首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Choline and glycine are inter-related through their roles in methyl metabolism. Choline is metabolized to betaine, which donates a methyl group to homocysteine to form methionine, also generating dimethylglycine, which is further metabolized to glycine. Choline is transported across the placenta and is higher in fetal than maternal plasma. Placental glycine transfer, however, is limited and poor glycine status has been suggested in preterm infants. Insufficient glycine for glutathione (GSH) synthesis results in increased metabolism of gamma-glutamyl cysteine to 5-oxoproline. We measured plasma 5-oxoproline as a metabolic indicator to address whether choline, via dimethylglycine, contributes physiologically relevant amounts of glycine in pregnancy. Blood was collected from healthy term pregnant women and their newborn infants at delivery (n = 46) and nonpregnant healthy women (n = 19) as a reference group. Plasma choline, betaine, dimethylglycine, homocysteine, methionine, and 5-oxoproline were quantified by HPLC-tandem MS. Plasma choline was 45% higher, but betaine was 63% lower and dimethylglycine was 28% lower in pregnant than nonpregnant women (P < 0.01). Higher white blood cell choline dehydrogenase messenger RNA levels in a random subset of pregnant (n = 8) than nonpregnant women (n = 7) (P < 0.01) suggest increased betaine and dimethylglycine turnover rather than decreased synthesis. Plasma choline, betaine, and dimethylglycine were higher (P < 0.001) in fetal plasma (36.4 +/- 13, 29.4 +/- 1.0, and 2.44 +/- 0.12 micromol/L, respectively) than maternal plasma (15.3 +/- 0.42, 14.1 +/- 0.6 and 1.81 +/- 0.12 micromol/L, respectively). Concentrations of 5-oxoproline and dimethylglycine were inversely (P < 0.05) correlated in maternal (Spearman rho = -0.35) and fetal plasma (Spearman rho = -0.32), suggesting that choline, via dimethylglycine, contributes glycine for GSH synthesis in human development.  相似文献   

2.
BACKGROUND: Hepatic steatosis and fat malabsorption are common in cystic fibrosis (CF). Choline deficiency results in decreased phosphatidylcholine synthesis through the cytidine diphosphocholine-choline pathway and hepatic steatosis and in increased synthesis of phosphatidylcholine from phosphatidylethanolamine using methyl groups from S-adenosylmethionine. The intestinal absorption of phosphatidylcholine in CF is unknown. OBJECTIVES: The objective was to determine whether excretion of choline phosphoglyceride (phosphatidylcholine and lysophosphatidylcholine) is increased in CF and whether loss of fecal choline phosphoglyceride is associated with altered plasma methionine cycle metabolites. DESIGN: A cross-sectional study involved 53 children with CF and 18 control children without CF. Blood was collected from all participants. A subset of 18 children with CF and 8 control children provided 72-h fecal samples and 5-d food records. RESULTS: Fat absorption was significantly lower (x+/- SEM: 86.2 +/- 1.6% and 94.1 +/- 1.2%) and excretion of fecal fat (12.9 +/- 1.7 and 3.9 +/- 0.7 g/d), phospholipid (median: 130 and 47.7 mg/d), phosphatidylcholine (19.6 and 2.1 mg/d), and lysophosphatidylcholine (60.3 and 16.9 mg/d) was significantly higher in children with CF than in control children, respectively (P < 0.05). Choline phosphoglyceride excretion was positively correlated with plasma homocysteine and S-adenosylhomocysteine and inversely related with plasma methionine (P < 0.05). CONCLUSIONS: Choline phosphoglyceride excretion is increased in children with CF and is associated with decreased plasma methionine and increased homocysteine and S-adenosylhomocysteine. These findings suggest choline depletion and an increased choline synthesis by S-adenosylmethionine-dependent methylation in CF, as well as a metabolic link between phosphatidylcholine metabolism and the methionine-homocysteine cycle in humans.  相似文献   

