首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypophosphatasia is a heritable form of rickets/osteomalacia with extremely variable clinical expression. Severe forms are inherited in an autosomal recessive fashion; the mode of transmission of mild forms is uncertain. The biochemical hallmark of hypophosphatasia is deficient activity of the tissue-nonspecific isozyme of alkaline phosphatase (TNSALP). Previously, we demonstrated in one inbred infant that an identical missense mutation in both alleles of the gene encoding TNSALP caused lethal disease. We have now examined TNSALP cDNAs from four unrelated patients with the severe perinatal or infantile forms of hypophosphatasia. Each of the eight TNSALP alleles from these four individuals contains a different point mutation that causes an amino acid substitution. These base changes were not detected in at least 63 normal individuals and, thus, appear to be causes of hypophosphatasia in the four patients. (Two additional base substitutions, found in one allele from each of the four patients, are linked polymorphisms.) Twenty-three unrelated patients (of 50 screened), who reflect the entire clinical spectrum of hypophosphatasia, possess one of our of the above eight mutations. In two of these additional patients, mild forms of the disease are also inherited in an autosomal recessive fashion. Our findings indicate that hypophosphatasia can be caused by a number of different missense mutations and that the specific interactions of different TNSALP mutant alleles are probably important for determining clinical expression. Severe forms, perinatal and infantile disease, are largely the result of compound heterozygosity for different hypophosphatasia alleles. At least some cases of childhood and adult hypophosphatasia are inherited as autosomal recessive traits.  相似文献   

2.
Naturally occurring activating mutations in the human LH receptor (hLHR) gene are the cause of sporadic or familial male gonadotropin-independent precocious puberty. We have previously reported three different activating mutations of the hLHR gene in four unrelated Brazilian boys with male-limited precocious puberty. In the current study, we examined three other Brazilian boys, two brothers and one unrelated boy, with gonadotropin-independent precocious puberty. Direct sequencing of the entire exon 11 of the hLHR gene in the two brothers revealed a heterozygous substitution of T for C at nucleotide 1103, resulting in the substitution of leucine at position 368 by proline in the first transmembrane helix. Their mother carried the same mutation, establishing the familial nature of this mutation. Human embryonic 293 cells expressing hLHR(L368P) bound hCG with the same high affinity as cells expressing the wild-type hLHR. Cells expressing the novel L368P mutation displayed up to a 12-fold increase in basal cAMP production compared with cells expressing the same number of cell surface wild-type hLHR, indicating constitutive activation of the mutant receptor. In addition, the cAMP levels in cells expressing the hLHR mutant were further augmented by hCG. Molecular dynamics simulations suggest that substitution of L368 of the hLHR by proline results in lack of a salt bridge interaction between D405 and R464 (distance 9. 0 A vs. 4.7 A in wild-type hLHR) as well as by the opening of a crevice between the second and third intracellular loops, which may allow G proteins greater accessibility. These structural features were shared by other activating mutants of the hLHR. Sequencing of exon 11 of the hLHR gene of the unrelated boy revealed that he carried a homozygous nucleotide substitution causing an A568V mutation in the third cytoplasmic loop of the receptor. This mutation was previously found in two unrelated Brazilian boys, but in heterozygous state. Clinical and hormonal data of the patient with the homozygous A568V were not different from those individuals with the Ala568Val mutation in a heterozygous state. Furthermore, the phenotype caused by dominant activating mutations of the hLHR gene are not altered when both alleles carry a mutant sequence. Our studies show that the A568V is the most frequent cause of male-limited precocious puberty in Brazilian boys. Lastly, the identification of a novel activating L368P mutation in the first transmembrane helix of two Brazilian boys with familial male-limited precocious puberty provides further insights into the mechanism of activation of the hLHR.  相似文献   

