首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.

Background and Purpose

The sphingosine 1-phosphate receptor subtype 1 (S1P1R) is modulated by phosphorylated FTY720 (pFTY720), which causes S1P1R internalization preventing lymphocyte migration thus limiting autoimmune response. Studies indicate that internalized S1P1Rs continue to signal, maintaining an inhibition of cAMP, thus raising question whether the effects of pFTY720 are due to transient initial agonism, functional antagonism and/or continued signalling. To further investigate this, the current study first determined if continued S1P1R activation is pathway specific.

Experimental Approach

Using human and rat astrocyte cultures, the effects of S1P1R activation on cAMP, pERK and Ca2+ signalling was investigated. In addition, to examine the role of S1P1R redistribution on these events, a novel biologic (MNP301) that prevented pFTY720-mediated S1P1R redistribution was engineered.

Key Results

The data showed that pFTY720 induced long-lasting S1P1R redistribution and continued cAMP signalling in rat astrocytes. In contrast, pFTY720 induced a transient increase of Ca2+ in astrocytes and subsequent antagonism of Ca2+ signalling. Notably, while leaving pFTY720-induced cAMP signalling intact, the novel MNP301 peptide attenuated S1P1R-mediated Ca2+ and pERK signalling in cultured rat astrocytes.

Conclusions and Implications

These findings suggested that pFTY720 causes continued cAMP signalling that is not dependent on S1P1R redistribution and induces functional antagonism of Ca2+ signalling after transient stimulation. To our knowledge, this is the first report demonstrating that pFTY720 causes continued signalling in one pathway (cAMP) versus functional antagonism of another pathway (Ca2+) and which also suggests that redistributed S1P1Rs may have differing signalling properties from those expressed at the surface.  相似文献   

2.
Although clinical studies suggested that blockade of the renin-angiotensin system may prevent diabetes, the mechanism is uncertain. As a follow-up to an earlier study, we investigated how des-aspartate-angiotensin-1 (DAA-1) and its metabolite, angiotensin IV (Ang-IV) improved glucose tolerance in diet-induced hyperglycaemic mice. Male C57BL/6J mice were fed a high-fat-high-sucrose (HFD) or normal (ND) diet for 52 weeks. HFD animals were orally administered either DAA-I (600 nmol/kg/day), Ang-IV (400 nmol/kg/day) or distilled water. Body weight, blood glucose and insulin were measured fortnightly. Inflammatory and insulin signalling transducers that are implicated in hyperglycaemia were analyzed in skeletal muscles at 52 weeks. HFD animals developed hyperglycemia, hyperinsulinemia and obesity. DAA-I and Ang-IV improved glucose tolerance but had no effect on hyperinsulinemia and obesity. Skeletal muscles of HFD animals showed increased level of ROS, gp91 of NADPH oxidase, pJNK and AT1R-JAK-2-IRS-1 complex. Both DAA-I and Ang-IV attenuated these increases. Insulin-induced activation of IR, IRS-1, IRS-1-PI3K coupling, phosphorylation of Akt, and GLUT4 translocation were attenuated in skeletal muscles of HFD animals. The attenuation was significantly ameliorated in DAA-I-treated HFD animals. In corresponding Ang-IV treated animals, insulin induced IRAP and PI3K interaction, activation of pAkt and GLUT4 translocation, but no corresponding activation of IR, IRS-1 and IRS-1-PI3 K coupling were observed. DAA-I and Ang-IV improved glucose tolerance, insulin signalling, and para-inflammatory processes linked to hyperglycaemia. DAA-I acts via the angiotensin AT1 receptor and activates the insulin pathway. Ang-IV acts via IRAP, which couples PI3K and activates the later part of the insulin pathway.  相似文献   