3.
BACKGROUND: Little is known about the interactions between choline and folate and homocysteine metabolism during pregnancy despite the facts that pregnancy places considerable stress on maternal folate and choline stores and that choline is a critical nutrient for the fetus. Choline, via betaine, is an important folate-independent source of methyl groups for remethylating homocysteine in liver. OBJECTIVES: Our aims were to examine the intermediates of choline oxidation in maternal and umbilical cord plasma and to determine the relations between this pathway and folate-dependent homocysteine remethylation. DESIGN: Blood samples were taken from 201 pregnant women and, at delivery, from the umbilical cord veins of their healthy, full-term infants. The blood samples were analyzed for plasma free choline, betaine, dimethylglycine, folate, vitamin B-12, total homocysteine (tHcy), and creatinine concentrations. RESULTS: Choline concentrations in umbilical cord plasma were approximately 3 times those in maternal plasma (geometric x: 36.6 and 12.3 micromol/L, respectively; P < 0.0001). Betaine and dimethylglycine concentrations were also significantly higher in umbilical cord than in maternal plasma. Choline was positively associated with tHcy (r = 0.34, P < 0.0001), betaine (r = 0.58, P < 0.0001), and dimethylglycine (r = 0.30, P < 0.0001) in maternal blood. Much weaker relations were seen in the fetal circulation. In a multiple regression model, choline was a positive predictor of maternal tHcy, whereas vitamin B-12 and betaine were negative predictors. CONCLUSIONS: The positive association between maternal choline and tHcy during pregnancy suggests that the high fetal demand for choline stimulates de novo synthesis of choline in maternal liver, with a resultant increase in tHcy concentrations. If this is confirmed, it may be appropriate to provide choline supplements during pregnancy to prevent elevated tHcy concentrations.  相似文献   

4.
BACKGROUND: Betaine comes from the diet and from choline, and it is associated with vascular disease in some patient groups. Betaine supplementation lowers plasma total homocysteine. OBJECTIVE: We compared the acute effects of dietary and supplementary betaine and choline on plasma betaine and homocysteine under standard conditions and after a methionine load. DESIGN: In a randomized crossover study, 8 healthy men (19-40 y) consumed a betaine supplement (approximately 500 mg), high-betaine meal (approximately 517 mg), choline supplement (500 mg), high-choline meal (approximately 564 mg), high-betaine and -choline meal (approximately 517 mg betaine, approximately 622 mg choline), or a low-betaine and -choline control meal under standard conditions or postmethionine load. Plasma betaine, dimethylglycine, and homocysteine concentrations were measured hourly for 8 h and at 24 h after treatment. RESULTS: Dietary and supplementary betaine raised plasma betaine concentrations relative to control (P < 0.001) under standard conditions. This was not associated with raised plasma dimethylglycine concentration, and no significant betaine appeared in the urine. A small increase in dimethylglycine excretion was observed when either betaine or choline was supplied (P = 0.011 and < 0.001). Small decreases in plasma homocysteine 6 h after ingestion under standard conditions (P < or = 0.05) were detected after a high-betaine meal and after a high-betaine and high-choline meal. Dietary betaine and choline and betaine supplementation attenuated the increase in plasma homocysteine at both 4 and 6 h after a methionine load (P < or = 0.001). CONCLUSIONS: Dietary betaine and supplementary betaine acutely increase plasma betaine, and they and choline attenuate the postmethionine load rise in homocysteine concentrations.  相似文献   

5.
BACKGROUND: Liver triacylglycerol accumulation and oxidative stress are common in cystic fibrosis (CF) and also occur in choline deficiency. Previously, we showed an association between elevated plasma homocysteine, reduced ratios of S-adenosylmethionine to S-adenosylhomocysteine (SAM:SAH) and of phosphatidylcholine to phosphatidylethanolamine, and phospholipid malabsorption in children with CF. OBJECTIVE: The objective was to address a possible relation between altered methionine-homocysteine metabolism and choline metabolism in children with CF. DESIGN: Children with CF were assigned without bias to supplementation with 2 g lecithin/d (n = 13), 2 g choline/d (n = 12), or 3 g betaine/d (n = 10) for 14 d. Plasma concentrations of methionine, adenosine, cysteine, cysteinyl-glycine, glutathione, glutathione disulfide (GSSG), and fatty acids; SAM:SAH; and red blood cell phospholipids were measured within each group of children with CF before and after supplementation. Plasma from healthy children without CF (n = 15) was analyzed to obtain reference data. RESULTS: Children with CF had higher plasma homocysteine, SAH, and adenosine and lower methionine, SAM:SAH, and glutathione:GSSG than did children without CF. Supplementation with lecithin, choline, or betaine resulted in a significant increase in plasma methionine, SAM, SAM:SAH, and glutathione:GSSG and a decrease in SAH (n = 35). Supplementation with choline or betaine was associated with a significant decrease in plasma SAH and an increase in SAM:SAH, methionine, and glutathione:GSSG. Supplementation with lecithin or choline also increased plasma methionine and SAM. CONCLUSION: We showed that dietary supplementation with choline-related compounds improves the low SAM:SAH and glutathione redox balance in children with CF.  相似文献   

