首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Background: Ischemic stroke is a complex pathological process, involving inflammatory reaction, energy metabolism disorder, free radical injury, cell apoptosis and other aspects. Accumulating evidences have revealed that MFG-E8 had a protective effect on multiple organ injuries. However, the comprehensive function and mechanism of MFG-E8 in ischemic brain remain largely unclear.

Methods: BV-2 cells were treated with recombinant murine MFG-E8 (rmMFG-E8) or/and Colivelin TFA after exposing for 4?h with oxygen glucose deprivation (OGD). Cell viability and apoptosis were assessed by MTT assay and Flow cytometry. RT-qPCR and Western blot assays were applied to examine the expression levels of MFG-E8, apoptosis-related proteins and M1/M2 polarization markers.

Results: Our results demonstrated that OGD significantly inhibited microglial viability and facilitated apoptosis. In addition, we found that OGD downregulated MFG-E8 expression, and MFG-E8 inhibited OGD-induced microglial apoptosis and promoted microglial M2 polarization. In terms of mechanism, we proved that MFG-E8 regulated OGD-induced microglial M1/M2 polarization by inhibiting p-STAT3 and SOCS3 expressions, which was reversed by STAT3 activator (Colivelin TFA). Finally, we verified MFG-E8 alleviated OGD-induced neuronal cell apoptosis by M2 polarization of BV-2 cells.

Conclusions: We demonstrated that MFG-E8 reduced neuronal cell apoptosis by enhancing activation of microglia via STAT3 signaling. Therefore, we suggested that MFG-E8 might provide a novel mechanism for ischemic stroke.  相似文献   

2.
PurposeCerebral ischemia induces a profound neuro-inflammatory response, but the underlying molecular mechanisms are poorly understood. Inflammasomes (NLRP1, NLRP3, NLRC4, AIM2) are intracellular multi-protein complexes which can induce sets of pro-inflammatory cyto- and chemokines, and thereby guide inflammation. We, here, assessed the functional role of NLRP3 in ischemia/reperfusion (I/R) injury in a mouse model of transient cerebral ischemia.MethodsIschemic stroke was induced in C57Bl/6 mice by 60 min transient middle cerebral artery occlusion (tMCAO) and 3, 7 or 23 h of reperfusion, a paradigm of I/R injury. The expression patterns of inflammasomes in the ischemic hemispheres were evaluated by semiquantitative real-time PCR and Western Blot analysis accompanied by protein localization using immunocytochemistry. Finally, animals were treated with the inflammasome inhibitors Sulforaphane, Genipin, MCC950 or vehicle, directly before or upon recanalization after tMCAO. Stroke outcome was assessed, including infarct size and functional deficits, local inflammatory response, neuronal survival as well as blood–brain barrier function on day 1 after tMCAO.ResultsAfter tMCAO the relative gene expression levels of NLRP3 increased 20-30x within 1 day in the ischemic hemisphere which translated into an increased expression of NLRP3 in neurons. Accordingly, the gene expression levels of the NLRP3-modulator, Bruton’s Tyrosine Kinase (BTK), and the NLRP3-inducible cytokine IL-1β significantly rose. Lesser or non-significant changes were seen for the other inflammasomes. Application of inflammasome inhibitors covering all inflammasomes or specifically NLRP3 significantly reduced infarct volumes when given before or after tMCAO and was accompanied by clear evidence for reduced activation of caspase 1. This stroke attenuating effect coincided with less immune cell infiltration in the ischemic hemisphere and preservation of the blood–brain barrier integrity.ConclusionsOur data show that induction of the NLRP3 inflammasome in neurons drives neuroinflammation in acute ischemic stroke. Early blockade of NLRP3 protects from I/R injury by mitigating inflammation and stabilizing the blood–brain barrier.  相似文献   