3.
Alpha-lipoic acid is known to increase insulin sensitivity in vivo and to stimulate glucose uptake into adipose and muscle cells in vitro. In this study, alpha-lipoic acid was demonstrated to stimulate the autophosphorylation of insulin receptor and glucose uptake into 3T3-L1 adipocytes by reducing the thiol reactivity of intracellular proteins. To elucidate mechanism of this effect, role of protein thiol groups and H(2)O(2) in insulin receptor autophosphorylation and glucose uptake was investigated in 3T3-L1 adipocytes following stimulation with alpha-lipoic acid. Alpha-lipoic acid or insulin treatment of adipocytes increased intracellular level of oxidants, decreased thiol reactivity of the insulin receptor beta-subunit, increased tyrosine phosphorylation of the insulin receptor, and enhanced glucose uptake. Alpha-lipoic acid or insulin-stimulated glucose uptake was inhibited (i) by alkylation of intracellular, but not extracellular, thiol groups downstream of insulin receptor activation, and (ii) by diphenylene iodonium at the level of the insulin receptor autophosphorylation. alpha-Lipoic acid also inhibited protein tyrosine phosphatase activity and decreased thiol reactivity of protein tyrosine phosphatase 1B. These findings indicate that oxidants produced by alpha-lipoic acid or insulin are involved in activation of insulin receptor and in inactivation of protein tyrosine phosphatases, which eventually result in elevated glucose uptake into 3T3-L1 adipocytes.  相似文献   

4.
To investigate the potential interactions between the angiotensin II (Ang II) and insulin signaling systems, regulation of IRS-1 phosphorylation and insulin-induced Akt activation by Ang II were examined in clone 9 (C9) hepatocytes. In these cells, Ang II specifically inhibited activation of insulin-induced Akt Thr308 and its immediate downstream substrate GSK-3α/β in a time-dependent fashion, with ∼70% reduction at 15 min. These inhibitory actions were associated with increased IRS-1 phosphorylation of Ser636/Ser639 that was prevented by selective blockade of EGFR tyrosine kinase activity with AG1478. Previous studies have shown that insulin-induced phosphorylation of IRS-1 on Ser636/Ser639 is mediated mainly by the PI3K/mTOR/S6K-1 sequence. Studies with specific inhibitors of PI3K (wortmannin) and mTOR (rapamycin) revealed that Ang II stimulates IRS-1 phosphorylation of Ser636/Ser639 via the PI3K/mTOR/S6K-1 pathway. Both inhibitors blocked the effect of Ang II on insulin-induced activation of Akt. Studies using the specific MEK inhibitor, PD98059, revealed that ERK1/2 activation also mediates Ang II-induced S6K-1 and IRS-1 phosphorylation, and the impairment of Akt Thr308 and GSK-3α/β phosphorylation. Further studies with selective inhibitors showed that PI3K activation was upstream of ERK, suggesting a new mechanism for Ang II-induced impairment of insulin signaling. These findings indicate that Ang II has a significant role in the development of insulin resistance by a mechanism that involves EGFR transactivation and the PI3K/ERK1/2/mTOR-S6K-1 pathway.  相似文献   

5.
Grb14 is a molecular adaptor that binds to the activated insulin receptor (IR) and negatively regulates insulin signaling. We have studied the dynamics of interaction of the IR with Grb14, in real time, in living HEK cells, using bioluminescence resonance energy transfer (BRET). Insulin rapidly and dose-dependently stimulated this interaction. Removing insulin from the incubation medium only resulted in a modest decrease in BRET signal, indicating that the interaction between the IR and Grb14 can remain long after insulin stimulus has disappeared. BRET saturation experiments indicated that insulin markedly increases the affinity between IR and Grb14, resulting in recruitment of the adaptor to the activated IR. In addition, using both BRET and co-immunoprecipitation experiments, we demonstrated that insulin induced the dimerization of Grb14, most likely as a result of simultaneous binding of two Grb14 molecules on the activated IR. We also investigated the relationships between IR, Grb14 and the protein tyrosine phosphatase PTP1B. We observed that insulin-induced BRET between the IR and PTP1B was markedly reduced by Grb14, suggesting that Grb14 regulated this interaction in living cells. Using site-specific antibodies against phosphorylated tyrosines of the insulin receptor, we showed that Grb14 protected the three tyrosines of the kinase loop from dephosphorylation by PTP1B, while favouring dephosphorylation of tyrosine 972. This resulted in decreased IRS-1 binding to the IR and decreased activation of the ERK pathway. Our work suggests that Grb14 may regulate signalling through the insulin receptor by controlling its tyrosine-dephosphorylation in a site-specific manner.  相似文献   