3.
Kravtsov DV  Wu W  Meijers JC  Sun MF  Blinder MA  Dang TP  Wang H  Gailani D 《Blood》2004,104(1):128-134
The bleeding diathesis associated with hereditary factor XI (fXI) deficiency is prevalent in Ashkenazi Jews, in whom the disorder appears to be an autosomal recessive condition. The homodimeric structure of fXI implies that the product of a single mutant allele could confer disease in a dominant manner through formation of heterodimers with wild-type polypeptide. We studied 2 unrelated patients with fXI levels less than 20% of normal and family histories indicating dominant disease transmission. Both are heterozygous for single amino acid substitutions in the fXI catalytic domain (Gly400Val and Trp569Ser). Neither mutant is secreted by transfected fibroblasts. In cotransfection experiments with a wild-type fXI construct, constructs with mutations common in Ashkenazi Jews (Glu117Stop and Phe283Leu) and a variant with a severe defect in dimer formation (fXI-Gly350Glu) have little effect on wild-type fXI secretion. In contrast, cotransfection with fXI-Gly400Val or fXI-Trp569Ser reduces wild-type secretion about 50%, consistent with a dominant negative effect. Immunoprecipitation of cell lysates confirmed that fXI-Gly400Val forms intracellular dimers. The data support a model in which nonsecretable mutant fXI polypeptides trap wild-type polypeptides within cells through heterodimer formation, resulting in lower plasma fXI levels than in heterozygotes for mutations that cause autosomal recessive fXI deficiency.  相似文献   

4.
Hypophosphatasia is an inherited disorder characterized by defective bone mineralization and a deficiency of serum and tissue liver/bone/kidney alkaline phosphatase (L/B/K ALP) activity. Clinical severity is variable, ranging from death in utero (due to severe rickets) to pathologic fractures first presenting in adult life. Affected siblings, however, are phenotypically similar. Severe forms of the disease are inherited in an autosomal recessive fashion; heterozygotes often show reduced serum ALP activity. The specific gene defects in hypophosphatasia are unknown but are thought to occur either at the L/B/K ALP locus or within another gene that regulates L/B/K ALP expression. We used the polymerase chain reaction to examine L/B/K ALP cDNA from a patient with a perinatal (lethal) form of the disease. We observed a guanine-to-adenine transition in nucleotide 711 of the cDNA that converts alanine-162 of the mature enzyme to threonine. The affected individual, whose parents are second cousins, is homozygous for the mutant allele. Introduction of this mutation into an otherwise normal cDNA by site-directed mutagenesis abolishes the expression of active enzyme, demonstrating that a defect in the L/B/K ALP gene results in hypophosphatasia and that the enzyme is, therefore, essential for normal skeletal mineralization.  相似文献   

5.
Context: Hypophosphatasia (HPP) is a heritable metabolic disorder of the skeleton that includes variable expressivity conditioned by gene dosage effect and the variety of mutations in the tissue nonspecific alkaline phosphatase (TNSALP) gene. Patient age when skeletal problems first manifest generally predicts the clinical course, with perinatal HPP causing bone disease in utero with postnatal lethality. Objective: Our objective was to identify TNSALP mutations and characterize the inheritance pattern of a family with clinically variable HPP with one child manifesting in utero with long bone deformity but showing spontaneous prenatal and postnatal improvement. Design: TNSALP enzyme and substrate analysis and TNSALP mutation analysis were performed on all family members. Patients: A boy with HPP showing long bone deformity that spontaneously improved in utero and after birth is described. His older brother has the childhood form of HPP without findings until after infancy. His parents and twin sister are clinically unaffected. Results: Both boys are compound heterozygotes for the same missense mutations in TNSALP, documenting autosomal recessive inheritance for their HPP. The parents each carry one defective allele. Conclusions: The patient is an autosomal recessive case of HPP with prenatal long bone deformity but with spontaneous prenatal and postnatal improvement. Thus, prenatal detection by sonography of bowing of long bones from HPP, even with autosomal recessive inheritance, does not necessarily predict lethality but can represent variable expressivity or the effects of modifiers on the TNSALP defect(s).  相似文献   

6.
We searched for point mutations in every exon of the rhodopsin gene in 150 patients from separate families with autosomal dominant retinitis pigmentosa. Including the 4 mutations we reported previously, we found a total of 17 different mutations that correlate with the disease. Each of these mutations is a single-base substitution corresponding to a single amino acid substitution. Based on current models for the structure of rhodopsin, 3 of the 17 mutant amino acids are normally located on the cytoplasmic side of the protein, 6 in transmembrane domains, and 8 on the intradiscal side. Forty-three of the 150 patients (29%) carry 1 of these mutations, and no patient has more than 1 mutation. In every family with a mutation so far analyzed, the mutation cosegregates with the disease. We found one instance of a mutation in an affected patient that was absent in both unaffected parents (i.e., a new germ-line mutation), indicating that some "isolate" cases of retinitis pigmentosa carry a mutation of the rhodopsin gene.  相似文献   