3.
Stroke is the second leading cause of death in the world and a major cause of long-term disability. Recent evidence has provided insight into a newly described inflammatory mechanism that contributes to neuronal and glial cell death, and impaired neurological outcome following ischemic stroke – a form of sterile inflammation involving innate immune complexes termed inflammasomes. It has been established that inflammasome activation following ischemic stroke contributes to neuronal cell death, but little is known about inflammasome function and cell death in activated microglial cells following cerebral ischemia. Microglia are considered the resident immune cells that function as the primary immune defense in the brain. This study has comprehensively investigated the expression and activation of NLRP1, NLRP3, NLRC4 and AIM2 inflammasomes in isolates of microglial cells subjected to simulated ischemic conditions and in the brain following ischemic stroke. Immunoblot analysis from culture media indicated microglial cells release inflammasome components and inflammasome activation-dependent pro-inflammatory cytokines following ischemic conditions. In addition, a functional role for NLRC4 inflammasomes was determined using siRNA knockdown of NLRC4 and pharmacological inhibitors of caspase-1 and -8 to target apoptotic and pyroptotic cell death in BV2 microglial cells under ischemic conditions. In summary, the present study provides evidence that the NLRC4 inflammasome complex mediates the inflammatory response, as well as apoptotic and pyroptotic cell death in microglial cells under in vitro and in vivo ischemic conditions.  相似文献   

4.
BackgroundCerebral ischemia/reperfusion (I/R) injury after ischemic stroke is usually accompanied with the activation of inflammasome which seriously impairs neurological function. MiR-139 has been reported to be associated with inflammatory regulation in multiple diseases. However, its effect and mechanism on inflammation regulation after cerebral I/R injury are still poorly understood.MethodsAn in vitro model of cerebral I/R injury was constructed with oxygen-glucose deprivation/reoxygenation (OGD/R) treatment. TargetScan bioinformatics analysis and dual luciferase reporter assay were utilized to confirm the targeted relationship between miR-139 and c-Jun. Cell pyroptosis was verified by flow cytometry and Caspase-1 Detection Kit. qRT-PCR assay was performed to detect the expression levels of miR-139, c-Jun, NLRP3 and ASC. Western blotting was applied to measure the protein levels of c-Jun and pyroptosis-related markers NLRP3, ASC, caspase-1, GSDMDNterm. The ELISA assay was applied to measure the release of IL-1β, IL-18 and LDH.ResultsMiR-139 was significantly downregulated whereas c-Jun was obviously upregulated after OGD/R treatment. TargetScan analysis predicted that c-Jun was a potential target of miR-139, which was verified by the dual-luciferase reporter assay. Also, overexpression of miR-139 repressed c-Jun expression. Furthermore, miR-139 inhibited OGD/R-induced cell pyroptosis and the upregulation of NLRP3, caspase-1, ASC, GSDMDNterm, and the release of IL-1β, IL-18 and LDH, while miR-139 inhibition exerted the opposite effects. However, overexpression of c-Jun aggravated OGD/R-induced nerve injury and partly abolished the neuroprotective effect of miR-139.ConclusionUpregulation of miR-139 exerted neuroprotection against OGD/R-induced nerve injury by negatively regulating c-Jun/NLRP3 inflammasome signaling. This study offered insights for providing potential therapeutic targets for treating cerebral I/R injury.  相似文献   

5.

Aim

This study was aimed at exploring the mechanism by which aurantiamide (Aur) targeted NLRP3 to suppress microglial cell polarization.

Methods

The 7-month-old APP/PS1 mice and C57BL/6 mice were applied to be the study objects, and Aur was administered intragastrically to APP/PS1 mice at 10 mg/kg and 20 mg/kg. The changes in the neurocognitive function of mice were measured by Morris Water Maze (MWM) test. In the in vitro experiments, the mouse BV2 cells were employed as the study objects, which were subject to treatment with 10 μM and 20 μM Aur and induced with LPS and IFN-γ in order to activate BV2 cells and induce their M1 polarization.

Results

Aur was found to suppress the M1 polarization of mouse microglia, reduce central neuroinflammation, and improve the cognitive function in mice. Meanwhile, Aur suppressed the activation and the expression of NLRP3 inflammasome. The results of experiments in vitro demonstrated that Aur inhibited the activation and M1 polarization of BV2 cells.