6.
Apoptotic signal transduction pathways in diabetes   总被引:14,自引:0,他引:14  
Failure of insulin producing pancreatic beta-cells is a common characteristic of type 1 (insulin-dependent) and type 2 (insulin non-dependent) diabetes mellitus. Accumulating evidence suggests that programmed cell death (apoptosis) is the main form of beta-cell death in these disorders. The beta-cell is particularly sensitive to apoptotic stimuli due to the inherent features of the specialized beta-cell phenotype. In type 1 diabetes anti-beta-cell autoimmune reactivity delivers the apoptotic signals in the form of inflammatory mediators or T-cell effectors. In type 2 diabetes, the metabolic derangement is associated with production of inflammatory mediators in insulin-sensitive tissues leading elevated levels of circulating inflammatory mediators such as IL-6 and TNF. Further glucose has been suggested to induce beta-cell apoptosis via the induction of beta-cell synthesis of IL-1 which via autocrine action may elicit signalling cascades analogous to those seen in beta-cell destruction in type 1 diabetes. Considering the apparent importance of IL-1-beta signalling in beta-cell failure in both type 1 and type 2 diabetes, we here review the modulatory effect exerted on IL-1signalling by cellular characteristics related to the specialized beta-cell phenotype. We conclude that beta-cell differentiation signals (Pdx-1), glucose metabolism, calcium handling as well as regulation of naturally occurring inhibitors of cytokine signalling contribute to sensitize the beta-cell to apoptotic stimuli. We hypothesize that immunological stimuli in type 1 diabetes and metabolic/inflammatory signals in type 2 diabetes converge on common signalling pathways leading to beta-cell failure and destruction in these two diseases.  相似文献   

7.
ATP is released at the neuromuscular junction to regulate development and proliferation. The sequential expression of P2X and P2Y receptors has been correlated to these effects in many species and cell lines. We have therefore investigated ATP mediated signalling in differentiated primary human skeletal muscle cells. ATP was capable to trigger Ca2+ transients in these cells via P2Y receptors which were not attributable to Ca2+ influx via P2X receptors. Instead, ATP propagated the formation of inositol phosphate (IP) with an EC50 of 21.3 microM. The Ca2+ transient provoked by ATP was abrogated roughly 75% by the phospholipase C (PLC) inhibitor, U73122. Interestingly, the ryanodine sensitive Ca2+ pool was not involved in ATP triggered Ca2+ release. On mRNA level and by a pharmacological approach we confirmed the presence of the P2Y1, P2Y2, P2Y4 and P2Y6 receptors. Substantially, ATP activated IP formation via a P2Y1 receptor. In addition, ATP elicited extracellular signal regulated kinase (ERK)1/2 phosphorylation in a time and concentration dependent manner, again mainly via P2Y1 receptors. The ATP mediated ERK1/2 phosphorylation was strictly dependent on phospholipase C and PI3 kinase activity. Importantly, ATP mediated ERK1/2 phosphorylation was Ca2+ independent. This observation was corroborated by the finding that conventional protein kinase C inhibitors did not suppress ATP triggered ERK1/2 phosphorylation. Taken together, these observations highlight the importance of ATP as a co-neurotransmitter at the neuromuscular junction via dual signalling, i.e. IP3 receptor mediated Ca2+ transients and Ca2+ insensitive phosphorylation of ERK1/2.  相似文献   

8.

Background and purpose:

We have previously shown that lipid mediators, produced by phospholipase D and C, are generated in OX1 orexin receptor signalling with high potency, and presumably mediate some of the physiological responses to orexin. In this study, we investigated whether the ubiquitous phospholipase A2 (PLA2) signalling system is also involved in orexin receptor signalling.

Experimental approach:

Recombinant Chinese hamster ovary-K1 cells, expressing human OX1 receptors, were used as a model system. Arachidonic acid (AA) release was measured from 3H-AA-labelled cells. Ca2+ signalling was assessed using single-cell imaging.