6.
BACKGROUND: Remethylation of homocysteine to methionine can occur through either the folate-dependent methionine synthase pathway or the betaine-dependent betaine-homocysteine methyltransferase pathway. The relevance of betaine as a determinant of fasting total homocysteine (tHcy) is not known, nor is it known how the 2 remethylation pathways are interrelated. OBJECTIVE: The objectives of the study were to examine the relation between plasma betaine concentration and fasting plasma tHcy concentrations and to assess the effect of folic acid supplementation on betaine concentrations in healthy subjects. DESIGN: A double-blind randomized trial of 6 incremental daily doses of folic acid (50-800 microg/d) or placebo was carried out in 308 Dutch men and postmenopausal women (aged 50-75 y). Fasted blood concentrations of tHcy, betaine, choline, dimethylglycine, and folate were measured at baseline and after 12 wk of vitamin supplementation. RESULTS: Concentrations of tHcy were inversely related to the betaine concentration (r = -0.17, P < 0.01), and the association was independent of age, sex, and serum concentrations of folate, creatinine, and cobalamin. Folic acid supplementation increased betaine concentration in a dose-dependent manner (P for trend = 0.018); the maximum increase (15%) was obtained at daily doses of 400-800 microg/d. CONCLUSIONS: The plasma betaine concentration is a significant determinant of fasting tHcy concentrations in healthy humans. Folic acid supplementation increases the betaine concentration, which indicates that the 2 remethylation pathways are interrelated.  相似文献   

7.
There is strong evidence that whole-grain foods protect against heart disease. Although underlying mechanisms and components are unclear, betaine, found at high levels in wheat aleurone, may play a role. We evaluated the effects of a diet high in wheat aleurone on plasma betaine and related measures. In a parallel, single-blinded intervention study, 79 healthy participants (aged 45-65 y, BMI ≥ 25 kg/m(2)) incorporated either aleurone-rich cereal products (27 g/d aleurone) or control products balanced for fiber and macronutrients into their habitual diets for 4 wk. Fasting blood samples were taken at baseline and postintervention (4 wk) from participants. Compared with the control, the aleurone products provided an additional 279 mg/d betaine and resulted in higher plasma betaine (P < 0.001; intervention effect size: 5.2 μmol/L) and lower plasma total homocysteine (tHcy) (P = 0.010; -0.7 μmol/L). Plasma dimethylglycine and methionine, which are products of betaine-mediated homocysteine remethylation, were also higher (P < 0.001; P = 0.027) relative to control. There were no significant effects on plasma choline or B vitamins (folate, riboflavin, and vitamin B-6). However, LDL cholesterol was lower than in the control group (P = 0.037). We conclude that incorporating aleurone-rich products into the habitual diet for 4 wk significantly increases plasma betaine concentrations and lowers tHcy, which is attributable to enhanced betaine-homocysteine methyltransferase-mediated remethylation of homocysteine. Although this supports a role for betaine in the protective effects of whole grains, concomitant decreases in LDL suggest more than one component or mechanism may be responsible.  相似文献   