Conclusion

Aur targets NLRP3 and suppresses the activation of NLRP3 inflammasome.  相似文献   

6.
Cellular communication linking microglia activation and dopaminergic neuronal loss play an imperative role in the progression of Parkinson’s disease (PD); however, underlying molecular mechanisms are not precise and require further elucidation. NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome activation is extensively studied in context to microglial activation and progressive dopaminergic neuronal loss in PD. Several pathophysiological factors such as oxidative stress, mitochondrial dysfunction impaired mitophagy plays a crucial role in activating NLRP3 inflammasome complex. Hence, regulation of microglial activation through mitophagy could be a valuable strategy in controlling microglia mediated neurodegeneration. In this study we have developed a model of inflammasome activation by combining LPS with a mitochondrial complex-I inhibitor MPP+. The idea of using MPP+ after priming mouse microglia with LPS was to disrupt mitochondria and release reactive oxygen species, which act as Signal 2 in augmenting NLRP3 assembly, thereby releasing potent inflammatory mediators such as active interleukin-1 beta (IL-1β) and IL-18. LPS-MPP+ combination was seen to impaired the mitophagy by inhibiting the initial step of autophagosome formation as evidenced by protein expression and confocal imaging data. Treatment with Andrographolide promoted the parkin-dependent autophagic flux formation in microglia; resulting in the removal of defective mitochondria which in turn inhibit NLRP3 inflammasome activation. Additionally, the neuroprotective role of Andrographolide in inhibiting NLRP3 activation together with salvage ATP level via promoting parkin-dependent mitophagy was seen in the substantial nigra par compacta (SNpc) region of mice brain. Furthermore, Andrographolide rescued the dopaminergic neuron loss and improved the behavioural parameters in animal model. Collectively, our results reveal the role of mitophagy in the regulation of NLRP3 inflammasome by removing defective mitochondria. In addition, andrographolide was seen to abate NLRP3 inflammasome activation in microglia and rescue dopaminergic neuron loss.  相似文献   

7.
Microglial NLRP3 inflammasome activation is emerging as a key contributor to neuroinflammation during neurodegeneration. Pathogenic protein aggregates such as β-amyloid and α-synuclein trigger microglial NLRP3 activation, leading to caspase-1 activation and IL-1β secretion. Both caspase-1 and IL-1β contribute to disease progression in the mouse SOD1G93A model of amyotrophic lateral sclerosis (ALS), suggesting a role for microglial NLRP3. Prior studies, however, suggested SOD1G93A mice microglia do not express NLRP3, and SOD1G93A protein generated IL-1β in microglia independent to NLRP3. Here, we demonstrate using Nlrp3-GFP gene knock-in mice that microglia express NLRP3 in SOD1G93A mice. We show that both aggregated and soluble SOD1G93A activates inflammasome in primary mouse microglia leading caspase-1 and IL-1β cleavage, ASC speck formation, and the secretion of IL-1β in a dose- and time-dependent manner. Importantly, SOD1G93A was unable to induce IL-1β secretion from microglia deficient for Nlrp3, or pretreated with the specific NLRP3 inhibitor MCC950, confirming NLRP3 as the key inflammasome complex mediating SOD1-induced microglial IL-1β secretion. Microglial NLRP3 upregulation was also observed in the TDP-43Q331K ALS mouse model, and TDP-43 wild-type and mutant proteins could also activate microglial inflammasomes in a NLRP3-dependent manner. Mechanistically, we identified the generation of reactive oxygen species and ATP as key events required for SOD1G93A-mediated NLRP3 activation. Taken together, our data demonstrate that ALS microglia express NLRP3, and that pathological ALS proteins activate the microglial NLRP3 inflammasome. NLRP3 inhibition may therefore be a potential therapeutic approach to arrest microglial neuroinflammation and ALS disease progression.  相似文献   