Key results:

Orexins strongly stimulated [3H]-AA release (maximally 4.4-fold). Orexin-A was somewhat more potent than orexin-B (pEC50= 8.90 and 8.38 respectively). The concentration–response curves appeared biphasic. The release was fully inhibited by the potent cPLA2 and iPLA2 inhibitor, methyl arachidonyl fluorophosphonate, whereas the iPLA2 inhibitors, R- and S-bromoenol lactone, caused only a partial inhibition. The response was also fully dependent on Ca2+ influx, and the inhibitor studies suggested involvement of the receptor-operated influx pathway. The receptor-operated pathway, on the other hand, was partially dependent on PLA2 activity. The extracellular signal-regulated kinase, but not protein kinase C, were involved in the PLA2 activation at low orexin concentrations.

Conclusions and implications:

Activation of OX1 orexin receptors induced a strong, high-potency AA release, possibly via multiple PLA2 species, and this response may be important for the receptor-operated Ca2+ influx. The response coincided with other high-potency lipid messenger responses, and may interact with these signals.  相似文献   

9.

BACKGROUND AND PURPOSE

Melanin-concentrating hormone receptor 1 (MCH1 receptor) antagonists are being considered as anti-obesity agents. The present study reports a new class of MCH1 receptor antagonists with an 8-methylquinoline scaffold. The molecular mechanism of MCH1 receptor blockade by these antagonists was examined.

EXPERIMENTAL APPROACH

The pharmacological properties of the 8-methylquinolines as exemplified by MQ1 were evaluated by use of multiple biophysical and cell-based functional assays.

KEY RESULTS

Multiple signalling pathways for Gαi and Gαq, and β-arrestin were inhibited by MQ1. Furthermore, MQ1 produced an insurmountable antagonism, causing a rightward shift of the curve for concentration-dependent binding of MCH along with a progressive reduction of the maximal response. The dissociation kinetics for MQ1 were determined from washout experiments as well as by affinity selection-MS. In short, MQ1 was shown to be a slowly dissociating reversible MCH1 receptor blocker with a low Koff value.

CONCLUSION AND IMPLICATIONS

This is the first time that a slowly dissociating negative allosteric modulator of the MCH1 receptor has been demonstrated to inhibit the numerous signalling pathways of this receptor. The characteristics of MQ1 are superior and distinct from previously reported MCH1 receptor antagonists, making members of this chemotype attractive as drug candidates.  相似文献   

10.

Aim:

Dipeptidyl deptidase-4 (DPP-4) inhibitors are a new class of anti-diabetic agents. The purpose of this study was to assess the acute and chronic effects of SHR117887, a novel DPP-4 inhibitor, on metabolic control and pancreatic β-cell function in normal or diabetic rodent models.

Methods:

In the acute experiments, ICR mice, diet-induced obese (DIO) rats and ob/ob mice were subjected to an oral glucose tolerance test (OGTT) following a single oral administration of SHR117887 (0.1, 0.3, 1 or 3 mg/kg). Blood samples were collected to measure glucose, insulin, DPP-4 activity and active GLP-1 level. In the chronic experiments, ob/ob mice was administered SHR117887 (3, 10 or 30 mg/kg) twice daily for 33 d to assess the effects on metabolic control and pancreatic β-cell function. Vildagliptin (LAF237) was used as a positive control in all the experiments.

Results:

Acute oral administration of SHR117887 dose-dependently decreased the serum DPP-4 activity and improved glucose tolerance in ICR mice, DIO rats and ob/ob mice. This was accompanied by significant increases in the serum active GLP-1 and insulin levels. Chronic administration of SHR117887 significantly decreased fasting blood glucose level and improved the lipid profiles in ob/ob mice by reducing the serum triglyceride and free fatty acid levels, and its efficacy was comparable with that of vildagliptin at the same molarity. Moreover, chronic administration of SHR117887 increased the insulin staining of islet cells, which is suggestive of improved β-cell function.

