7):1765-1772
Recent work suggests that insulin may exert both positive and negative feedback directly on pancreatic beta-cells. To investigate the hypothesis that insulin modulates beta-cell metabolism, mouse islets and beta-cell clusters were loaded with rhodamine 123 to dynamically monitor mitochondrial membrane potential (DeltaPsi(m)). Spontaneous oscillations in DeltaPsi(m) (period: 218 +/- 26 s) were observed in 17 of 30 islets exposed to 11.1 mmol/l glucose. Acute insulin application (100 nmol/l) hyperpolarized DeltaPsi(m), indicating a change in mitochondrial activity. The ATP-sensitive K(+) (K(ATP)) channel opener diazoxide or the l-type calcium channel blocker nifedipine mimicked the effect of insulin, suggesting that insulin activates K(ATP) channels to hyperpolarize DeltaPsi(m) by inhibiting calcium influx. Treatment with forskolin, which increases endogenous insulin secretion, also mimicked the effect of exogenous insulin, suggesting physiological feedback. Pretreatment with nifedipine or the K(ATP) inhibitor glyburide prevented insulin action, further implicating a K(ATP) channel pathway. Together, these data suggest a feedback mechanism whereby insulin receptor activation opens K(ATP) channels to inhibit further secretion. The resulting reduction in beta-cell calcium increases the energy stored in the mitochondrial gradient that drives ATP production. Insulin feedback onto mitochondria may thus help to calibrate the energy needs of the beta-cell on a minute-to-minute basis.  相似文献   

15.
16.
Koster JC  Remedi MS  Qiu H  Nichols CG  Hruz PW 《Diabetes》2003,52(7):1695-1700
HIV protease inhibitors (PIs) acutely and reversibly inhibit the insulin-responsive glucose transporter Glut 4, leading to peripheral insulin resistance and impaired glucose tolerance. Minimal modeling analysis of glucose tolerance tests on PI-treated patients has revealed an impaired insulin secretory response, suggesting additional pancreatic beta-cell dysfunction. To determine whether beta-cell function is acutely affected by PIs, we assayed glucose-stimulated insulin secretion in rodent islets and the insulinoma cell line MIN6. Insulin release from MIN6 cells and rodent islets was significantly inhibited by the PI indinavir with IC(50) values of 1.1 and 2.1 micro mol/l, respectively. The uptake of 2-deoxyglucose in MIN6 cells was similarly inhibited (IC(50) of 2.0 micro mol/l), whereas glucokinase activity was unaffected at drug levels as high as 1 mmol/l. Glucose utilization was also impaired at comparable drug levels. Insulin secretogogues acting downstream of glucose transport mostly reversed the indinavir-mediated inhibition of insulin release in MIN6 cells. Intravenous infusion of indinavir during hyperglycemic clamps on rats significantly suppressed the first-phase insulin response. These data suggest that therapeutic levels of PIs are sufficient to impair glucose sensing by beta-cells. Thus, together with peripheral insulin resistance, beta-cell dysfunction likely contributes to altered glucose homeostasis associated with highly active antiretroviral therapy.  相似文献   

17.
Kowluru A  Veluthakal R 《Diabetes》2005,54(12):3523-3529
Extant studies have implicated the Rho subfamily of guanosine triphosphate-binding proteins (G-proteins; e.g., Rac1) in physiological insulin secretion from isolated beta-cells. However, very little is known with regard to potential regulation by G-protein regulatory factors (e.g., the guanosine diphosphate-dissociation inhibitor [GDI]) of insulin secretion from the islet beta-cell. To this end, using Triton X-114 phase partition, co-immunoprecipitation, and sucrose density gradient centrifugation approaches, we report coexistence of GDI with Rac1 in insulin-secreting beta-cells (INS cells). Overexpression of wild-type GDI significantly inhibited glucose-induced, but not KCl- or mastoparan-induced, insulin secretion from INS cells. Furthermore, glucose-stimulated insulin secretion (GSIS) was significantly increased in INS cells in which expression of GDI was inhibited via the small interfering RNA-mediated knockdown approach. Together, these data appear to suggest an inhibitory role for GDI in the glucose metabolic signaling cascade, which may be relevant for GSIS.  相似文献   