8.
Increased microglial activation and neuroinflammation within autonomic brain regions such as the rostral ventrolateral medulla(RVLM) have been implicated in stress-induced hypertension(SIH).Prorenin,a member of the brain renin-angiotensin system(RAS),can directly activate microglia.The present study aimed to investigate the effects of prorenin on microglial activation in the RVLM of SIH rats.Rats were subjected to intermittent electric foot-shocks plus noise,this stress was administered for 2 h twice daily for 15 consecutive days,and mean arterial pressure(MAP) and renal sympathetic nerve activity(RSNA) were monitored.The results showed that MAP and RSNA were augmented,and this paralleled increased pro-inflammatory phenotype(M1) switching.Prorenin and its receptor(PRR) expression and the NLR family pyrin domain containing 3(NLRP3) activation were increased in RVLM of SIH rats.In addition,PLX5622(a microglial depletion agent),MCC950(a NLRP3 inhibitor),and/or PRO20(a(Pro)renin receptor antagonist) had antihypertensive effects in the rats.The NLRP3 expression in the RVLM was decreased in SIH rats treated with PLX5622.Mito-tracker staining showed translocation of NLRP3 from mitochondria to the cytoplasm in proreninstimulated microglia.Prorenin increased the ROS-triggering M1 phenotype-switching and NLRP3 activation,while MCC950 decreased the M1 polarization.In conclusion,upregulated prorenin in the RVLM may be involved in the pathogenesis of SIH,mediated by activation of the microglia-derived NLRP3 inflammasome.The link between prorenin and NLRP3 in microglia provides insights for the treatment of stress-related hypertension.  相似文献   

9.
ObjectiveIschemic stroke is one of the most common diseases with high mortality and disability. This study was intended to investigate the mechanism of resveratrol (RES) regulating microglia activation through the CD147/matrix metalloproteinase-9 (MMP-9) pathway on ischemic stroke.MethodsThe middle cerebral artery occlusion (MCAO) mouse model and oxygen and glucose deprivation (OGD) cell model were established. The behavioral defects, neuronal damage, cerebral infarction volume, and histopathological changes were assessed in MCAO mice. The activation of pro-inflammatory microglia CD86+/Iba-1+ and anti-inflammatory microglia CD206+/Iba-1+ was detected. The expressions of pro-inflammatory microglia markers (CD11b, CD16) and cytokines (TNF-α, IL-1β, and IL-6) were measured. The activation of the CD147/MMP-9 pathway was detected and its effect on microglia activation was assessed.ResultsAfter RES administration, the neuronal dysfunction, infarct volume, and morphological changes of neurons were improved in MCAO mice. Meanwhile, the motivation of pro-inflammatory microglia and the release of inflammatory factors were repressed. RES suppressed the stimulation of OGD/R microglia and the release of inflammatory factors. The expression of CD147 and MMP-9 in primary microglia was up-regulated. Inhibition of CD147 can reduce pro-inflammatory microglia activation by inhibiting MMP-9 expression. RES inhibited the CD147/MMP-9 axis in OGD/R microglia, and overexpression of CD147 partially reversed the inhibitory effect of RES on the activation and release of inflammatory factors in OGD/R microglia.ConclusionRES restrained the stimulation of pro-inflammatory microglia by down-regulating the CD147/MMP-9 axis, and thus protected against ischemic brain injury.  相似文献   