8.
Choline is involved in the synthesis of phospholipids, including blood lipids, and is the immediate precursor of betaine, which serves as a methyl group donor in a reaction converting homocysteine to methionine. Several cardiovascular risk factors are associated with plasma homocysteine, whereas little is known about their relationship to choline and betaine. We examined the relation of plasma choline and betaine to smoking, physical activity, BMI, percent body fat, waist circumference, blood pressure, serum lipids, and glucose in a population-based study of 7074 men and women aged 47-49 and 71-74 y. Overall plasma concentrations (means +/- SD) were 9.9 +/- 2.3 micromol/L for choline and 39.5 +/- 12.5 micromol/L for betaine. Choline and betaine were lower in women than in men and in younger subjects compared with older (P < 0.0001). Multivariate analyses showed that choline was positively associated with serum triglycerides, glucose, BMI, percent body fat, waist circumference (P < 0.0001 for all), and physical activity (P < 0.05) and inversely related to HDL cholesterol (P < 0.05) and smoking (P < 0.0001). Betaine was inversely associated with serum non-HDL cholesterol, triglycerides, BMI, percent body fat, waist circumference, systolic and diastolic blood pressure (P < 0.0001 for all), and smoking (P < 0.05) and positively associated with HDL cholesterol (P < 0.01) and physical activity (P < 0.0001). Thus, an unfavorable cardiovascular risk factor profile was associated with high choline and low betaine concentrations. Choline and betaine were associated in opposite directions with key components of metabolic syndrome, suggesting a disruption of mitochondrial choline dehydrogenase pathway.  相似文献   

9.
The importance of the one-carbon metabolites, choline and homocysteine, to brain function is well known. However, the associations between the one-carbon metabolites choline, betaine, methionine and dimethylglycine with cognition in elderly are unclear. We therefore examined the associations of these metabolites with cognition in a double-blind, placebo-controlled trial. Individuals (n 195) were randomized to receive daily oral capsules with either 1000 microg cobalamin (vitamin B12), or 1000 microg cobalamin plus 400 microg folic acid, or placebo for 24 weeks. Concentrations of homocysteine, methionine, choline, betaine and dimethylglycine were assessed before and after 12 and 24 weeks of treatment. Cognitive function, including domains of attention, construction, sensomotor speed, memory and executive function, was assessed before and after 24 weeks of treatment. At baseline, elevated plasma homocysteine was associated with lower performance of attention, construction, sensomotor speed and executive function. In addition, betaine was positively associated with better performance of construction, sensomotor speed and executive function, whereas elevated concentrations of methionine were positively associated with sensomotor speed. Daily combined supplementation with cobalamin plus folic acid decreased total homocysteine concentrations by 36%, and increased betaine concentrations by 38%. Participants with the largest increases in betaine concentrations showed a borderline significant (P = 0.07) higher memory performance compared to those without it. Although this trial observed associations of homocysteine and betaine with cognitive domains prior to supplementation, decreased concentrations of homocysteine were not related to improved cognitive performance. There was a tendency of participants with the largest increases in betaine concentrations to show the greatest improvement in memory function.  相似文献   

10.
Choline is an essential nutrient and can also be obtained by de novo synthesis via an oestrogen responsive pathway. Choline can be oxidised to the methyl donor betaine, with short-term supplementation reported to lower plasma total homocysteine (tHcy); however, the effects of longer-term choline supplementation are less clear. We investigated the effect of choline supplementation on plasma concentrations of free choline, betaine and tHcy and B-vitamin status in postmenopausal women, a group more susceptible to low choline status. We also assessed whether supplementation altered plasma lipid profiles. In this randomised, double-blinded, placebo-controlled study, forty-two healthy postmenopausal women received 1?g choline per d (as choline bitartrate), or an identical placebo supplement with their habitual diet. Fasting blood samples were collected at baseline, week 6 and week 12. Administration of choline increased median choline and betaine concentrations in plasma, with significant effects evident after 6 weeks of supplementation (P?相似文献   

11.
The effects of chronic betaine ingestion were investigated in rats. Rats were fed an experimental diet containing 5% betaine for 4 wk and methionine was intravenously administered. The elevations of plasma homocysteine were assessed by comparing the increments to the initial measured value and the positive incremental area under the plasma homocysteine concentration curve over the 240-min post-methionine-loading period (deltaAUC0-240). In the betaine-ingesting rats, deltaAUC0-240 was significantly lower than in the control group (48% of the control), and the increments of plasma homocysteine were also lower compared with the control, especially 15-30 min after methionine loading. Choline, a precursor of betaine, did not alter the plasma homocysteine elevation. In a definite period immediately after methionine loading, carnitine, a methyl-group-rich amino acid, induced a significant increase of plasma homocysteine, compared to the control. Moreover, plasma homocysteine concentration was significantly decreased by 4 wk of betaine ingestion. Betaine enhanced liver BHMT activity whereas choline and carnitine did not show any effects on BHMT activity. These results suggest that betaine contributes to both the decrease in the plasma homocysteine concentration and the suppression of plasma homocysteine elevation through the activation of liver BHMT.  相似文献   