Conclusion:

SHR117887 is a potent DPP-4 inhibitor that improves metabolic control and β-cell function in diabetic rodent models, suggesting that it could be a new therapeutic agent for the treatment of type 2 diabetes.  相似文献   

11.
AS-3201 [(3R)-2'-(4-bromo-2-fluorobenzyl)spiro[pyrrolidine-3,4'(1'H)-pyrrolo[1,2-a]pyrazine]-1',2,3',5(2'H)-tetrone] is a structurally novel and stereospecifically potent aldose reductase (AKR1B; EC 1.1.1.21) inhibitor, which contains a succinimide ring that undergoes ring-opening at physiological pH levels. To delineate intermolecular interactions governing its favorable pharmacokinetic profile, the interaction of AS-3201 (R-isomer) with plasma proteins, especially human serum albumin (HSA), was examined in comparison with that of the optical antipode (S-isomer). Fluorescence, kinetic, and high-performance frontal analyses showed that the R-isomer is more strongly bound than the S-isomer to sites I and II on HSA, and the R-isomer is particularly protected from hydrolysis, suggesting that the stable HSA-R-isomer complex contributes to its prolonged activity. The thermodynamic parameters for the specific binding indicated that in addition to hydrophobic interactions, hydrogen bonds contribute significantly to the R-isomer complex formation. (13)C NMR observations of the succinimide ring (5-(13)C enriched), which are sensitive to its ionization state, suggested the presence of a hydrogen bond between the R-isomer and HSA, and (19)F NMR of the pendent benzyl ring (2-(19)F) evaluated the equilibrium exchange dynamics between the specific sites. Furthermore, fatty acid binding or glycation (both are site II-oriented perturbations) inhibited the binding to one of the specific sites and reduced the stereospecificity of HSA toward the isomers, although the clinical influence of these perturbations on the R-isomer binding ratio seemed to be minor. Thus, the difference in the interaction mode at site II might be a major cause of the stereospecificity; this is discussed on the basis of putative binding modes. The present results, together with preliminary absorption and distribution profiles, provide valuable information on the stereospecific pharmacokinetic and pharmacodynamic properties of the R-isomer relevant for the therapeutic treatment of diabetic complications.  相似文献   

12.
Opioid receptors have been shown to be located in and regulated by lipid rafts/caveolae in caveolin-rich non-neuronal cells. Here, we found that caveolin-1 level was very low in rat brain and undetectable in NG108-15 cells, which endogenously express delta opioid receptors (DOR). Rat caudate putamen (CPu) membranes, NG108-15 cells and CHO cells stably transfected with FLAG-mouse-DOR (CHO-FLAG-mDOR) were homogenized, sonicated in a detergent-free 0.5M Na(2)CO(3) buffer and fractionated through discontinuous or continuous sucrose density gradients. About 70% of opioid receptors in CPu and DOR in both cell lines were present in low-density (5-20% sucrose) membrane domains enriched in cholesterol and ganglioside M1 (GM1), characteristics of lipid rafts in plasma membranes. In both cells, stimulation with permeable or non-permeable full agonists, but not with partial or inverse agonists, for 30min shifted approximately 25% of DORs out of rafts, by a naloxone-reversible and pertussis toxin-insensitive mechanism, which may undergo internalization. Methyl-beta-cyclodextrin (MCD) treatment greatly reduced cholesterol and shifted DOR to higher density fractions and decreased DPDPE affinities. MCD treatment attenuated DPDPE-induced [(35)S]GTPgammaS binding in CPu and NG108-15 cells, but enhanced it in CHO-FLAG-mDOR cells. In CHO-FLAG-mDOR cells, G(alphai) co-immunoprecipitated with caveolin-1, which was shown to inhibit G(alphai/o), and MCD treatment dramatically reduced the association leading to disinhibition. Thus, although localization in rafts and agonist-induced shift of DOR are independent of caveolin-1, lipid rafts sustain DOR-mediated signaling in caveolin-deficient neuronal cells, but appear to inhibit it in caveolin-enriched non-neuronal cells. Cholesterol-dependent association of caveolin-1 with and the resulting inhibition of G proteins may be a contributing factor.  相似文献   