10.
目的 探讨微小RNA-146a(MicroRNA-146a,miR-146a)在缺血性脑卒中小胶质细胞/巨噬细胞极化中的作用及其潜在机制。方法 构建大脑中动脉闭塞(Middle cerebral artery occlusion,MCAO)模型,脑内注射阴性对照物(Negative control mimic,NC mimic)或miR-146a mimic; 构建BV2小鼠小胶质细胞(BV2 mouse microglia,BV2)缺血缺氧(Oxygen glucose deprivation,OGD)模型,将NC mimic,miR-146a mimic转染至OGD处理的BV2细胞中,进行改良神经功能缺损评分(Modified neurological severity scores,mNSS)评估神经功能; 2,3,5-氯化三苯基四氮唑(2,3,5-Triphenyltetrazolium chloride,TTC)染色检测脑梗死体积; 实时荧光定量聚合酶链反应(Real time quantification polymerase chain reaction,RT-qPCR)检测脑组织及细胞中的miR-146a、单核细胞趋化蛋白1(Monocyte chemotactic protein 1,MCP-1)、诱导型一氧化氮合酶(Inducible nitric oxide synthase,iNOS)、白细胞介素-10(Interleukin-10,IL-10)和精氨酸酶-1(Arginase-1,Arg1)mRNA水平; 免疫荧光染色检测小胶质细胞M1/M2极化标志物; 蛋白质免疫印迹(Western blot)检测细胞中Toll样受体4(Toll-like receptor 4,TLR4)/核转录因子κB(Nuclear transciption factor kappa B,NF-κB)通路蛋白的表达水平; 双荧光素酶报告基因检测miR-146a与肿瘤坏死因子受体相关因子6(TNF receptor associated factor 6,TRAF6)的靶向关系。结果 与假手术(Sham)组比较,MCAO组大鼠脑组织中miR-146a表达水平显著降低,mNSS评分和脑梗死体积显著升高,CD16+Iba-1+细胞和CD206+Iba-1+细胞数量均增加,M1标志物MCP-1,iNOS和M2标志物IL-10,Arginase-1 mRNA水平均显著升高,而过表达miR-146a后mNSS评分和脑梗死体积显著降低,M1极化标志物水平降低,M2极化标志物水平升高(P<0.05)。与对照(Control)组比较,OGD组BV2小胶质细胞中的miR-146a表达水平显著降低,集群分化因子16(Cluster of differentiation 16,CD16)+离子钙接头蛋白分子-1(Ionized calcium bindingad aptormolecule-1,Iba-1)+和集群分化因子206(Cluster of differentiation 206,CD206)+Iba-1+细胞数量均增加,MCP-1,iNOS,IL-10和Arginase-1 mRNA水平均显著升高,TLR4/NF-κB通路相关蛋白表达水平均显著升高; 与OGD+NC mimic组比较,OGD+miR-146a mimic组细胞中的miR-146a表达水平显著升高,M1极化标志物水平降低,M2极化标志物水平升高,TLR4/NF-κB通路相关蛋白表达水平均显著降低(P<0.05)。结论 miR-146a通过TLR4/NF-κB通路来促进缺血性脑卒中后M2极化,从而发挥神经保护作用。  相似文献   

11.
ObjectiveTo specify the effect of vagus nerve stimulation (VNS) on microglial polarization following ischemic-reperfusion and further investigate its underlying mechanism.Materials and methodsSprague-Dawley rats were randomly divided into the sham, ischemic reperfusion group (IR), IR+VNS groups. VNS intervention lasting for 1 hour was administered after 30 minutes of occlusion. We analyzed the expression of Arginase 1 (Arg1), the number of M2 microglial in the peri-infarction cortex and assessed the neurological scores at the 1, 3, 7 days after reperfusion to determine the research time point. Then, we assessed polarization status of microglial, the infarct volume, neurological scores, the cellular distribution of Toll-like Receptor 4 (TLR4), the TLR4-associated pathway protein and the p-NF-κB in microglial at 3 days after reperfusion.ResultsWe found that VNS could increase the specific marker of M2 Arg1 and upregulate the M2 microglial after reperfusion, and the increase of Arg1, M2 microglial and the neurological scores was largest at the 3 days after reperfusion. VNS treatment significantly reduced the number and percent of M1, improved the number and percent of M2 and upregulated the M2 to M1 ratio without changing the number of total microglial at the 3 days after reperfusion. Moreover, VNS reduced the infarct volume and neurological deficits. In addition, VNS significantly reduced the microglial-specific TLR4, inhibited the activated TLR4/MyD88/NF-κB pathway following ischemic-reperfusion, and ultimately suppressed the p-NF-κB in microglial.ConclusionOur study revealed that VNS can promote the M1-to-M2 phenotype conversion to alleviate inflammatory response and brain injury through inhibition of TLR4/MyD88/NF-κB pathway in microglia following ischemic-reperfusion.  相似文献   