12.
BACKGROUND: The effects of vitamin B-6 status on steady-state kinetics of homocysteine metabolism in humans are unclear. OBJECTIVE: The objective was to determine the effects of dietary vitamin B-6 restriction on the rates of homocysteine remethylation and synthesis in healthy humans. DESIGN: Primed, constant infusions of [(13)C(5)]methionine, [3-(13)C]serine, and [(2)H(3)]leucine were conducted in healthy female (n=5) and male (n=4) volunteers (20-30 y) before and after 4 wk of dietary vitamin B-6 restriction (<0.5 mg vitamin B-6/d) to establish whether vitamin B-6 status affects steady-state kinetics of homocysteine metabolism in the absence of concurrent methionine intake. Effects of dietary vitamin B-6 restriction on vitamin B-6 status, plasma amino acid concentrations, and the rates of reactions of homocysteine metabolism were assessed. RESULTS: Dietary vitamin B-6 restriction significantly reduced plasma pyridoxal 5-phosphate (PLP) concentrations (55.1 +/- 8.3 compared with 22.6 +/- 1.3 nmol/L; P=0.004), significantly increased plasma glycine concentrations (230 +/- 14 compared with 296 +/- 15; P=0.008), and significantly reduced basal (43%; P < 0.001) and PLP-stimulated (35%; P=0.004) lymphocyte serine hydroxymethyltransferase activities in vitro. However, the in vivo fluxes of leucine, methionine, and serine; the rates of homocysteine synthesis and remethylation (total and vitamin B-6-dependent); and the concentrations of homocysteine, methionine, and serine in plasma were not significantly affected by dietary vitamin B-6 restriction. CONCLUSIONS: Moderate vitamin B-6 deficiency does not significantly alter the rates of homocysteine remethylation or synthesis in healthy young adults in the absence of dietary methionine intake.  相似文献   

13.
BACKGROUND: Low plasma free choline concentration has been associated with elevated serum hepatic aminotransferase concentrations and hepatic steatosis in adults who need home parenteral nutrition (HPN). We sought to determine if plasma free choline is similarly reduced in children who need home total parenteral nutrition (TPN). METHODS: We compared the plasma free choline concentration in 21 children who required long-term HPN with 31 normal controls. Patients had received HPN for 75 +/- 13 (SD) months (range 3-206 months). All control children ingested a normal, mixed, nonvegetarian diet. RESULTS: The mean plasma free choline concentration in the children receiving HPN was significantly lower than normal children (6.6 +/- 4.3 vs 8.0 +/- 2.3 nmol/mL, p = .002). Plasma free choline concentration was correlated with age (r = -0.43, p = .049). Using multiple linear regression analysis for age, sex, and squared age (considered in order to account for possible nonlinearity between choline and age), HPN children showed a steady and significant decline in plasma free choline concentration with increased age at the rate of 0.03 nmol/mL per month. Plasma lipid bound choline concentration did not vary with age. No relationship was seen between either plasma free and lipid bound choline concentration and amount of daily IV lipid infusion. A significant negative correlation was observed between plasma free choline concentration and aspartate aminotransferase (AST) and alanine aminostransferase (ALT) (r = -0.72, p = .04 and r = -0.80, p = .02, respectively). CONCLUSION: Our data support the notion that patients who need long-term HPN without significant enteral feeding have a significant risk for the development of choline deficiency with its associated hepatic dysfunction.  相似文献   