7.
Ferroportin disease is an autosomal dominant form of hemochromatosis associated with siderosis in cells of the mononuclear phagocyte system and, to varying degrees, in hepatocytes. Ferroportin was investigated as a candidate gene in two pedigrees with hyperferritinaemia and siderosis in mononuclear phagocytes. The entire ferroportin coding region was sequenced and hepatic iron concentration, histology and response to treatment were determined. The results were compared with previously reported cases. The A77D mutation was detected in patient 1, his father (patient 2) and his brother (patient 3), who had portal fibrosis. The V162del mutation was detected in patient 4, who developed anemia after the third weekly venesection. While the disease is rare, A77D and V162del are the most common ferroportin mutations in Caucasians. The spectrum of clinical expression of these two mutations was reviewed in all cases described to date. These mutations were associated with fibrosis in about a third of cases. For A77D and V162del, this analysis confirms that the threshold hepatic iron concentration for development of fibrosis may be higher than for classical hemochromatosis. These two mutations, which both decreased iron export in cell culture studies, give rise to similar patterns of clinical expression and morbidity, although the highest hepatic iron concentrations have been observed with A77D. It is important for clinicians to consider ferroportin disease in cases where there are features of iron overload unrelated to HFE, autosomal dominant inheritance and/or iron deposition in mononuclear phagocytes.  相似文献   

8.
To investigate the molecular mechanisms of the quantitative factor V (FV) deficiency associated with the FV R2 haplotype, 4 missense mutations, Met385Thr, His1299Arg, Met1736Val, and Asp2194Gly, identified in the R2 haplotype allele, were analyzed by in vitro expression studies. The FV variant carrying all 4 mutations showed a markedly lower steady-state expression level than wild-type FV because of low synthesis rate and impaired secretion of the mutant protein. The Asp2194Gly mutation was found to play a key role in the impaired secretion of the mutant FV by interfering with its transport from the endoplasmic reticulum to the Golgi complex. The deleterious effect of the Asp2194Gly mutation was shown to be dominant among the 4 mutations. The Met385Thr mutation and His1299Arg mutation had no effect on steady-state expression levels, but the secretion rates of the mutant proteins were moderately decreased by these mutations. The His1299Arg mutation partially impaired glycosylation in the C-terminal part of the B-domain of the mutant FV, which was supposed to affect the secretion rate, but not the steady-state expression level. It was also suggested that the Met385Thr mutation partially impairs posttranslational modification of the mutant FV without affecting the steady-state expression level. No deleterious effect of the Met1736Val mutation was observed in terms of expression and intracellular processing. Our in vitro data strongly suggest that the naturally existing R2 haplotype mutant FV, which carries all 4 mutations, has the potential to result in quantitative FV deficiency in vivo owing to impaired expression of the mutant protein when the Asp2194Gly mutation is present.  相似文献   

9.
Summary. Combined factor V (FV) and factor VIII (FVIII) deficiency (F5F8D) is a rare autosomal recessive disorder caused by mutations in LMAN1 or MCFD2 genes which encode proteins that form a complex involved in the transport of FV and FVIII from the endoplasmic reticulum to Golgi apparatus. We report two novel mutations in MCFD2 gene and one recurrent mutation in LMAN1 gene that caused combined FV and FVIII deficiency in two unrelated Tunisian Muslim families. For the first family two patients were homozygous for a new missense mutation Asp81His in exon 3 of MCFD2 and heterozygous for a second new missense mutation Val100Asp in the same exon. Replacement respectively of the hydrophilic Asp residue with hydrophobic positively charged His and of the hydrophobic neutral Val residue with the Asp residue most likely disrupts the MCFD2–LMAN1 interaction, thus leading to the disease phenotype. For the second family a reported Arg202X mutation in exon 5 in the LMAN1 gene was identified in the homozygous state.  相似文献   