12.
The inflammasome is a multimolecular complex that orchestrates the activation of proinflammatory caspases and interleukin (IL)‐1β, which is generally increased in the cerebrospinal fluids of patients with tuberculous meningitis. However, it has not been clarified whether mycobacteria can activate the inflammasome and induce IL‐1β maturation in microglia. In this study, we found that the priming of primary murine microglial cells with conditioned media from cultures of macrophages infected with Mycobacterium tuberculosis (Mtb) led to robust activation of caspase‐1 and IL‐1β secretion after Mtb stimulation. Potassium efflux and the lysosomal proteases cathepsin B and cathepsin L were required for the Mtb‐induced caspase‐1 activation and maturation of IL‐1β production in primed microglia. Mtb‐induced IL‐1β maturation was also found to depend on the nucleotide binding and oligomerization of domain‐like receptor family pyrin domain containing 3 protein (NLRP3) and apoptosis‐associated speck‐like protein containing a caspase recruitment domain (ASC), as well as the generation of mitochondrial reactive oxygen species (ROS). Notably, the priming of microglia with tumor necrosis factor‐α or oncostatin M resulted in caspase‐1 cleavage and IL‐1β secretion in response to Mtb. Moreover, dexamethasone, as an adjunctive therapy for patients of tuberculous meningitis, significantly reduced the Mtb‐induced maturation of IL‐1β through inhibition of mitochondrial ROS generation. Collectively, these data suggest that Mtb stimulation induces activation of the microglial NLRP3 inflammasome (composed of NLRP3, ASC, and cysteine protease caspase‐1) through microglia–leukocyte interactions as a priming signal, and that dexamethasone decreases inflammasome activation through inhibition of ROS of mitochondrial origin. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
14.
BackgroundInflammasome-mediated neuroinflammation plays an important role in the pathogenesis of early brain injury (EBI) following subarachnoid hemorrhage (SAH). The activation of the TGR5 receptor has been shown to be neuroprotective in a variety of neurological diseases. This study aimed to investigate the effects of the specific synthetic TGR5 agonist, INT-777, in attenuating NLRP3-ASC inflammasome activation and reducing neuroinflammation after SAH.MethodsOne hundred and eighty-four male Sprague Dawley rats were used. SAH was induced by the endovascular perforation. INT-777 was administered intranasally at 1 h after SAH induction. To elucidate the signaling pathway involved in the effect of INT-777 on inflammasome activation during EBI, TGR5 knockout CRISPR and PKA inhibitor H89 were administered intracerebroventricularly and intraperitoneally at 48 h and 1 h before SAH. The SAH grade, short- and long-term neurobehavioral assessments, brain water content, western blot, immunofluorescence staining, and Nissl staining were performed.ResultsThe expressions of endogenous TGR5, p-PKA, and NLRP3-ASC inflammasome were increased after SAH. INT-777 administration significantly decreased NLRP3-ASC inflammasome activation in microglia, reduced brain edema and neuroinflammation, leading to improved short-term neurobehavioral functions at 24 h after SAH. The administration of TGR5 CRISPR or PKA inhibitor (H89) abolished the anti-inflammation effects of INT-777, on NLRP3-ASC inflammasome, pro-inflammatory cytokines (IL-6, IL-1β, and TNF-a), and neutrophil infiltration at 24 h after SAH. Moreover, early administration of INT-777 attenuated neuronal degeneration in hippocampus on 28 d after SAH.ConclusionsINT-777 attenuated NLRP3-ASC inflammasome-dependent neuroinflammation in the EBI after SAH, partially via TGR5/cAMP/PKA signaling pathway. Early administration of INT-777 may serve as a potential therapeutic strategy for EBI management in the setting of SAH.  相似文献   