14.
The effects of a daily 3-g supplement of betaine on kinetic aspects of L-[2H3-methyl-1-13C]methionine (MET) metabolism in healthy young adult men were explored. Four groups of four subjects each were given a control diet, based on an L-amino acid mixture supplying 29.5 and 21.9 mg.kg-1.d-1 of L-methionine and L-cystine for 4 d before the tracer study, conducted on day 5 during the fed state. Two groups received the control diet and two groups received the betaine supplement. Tracer was given intravenously (iv) or orally. The transmethylation rate of MET (TM), homocysteine remethylation (RM), and oxidation of methionine were estimated from plasma methionine labeling and 13C enrichment of expired air. RM tended to increase (P = 0.14) but the TM and methionine oxidation were significantly (P less than 0.05) higher after betaine supplementation when estimated with the oral tracer. No differences were detected with the intravenous tracer. Methionine concentration in plasma obtained from blood taken from subjects in the fed state was higher (P less than 0.01) with betaine supplementation. These results suggest that excess methyl-group intake may increase the dietary requirement for methionine.  相似文献   

15.
Rima Obeid 《Nutrients》2013,5(9):3481-3495
Methyl groups are important for numerous cellular functions such as DNA methylation, phosphatidylcholine synthesis, and protein synthesis. The methyl group can directly be delivered by dietary methyl donors, including methionine, folate, betaine, and choline. The liver and the muscles appear to be the major organs for methyl group metabolism. Choline can be synthesized from phosphatidylcholine via the cytidine-diphosphate (CDP) pathway. Low dietary choline loweres methionine formation and causes a marked increase in S-adenosylmethionine utilization in the liver. The link between choline, betaine, and energy metabolism in humans indicates novel functions for these nutrients. This function appears to goes beyond the role of the nutrients in gene methylation and epigenetic control. Studies that simulated methyl-deficient diets reported disturbances in energy metabolism and protein synthesis in the liver, fatty liver, or muscle disorders. Changes in plasma concentrations of total homocysteine (tHcy) reflect one aspect of the metabolic consequences of methyl group deficiency or nutrient supplementations. Folic acid supplementation spares betaine as a methyl donor. Betaine is a significant determinant of plasma tHcy, particularly in case of folate deficiency, methionine load, or alcohol consumption. Betaine supplementation has a lowering effect on post-methionine load tHcy. Hypomethylation and tHcy elevation can be attenuated when choline or betaine is available.  相似文献   

16.
BACKGROUND: Elevated total homocysteine (tHcy), a risk factor for many chronic diseases, can be remethylated to methionine by folate. Alternatively, tHcy can be metabolized by other 1-carbon nutrients, ie, betaine and its precursor, choline. OBJECTIVE: We aimed to assess the association between the dietary intakes of betaine and choline and the concentration of tHcy. DESIGN: We conducted a cross-sectional analysis in 1477 women by using linear regression models to predict mean fasting tHcy by intakes of of betaine and choline. RESULTS: tHcy was 8% lower in the highest quintile of total betaine + choline intake than in the lowest quintile, even after control for folate intake (P for trend = 0.07). Neither choline nor betaine intake individually was significantly associated with tHcy. Choline from 2 choline-containing compounds, glycerophosphocholine and phosphocholine, was inversely associated with tHcy. These inverse associations were more pronounced in women with folate intake < 400 mug/d than in those with intakes >or=400 microg/d (P for interaction = 0.03 for phosphocholine) and in moderate alcohol drinkers (>or=15 g/d) than in nondrinkers or light drinkers (<15 g/d) (P for interaction = 0.02 for glycerophosphocholine and 0.04 for phosphocholine). The strongest dose response was seen in women with a low-methyl diet (high alcohol and low folate intake) (P for interaction = 0.002 for glycerophosphocholine and 0.001 for phosphocholine). CONCLUSIONS: Total choline + betaine intake was inversely associated with tHcy, as was choline from 2 water-soluble choline-containing compounds. Remethylation of tHcy may be more dependent on the betaine pathway when methyl sources are low as a result of either inadequate folate intake or heavier alcohol consumption.  相似文献   