13.
Endogenous cannabinoid signalling is widespread throughout the body, and considerable evidence supports its modulatory role in many fundamental physiological processes. The daily and seasonal cycles of the relationship of the earth and sun profoundly affect the terrestrial environment. Terrestrial species have adapted to these cycles in many ways, most well studied are circadian rhythms and hibernation. The purpose of this review was to examine literature support for three hypotheses: (i) endocannabinoid signalling exhibits brain region-specific circadian rhythms; (ii) endocannabinoid signalling modulates the rhythm of circadian processes in mammals; and (iii) changes in endocannabinoid signalling contribute to the state of hibernation. The results of two novel studies are presented. First, we report the results of a study of healthy humans demonstrating that plasma concentrations of the endocannabinoid, N-arachidonylethanolamine (anandamide), exhibit a circadian rhythm. Concentrations of anandamide are threefold higher at wakening than immediately before sleep, a relationship that is dysregulated by sleep deprivation. Second, we investigated differences in endocannabinoids and congeners in plasma from Marmota monax obtained in the summer and during the torpor state of hibernation. We report that 2-arachidonoylglycerol is below detection in M. monax plasma and that concentrations of anandamide are not different. However, plasma concentrations of the anorexigenic lipid oleoylethanolamide were significantly lower in hibernation, while the concentrations of palmitoylethanolamide and 2-oleoylglycerol were significantly greater in hibernation. We conclude that available data support a bidirectional relationship between endocannabinoid signalling and circadian processes, and investigation of the contribution of endocannabinoid signalling to the dramatic physiological changes that occur during hibernation is warranted.This article is part of a themed issue on Cannabinoids. To view the editorial for this themed issue visit http://dx.doi.org/10.1111/j.1476-5381.2010.00831.x  相似文献   

14.
Increasing evidence regarding free radical generating agents and the inflammatory process suggest that accumulation of reactive oxygen species (ROS) could involve hepatotoxicity. Hesperidin, a naturally occurring flavonoid presents in fruits and vegetables, has been reported to exert a wide range of pharmacological effects that include antioxidant, anti-inflammatory, antihypercholesterolemic, and anticarcinogenic actions. However, the cytoprotection and mechanism of hesperidin to neutralize oxidative stress in human hepatic L02 cells remain unclear. In this work, we assessed the capability of hesperidin to prevent tert-butyl hydroperoxide (t-BuOOH)-induced cell damage by augmenting cellular antioxidant defense. Hesperidin significantly protected hepatocytes against t-BuOOH-induced cell cytotoxicity, such as mitochondrial membrane potential (MMP) deplete and lactate dehydrogenase (LDH) release. Hesperidin also remarkably prevented indicators of oxidative stress, such as the ROS and lipid peroxidation level in a dose-dependent manner. Western blot showed that hesperidin facilitated ERK/MAPK phosphorylation which appeared to be responsible for nuclear translocation of Nrf2, thereby inducing cytoprotective heme oxygenase-1 (HO-1) expression. Based on the results described above, it suggested that hesperidin has potential as a therapeutic agent in the treatment of oxidative stress-related hepatocytes injury and liver dysfunctions.  相似文献   

15.
Metformin is a commonly used anti-diabetic but whether its mechanism involves action on the insulin receptor or on downstream events is still controversial. With a time course that was slow compared with insulin action, metformin increased tyrosine phosphorylation of the regulatory domain of the insulin receptor (specifically, tyrosine residues 1150 and 1151). In a direct action, therapeutic levels of metformin stimulated the tyrosine kinase activity of the soluble intracellular portion of the beta subunit of the human insulin receptor toward a substrate derived from the insulin receptor regulatory domain. However, metformin did not alter the order of substrate phosphorylation by the insulin receptor kinase. Using a Xenopus oocyte preparation, we simultaneously recorded tyrosine kinase and phosphatase activities that regulate the insulin receptor by measuring the tyrosine phosphorylation and dephosphorylation of peptides derived from the regulatory domain of the human insulin receptor. In an indirect stimulation of the insulin receptor, metformin inhibited endogenous tyrosine phosphatases and purified human protein tyrosine phosphatase 1B that dephosphorylate and inhibit the insulin receptor kinase. Thus, there was evidence that metformin acted directly upon the insulin receptor and indirectly through inhibition of tyrosine phosphatases.  相似文献   

16.