18.
Koster JC  Remedi MS  Masia R  Patton B  Tong A  Nichols CG 《Diabetes》2006,55(11):2957-2964
Glucose metabolism in pancreatic beta-cells elevates cytoplasmic [ATP]/[ADP], causing closure of ATP-sensitive K(+) channels (K(ATP) channels), Ca(2+) entry through voltage-dependent Ca(2+) channels, and insulin release. Decreased responsiveness of K(ATP) channels to the [ATP]/[ADP] ratio should lead to decreased insulin secretion and diabetes. We generated mice expressing K(ATP) channels with reduced ATP sensitivity in their beta-cells. Previously, we described a severe diabetes, with nearly complete neonatal lethality, in four lines (A-C and E) of these mice. We have now analyzed an additional three lines (D, F, and G) in which the transgene is expressed at relatively low levels. These animals survive past weaning but are glucose intolerant and can develop severe diabetes. Despite normal islet morphology and insulin content, islets from glucose-intolerant animals exhibit reduced glucose-stimulated insulin secretion. The data demonstrate that a range of phenotypes can be expected for a reduction in ATP sensitivity of beta-cell K(ATP) channels and provide models for the corollary neonatal diabetes in humans.  相似文献   

19.
20.
Khan FA  Goforth PB  Zhang M  Satin LS 《Diabetes》2001,50(10):2192-2198
Insulin is known to regulate pancreatic beta-cell function through the activation of cell surface insulin receptors, phosphorylation of insulin receptor substrate (IRS)-1 and -2, and activation of phosphatidylinositol (PI) 3-kinase. However, an acute effect of insulin in modulating beta-cell electrical activity and its underlying ionic currents has not been reported. Using the perforated patch clamp technique, we found that insulin (1-600 nmol/l) but not IGF-1 (100 nmol/l) reversibly hyperpolarized single mouse beta-cells and inhibited their electrical activity. The dose-response relationship for insulin yielded a maximal change (mean +/- SE) in membrane potential of -13.6 +/- 2.0 mV (P < 0.001) and a 50% effective dose of 25.9 +/- 0.1 nmol/l (n = 63). Exposing patched beta-cells within intact islets to 200 nmol/l insulin produced similar results, hyperpolarizing islets from -47.7 +/- 3.3 to -65.6 +/- 3.7 mV (P < 0.0001, n = 11). In single cells, insulin-induced hyperpolarization was associated with a threefold increase in whole-cell conductance from 0.6 +/- 0.1 to 1.7 +/- 0.2 nS (P < 0.001, n = 10) and a shift in the current reversal potential from -25.7 +/- 2.5 to -63.7 +/- 1.0 mV (P < 0.001 vs. control, n = 9; calculated K(+) equilibrium potential = -90 mV). The effects of insulin were reversed by tolbutamide, which decreased cell conductance to 0.5 +/- 0.1 nS and shifted the current reversal potential to -25.2 +/- 2.3 mV. Insulin-induced beta-cell hyperpolarization was sufficient to abolish intracellular calcium concentration ([Ca(2+)](i)) oscillations measured in pancreatic islets exposed to 10 mmol/l glucose. The application of 100 nmol/l wortmannin to inactivate PI 3-kinase, a key enzyme in insulin signaling, was found to reverse the effects of 100 nmol/l insulin. In cell-attached patches, single ATP-sensitive K(+) (K(ATP)) channels were activated by bath-applied insulin and subsequently inhibited by wortmannin. Our data thus demonstrate that insulin activates the K(ATP) channels of single mouse pancreatic beta-cells and islets, resulting in membrane hyperpolarization, an inhibition of electrical activity, and the abolition of [Ca(2+)](i) oscillations. We thus propose that locally released insulin might serve as a negative feedback signal within the islet under physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号