17.
Hyperhomocysteinaemia is an established risk factor for vascular disease. The only source of homocysteine in humans is the amino acid methionine found in dietary protein. In an 8-week study, fasting plasma homocysteine concentrations were examined in a group of healthy male subjects (n = 6) under usual dietary conditions (weeks 1-4) and in response to weekly graded (25, 50 and 75 mg/kg/d) supplementary methionine (weeks 5, 6, 7). Nutrient intakes, including methionine, were calculated from 4 x 3 day food records. Under usual dietary conditions (mean methionine intake; 0.95 +/- 0.51 mg/d) weekly mean plasma homocysteine concentrations for the group were not significantly different (ANOVA) from each other ranging from 6.82 +/- 1.77 to 9.42 +/- 2.73 mumol/l. Doubling (supplementing with 25 mg/kg/d; + 2.04 g/d) or quadrupling (50 mg/kg/d; + 4.08 g/d) methionine intakes did not result in a significant increase in plasma homocysteine (8.56 +/- 3.68 mumol/l and 13.37 +/- 5.09 mumol/l respectively). A significant increase, however, was achieved when diets were supplemented with methionine at the highest level of 75 mg/kg/d (+6.14 g/d) resulting in a mean plasma homocysteine concentration of 18.05 +/- 11.8 mumol/l. Mean plasma homocysteine concentration returned to baseline (8.76 +/- 3.42 mumol/l), 10 days post-supplementation. The results of this study indicate that an increased dietary methionine will only cause elevated fasting homocysteine concentrations if ingested at intakes equivalent to five times usual intake. Because it is very unlikely that such levels could be achieved through dietary means alone we conclude that plasma homocysteine is unlikely to be affected by longer-term changes in food methionine intake.  相似文献   

18.
Taurine, a nonessential amino acid (AA), is the most abundant free AA in the intracellular space. We measured plasma AA concentrations in 36 patients 7-28 d after intensive chemotherapy and/or radiation. Plasma taurine concentrations were uniformly low in all patients (20.0 +/- 6.4 mumol/L, mean +/- SD). Plasma taurine in 11 healthy volunteer control subjects was 45.0 +/- 20.3 mumol/L (P less than 0.001). Other AA concentrations, specifically those of precursor AAs methionine and cystine, were normal. We prospectively measured plasma AA concentrations in 12 patients before starting and 6-10 d after completing intensive cytotoxic treatment. Values before treatment were 37.2 +/- 11.6, 109.6 +/- 30.7, and 18.5 +/- 4.8 for taurine, cystine, and methionine, respectively, and were 24.3 +/- 6.0, 111.2 +/- 23.8, and 24.0 +/- 14.5 after treatment. Pretreatment plasma taurine correlated directly with the magnitude of decrease in plasma taurine during cytotoxic treatment (n = 12, r = 0.85, P less than 0.01). Intensive cytotoxic chemotherapy and/or radiation leads to a reduction in plasma taurine concentrations without any change in its precursor AAs, methionine and cystine. The clinical relevance of plasma taurine depletion will need further study.  相似文献   

19.
20.
Previous studies showed that chronic ethanol administration inhibits methionine synthase activity, resulting in impaired homocysteine remethylation to form methionine. This defect in homocysteine remethylation was shown to increase plasma homocysteine and to interfere with the production of hepatic S-adenosylmethionine (SAM) in ethanol-fed rats. These changes were shown to be reversed by the administration of betaine, an alternative methylating agent. This study was undertaken to determine additional effects of ethanol on methionine metabolism and their functional consequences. The influences of methionine loading and betaine supplementation were also evaluated. Adult Wistar rats were fed ethanol or a control Lieber-DeCarli liquid diet for 4 wk, and metabolites of the methionine cycle were measured in vitro in isolated hepatocytes under basal and methionine-supplemented conditions. S-Adenosylhomocysteine (SAH) concentrations were elevated in hepatocytes isolated from ethanol-fed rats compared with controls and in hepatocytes from both groups when supplemented with methionine. The addition of betaine to the methionine-supplemented incubation media reduced the elevated SAH levels. The decrease in the intracellular SAH:SAM ratio due to ethanol consumption inhibited the activity of the liver-specific SAM-dependent methyltransferase, phosphatidylethanolamine methyltransferase. Our data indicate that betaine, by remethylating homocysteine and removing SAH, overcomes the detrimental effects of ethanol consumption on methionine metabolism and may be effective in correcting methylation defects and treating liver diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号