BACKGROUND AND PURPOSE

N-acyl ethanolamines (NAEs) and 2-arachidonoyl glycerol (2-AG) are endogenous cannabinoids and along with related lipids are synthesized on demand from membrane phospholipids. Here, we have studied the compartmentalization of NAEs and 2-AG into lipid raft fractions isolated from the caveolin-1-lacking microglial cell line BV-2, following vehicle or cannabidiol (CBD) treatment. Results were compared with those from the caveolin-1-positive F-11 cell line.

EXPERIMENTAL APPROACH

BV-2 cells were incubated with CBD or vehicle. Cells were fractionated using a detergent-free continuous OptiPrep density gradient. Lipids in fractions were quantified using HPLC/MS/MS. Proteins were measured using Western blot.

KEY RESULTS

BV-2 cells were devoid of caveolin-1. Lipid rafts were isolated from BV-2 cells as confirmed by co-localization with flotillin-1 and sphingomyelin. Small amounts of cannabinoid CB1 receptors were found in lipid raft fractions. After incubation with CBD, levels and distribution in lipid rafts of 2-AG, N-arachidonoyl ethanolamine (AEA), and N-oleoyl ethanolamine (OEA) were not changed. Conversely, the levels of the saturated N-stearoyl ethanolamine (SEA) and N-palmitoyl ethanolamine (PEA) were elevated in lipid raft fractions. In whole cells with growth medium, CBD treatment increased AEA and OEA time-dependently, while levels of 2-AG, PEA and SEA did not change.

CONCLUSIONS AND IMPLICATIONS

Whereas levels of 2-AG were not affected by CBD treatment, the distribution and levels of NAEs showed significant changes. Among the NAEs, the degree of acyl chain saturation predicted the compartmentalization after CBD treatment suggesting a shift in cell signalling activity.

LINKED ARTICLES

This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7  相似文献   

17.
Mastoparan, a polypeptide known to activate heterotrimeric GTP-binding proteins, enhances the transport of Ca2+ and K+ across membranes. In the present study we investigated the influence of mastoparan on transepithelial resistance (TER) and on short circuit current (SCC) of the intestinal cell line T84. Mastoparan decreased the TER by 80% of baseline and induced a SCC of 8.34+/-1.38 microAcm(-2). The changes in paracellular conductance were estimated using the nystatin technique and showed that mastoparan increased the paracellular conductance 4-fold. Basolateral Cl(-)-free medium, or blockade of the basolateral Cl(-) uptake via the Na+/K+/2Cl(-) co-transporter with bumetanide, reduced SCC of T84 cells, but did not abolish the effect of mastoparan on the TER. Luminal addition of the Cl(-)-channel blocker DIDS or NPPB had no effect on the increase in SCC. In contrast, blocking the basolateral K(+)-channels by 2mM Ba2+ inhibited both the resistance decrease and elevation of the SCC, and further inhibited the mastoparan-induced increase in intracellular free Ca2. This indicates that mastoparan acts primarily via activating K+ channels with a secondary Cl(-) secretion and Ca2+ influx. Reduction of intracellular free Ca2+ did not alter the effect of mastoparan on TER. Stimulation with mastoparan led to a biphasic rearrangement of actin filaments and increased globular actin content in T84 cells. Depolymerization of actin filaments also correlated with inactivation of Rho-proteins, which are known regulators of the cytoskeleton. Mastoparan induced a 2-fold increase in GDI-complexed Rho.We conclude that mastoparan-induced changes in paracellular permeability are mediated via enhanced basolateral K+ conductance and Rho-protein inactivation. A secondary increase in intracellular Ca2+ or direct interaction of small GTPases with the cytoskeleton are likely mediators of the remodeling of the cytoskeleton with subsequent changes in paracellular permeability.  相似文献   