15.
16.
AimSpinal cord injury (SCI) is a serious disabling injury worldwide, and the excessive inflammatory response it causes plays an important role in secondary injury. Regulating the inflammatory response can be a potential therapeutic strategy for improving the prognosis of SCI. Zinc has been demonstrated to have a neuroprotective effect in experimental spinal cord injury models. In this study, we aimed to explore the neuroprotective effect of zinc through the suppression of the NLRP3 inflammasome.MethodAllen''s method was used to establish an SCI model in C57BL/6J mice. The Basso Mouse Scale (BMS), Nissl staining were employed to confirm the protective effect of zinc on neuronal survival and functional recovery in vivo. Western blotting (WB), immunofluorescence (IF), and enzyme‐linked immunosorbent assay (ELISA) were used to detect the expression levels of NLRP3 inflammasome and autophagy‐related proteins. Transmission electron microscopy (TEM) was used to confirm the occurrence of zinc‐induced autophagy. In vitro, lipopolysaccharide (LPS) and ATP polarized BV2 cells to a proinflammatory phenotype. 3‐Methyladenine (3‐MA) and bafilomycin A1 (BafA1) were chosen to explore the relationship between the NLRP3 inflammasome and autophagy. A coimmunoprecipitation assay was used to detect the ubiquitination of the NLRP3 protein.ResultsOur data showed that zinc significantly promoted motor function recovery after SCI. In vivo, zinc treatment inhibited the protein expression level of NLRP3 while increasing the level of autophagy. These effects were fully validated by the polarization of BV2 cells to a proinflammatory phenotype. The results showed that when 3‐MA and BafA1 were applied, the promotion of autophagy by zinc was blocked and that the inhibitory effect of zinc on NLRP3 was reversed. Furthermore, co‐IP confirmed that the promotion of autophagy by zinc also activated the protein expression of ubiquitin and suppressed high levels of NLRP3.ConclusionZinc provides neuroprotection by regulating NLRP3 inflammasome through autophagy and ubiquitination after SCI.  相似文献   

17.
Microglial polarization to the anti-inflammatory M2 phenotype is essential in resolving neuroinflammation, making it a promising therapeutic strategy for stroke intervention. The actin cytoskeleton is known to be important for the physiological functions of microglia, including migration and phagocytosis. Profilin 1 (PFN1), an actin-binding protein, is involved in the dynamic transformation and reorganization of actin. However, the role of PFN1 in microglial polarization and ischemia/reperfusion injury is unclear. The role of PFN1 on microglial polarization was examined in vitro in BV2 microglial cells subjected to oxygen-glucose deprivation/reoxygenation (OGDR) and in vivo in male mice after transient middle cerebral artery occlusion (MCAO). Knockdown of PFN1 inhibited M1 microglial polarization and promoted M2 microglia polarization 48 hr after OGDR stimulation in BV2 cells and 7 days after MCAO-induced injury in male mice. RhoA/ROCK pathway was involved in the regulation of PFN1 during microglial polarization. Knockdown of PFN1 also significantly attenuated brain infarcts and edema, improved cerebral blood flow and neurological deficits in MCAO-injured mice. Inhibition of PFN1 effectively protected the brain against ischemia/reperfusion injuries by promoting M2 microglial polarization in vitro and in vivo.  相似文献   

18.

Background

Activation of the NLRP3 inflammasome promotes microglia to secrete inflammatory cytokines and induce pyroptosis, leading to impaired phagocytic and clearance functions of microglia in Alzheimer's disease (AD). This study found that the autophagy-associated protein p62 interacts with NLRP3, which is the rate-limiting protein of the NLRP3 inflammasome. Thus, we aimed to prove that the degradation of NLRP3 occurs through the autophagy-lysosome pathway (ALP) and also demonstrate its effects on the function of microglia and pathological changes in AD.