18.
We have explored the impact of nitric oxide (NO) exposure on oxidation damage of lipids, and proteins, and the contribution of this type of damage to the activation of the apoptotic program in insulin secreting RINm5F cells. Exposure of cells to NO donors and to interleukin-1 beta (IL-1beta) led to generation of lipooxidation products such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). Addition of superoxide dismutase (SOD) and catalase (Cat) to cells decreased by 50% MDA and 4-HNE production induced by IL-1beta. Over-expression of Mn-SOD in cells conferred a remarkable decrease (75%) in IL-1beta-induced lipid peroxidation. These data suggest that peroxynitrite (ONOO(-)) mediates peroxidative damage to lipids in this cell system. Inhibitors of advanced lipooxidation end products (ALEs) formation such as aminoguanidine (AG) and pyridoxamine (PM) prevented partially apoptotic events triggered by NO such as DNA fragmentation, caspase-3 activation and cytochrome c release from mitochondria. These findings indicate that ALEs are involved in NO-induced apoptosis. In fact, NO-induced carbonylation of PARP protein preceded its apoptotic degradation and inhibitors of ALEs formation prevented both events. We thus propose that carbonylation of proteins is instrumental in linking NO-dependent lipid oxidation and apoptosis in this cell system.  相似文献   

19.
Insulin exerts a vasodilator effect by stimulating endothelial nitric oxide (NO) production. Studies in cultured cells suggest that insulin might activate endothelial nitric oxide synthase (eNOS) by an atypical, calcium-independent mechanism. This study investigates the mechanism of insulin-stimulated endothelial NO production in intact aortic wall. Real time fluorescence imaging with 4,5-diaminofluorescin diacetate (DAF-2 DA) or 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA) and FURA 2-AM was used to simultaneously visualise NO and intracellular calcium concentrations at multiple locations in the endothelium and vascular smooth muscle of isolated rat and mouse aorta after exposure to insulin. Inhibitors of intracellular insulin signalling were used to determine the pathway for insulin-stimulated NO production. Unlike acetylcholine, which stimulated endothelial NO production with a typical increase in free intracellular calcium, insulin (10(-8) to 10(-6)M) stimulated endothelial NO production without elevating intracellular calcium levels. Insulin-stimulated NO production was concentration dependent and detected within 30s of application. Peak increases in NO occurred between 60 and 120 s and declined slowly thereafter. Separate measurements of NO production by fluorescence of 2,3-diaminonaphthalene (DAN) noted that selective inhibitors of phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB) inhibited insulin-stimulated NO production, whereas these inhibitors alone did not alter NO production or acetylcholine-stimulated NO production. Insulin-stimulated NO production by endothelium is an acute calcium-independent effect mediated via the PI3K-PKB signalling pathway.  相似文献   

20.
Topiramate (Topamax), primarily prescribed against epilepsy, was reported to reduce body weight and to ameliorate glycemic control in obese patients with diabetes. In rodent models of obesity and diabetes, topiramate treatment counteracts hyperglycemia and increases insulin levels upon glucose tolerance test. These observations suggest that topiramate might exert direct action on insulin secreting cells, in particular regarding obesity associated β-cell dysfunction. In this study, INS-1E β-cells were exposed for 3 days to the fatty acid oleate (0.4 mM) and concomitantly treated with therapeutic concentrations of topiramate before measurements of insulin secretion and metabolic parameters. In healthy cells, topiramate had no acute or chronic effects on insulin release. Exposure of INS-1E cells to oleate for 3 days increased insulin release at basal 2.5 mM glucose and blunted the response to stimulatory glucose concentration (15 mM). Such lipotoxic effects were associated with impaired mitochondrial function, as evidenced by partial loss of resting mitochondrial membrane potential and reduced hyperpolarization in response to glucose. Oil-red-O staining and triglyceride measurements revealed lipid accumulation in oleate treated cells. Topiramate treatment counteracted oleate-induced lipid load and partially protected against mitochondrial membrane dysfunction. In particular, topiramate restored glucose stimulated insulin secretion, essentially by maintaining low insulin release at basal glucose. Topiramate increased expression of the nutrient sensor PPARα and of the mitochondrial fatty acid carrier CPT-1, correlating with enhancement of β-oxidation rate. The data demonstrate that a drug originally used as mood stabilizer exerts a direct action on β-cells, protecting against lipid-induced dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号