Methods

The 5XFAD/NLRP3-KO mouse model was established to study the effect of NLRP3 reduction on AD. Behavioral experiments were conducted to assess the cognitive function of the mice. In addition, immunohistochemistry was used to evaluate the deposition of Aβ plaques and morphological changes in microglia. BV2 cells treated with lipopolysaccharide (LPS) followed by Aβ1-42 oligomers were used as in vitro AD inflammation models and transfected with lentivirus to regulate the expression of the target protein. The pro-inflammatory status and function of BV2 cells were detected by flow cytometry and immunofluorescence (IF). Co-immunoprecipitation, mass spectrometry, IF, Western blot (WB), quantitative real-time PCR, and RNA-seq analysis were used to elucidate the mechanisms of molecular regulation.

Results

Cognitive function was improved in the 5XFAD/NLRP3-KO mouse model by reducing the pro-inflammatory response of microglia and maintaining the phagocytic and clearance function of microglia to the deposited Aβ plaque. The pro-inflammatory function and pyroptosis of microglia were regulated by NLRP3 expression. Ubiquitinated NLRP3 can be recognized by p62 and degraded by ALP, slowing down the proinflammatory function and pyroptosis of microglia. The expression of autophagy pathway-related proteins such as LC3B/A, p62 was increased in the AD model in vitro.

Conclusions

P62 recognizes and binds to ubiquitin-modified NLRP3. It plays a vital role in regulating the inflammatory response by participating in ALP-associated NLRP3 protein degradation, which improves cognitive function in AD by reducing the pro-inflammatory status and pyroptosis of microglia, thus maintaining its phagocytic function.  相似文献   

19.
The aim of present study was to explore whether 2-cyano-3, 12-dioxooleana-1, 9-dien-28-oic acid (CDDO)-ethylamide (CDDO-EA) attenuates cerebral ischemic injury and its possible mechanisms using a middle cerebral artery occlusion (MCAO) model in C57BL/6 mice. Our results showed that intraperitoneal injection (i.p.) of CDDO-EA (2 and 4 mg/kg) augmented NFE2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression in ischemic cortex after MCAO. Moreover, CDDO-EA (2 mg/kg, i.p.) significantly enhanced Nrf2 nuclear accumulation, associated with increased cytosolic HO-1 expression, reduced neurological deficit and infarct volume as well as neural apoptosis, and shifted polarization of microglia/macrophages toward an antiinflammatory M2 phenotype in ischemic cortex after MCAO. Using an in vitro model, we confirmed that CDDO-EA (100 μg/mL) increased HO-1 expression and primed microglial polarization toward M2 phenotype under inflammatory stimulation in BV2 microglial cells. These findings suggest that a novel Nrf2 activator CDDO-EA confers neuroprotection against ischemic injury.  相似文献   

20.
Prior exposure to acute and chronic stressors potentiates the neuroinflammatory and microglial pro-inflammatory response to subsequent immune challenges suggesting that stressors sensitize or prime microglia. Stress-induced priming of the NLRP3 inflammasome has been implicated in this priming phenomenon, however the duration/persistence of these effects has not been investigated. In the present study, we examined whether exposure to a single acute stressor (inescapable tailshock) induced a protracted priming of the NLRP3 inflammasome as well as the neuroinflammatory, behavioral and microglial proinflammatory response to a subsequent immune challenge in hippocampus. In male Sprague-Dawley rats, acute stress potentiated the neuroinflammatory response (IL-1β, IL-6, and NFκBIα) to an immune challenge (lipopolysaccharide; LPS) administered 8 days after stressor exposure. Acute stress also potentiated the proinflammatory cytokine response (IL-1β, IL-6, TNF and NFκBIα) to LPS ex vivo. This stress-induced priming of microglia also was observed 28 days post-stress. Furthermore, challenge with LPS reduced juvenile social exploration, but not sucrose preference, in animals exposed to stress 8 days prior to immune challenge. Exposure to acute stress also increased basal mRNA levels of NLRP3 and potentiated LPS-induction of caspase-1 mRNA and protein activity 8 days after stress.The present findings suggest that acute stress produces a protracted vulnerability to the neuroinflammatory effects of subsequent immune challenges, thereby increasing risk for stress-related psychiatric disorders with an etiological inflammatory component.Further, these findings suggest the unique possibility that acute stress might induce innate immune memory in microglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号