10.
P J Ancliff  R E Gale  R Liesner  I M Hann  D C Linch 《Blood》2001,98(9):2645-2650
Severe congenital neutropenia (SCN) was originally described as an autosomal recessive disorder. Subsequently, autosomal dominant and sporadic forms of the disease have been recognized. All forms are manifest by persistent severe neutropenia and recurrent bacterial infection. In contrast, cyclical hematopoiesis is characterized by periodic neutropenia inter-spaced with (near) normal neutrophil counts. Recently, linkage analysis on 13 affected pedigrees identified chromosome 19p13.3 as the likely position for mutations in cyclical hematopoiesis. Heterozygous mutations in the ELA2 gene encoding neutrophil elastase were detected in all families studied. Further work also demonstrated mutations in ELA2 in sporadic and autosomal dominant SCN. However, all mutations described to date are heterozygous and thus appear to act in a dominant fashion, which is inconsistent with an autosomal recessive disease. Therefore, the current study investigated whether mutations in ELA2 could account for the disease phenotype in classical autosomal recessive SCN and in the sporadic and autosomal dominant types. All 5 exons of ELA2 and their flanking introns were studied in 18 patients (3 autosomal recessive, 5 autosomal dominant [from 3 kindreds], and 10 sporadic) using direct automated sequencing. No mutations were found in the autosomal recessive families. A point mutation was identified in 1 of 3 autosomal dominant families, and a base substitution was identified in 8 of 10 patients with the sporadic form, though 1 was subsequently shown to be a low-frequency polymorphism. These results suggest that mutations in ELA2 are not responsible for classical autosomal recessive Kostmann syndrome but provide further evidence for the role of ELA2 in SCN.  相似文献   

11.
12.
Hypertrophic cardiomyopathy (HCM) is an important cause of sudden death in apparently healthy young individuals. In less than half of kindreds with HCM, the disease is linked to the beta-myosin heavy-chain gene locus (MYH7). We have recently described two missense MYH7 gene mutations [Arg-403 to Gln (R403Q) and Leu-908 to Val (L908V)] and found that the mutant message is present in skeletal muscle soleus) and that the mutant beta-myosin obtained from soleus muscle has abnormal in vitro motility activity. Having identified a second kindred with the R403Q mutation, and 3 other kindreds with two additional mutations (G741R and G256E), we performed histochemical analysis of soleus muscle biopsies from 25 HCM patients with one of these four mutations. Light microscopic examination of the NADH-stained biopsies revealed the presence of central core disease (CCD) of skeletal muscle, a rare autosomal dominant nonprogressive myopathy characterized by a predominance of type I "slow" fibers and an absence of mitochondria in the center of many type I fibers. CCD was present in 10 of 13 patients with the L908V mutation, 5 of 8 patients with the R403Q mutation, 1 of 3 patients with the G741R mutation, and 1 patient with the G256E mutation. Mild-to-moderate myopathic changes with muscle fiber hypertrophy were present in 16 patients. Notably, CCD was present in 2 adults and 3 children with the L908V mutation who did not have cardiac hypertrophy. In contrast, soleus muscle samples from 5 patients from 4 kindreds in which HCM was not linked to the MYH7 locus showed no myopathy or CCD. Soleus muscle biopsies from 5 control subjects also showed normal histology. This work demonstrates that (i) MYH7-associated HCM is often a disease of striated muscle but with predominant cardiac involvement and (ii) a subset of HCM patients with MYH7 gene missense mutations have CCD.  相似文献   

13.
Pseudohypoaldosteronism type 1 (PHA1) is a rare condition characterized by neonatal salt loss with dehydration, hypotension, hyperkalemia, and metabolic acidosis, despite elevated plasma aldosterone levels and PRA. Two modes of inheritance of PHA1 have been described: an autosomal dominant form and an autosomal recessive form. An autosomal recessive form manifests severe life-long salt wasting resulting from multiple mineralocorticoid target tissue such as sweat, salivary glands, the colonic epithelium, and lung. Contrary, an autosomal dominant PHA1 manifests milder salt wasting that gradually improves with advancing age. Recently, in one sporadic and four dominant cases, four different mutations including two frame shift mutations, two premature termination codons, and one splice site mutation in the mineralocorticoid receptor (MR) gene were identified. We studied the molecular mechanisms of one Japanese family with a renal form of PHA1. PCR and direct sequencing of the MR gene identified a heterozygous point mutation changing codon 924 Leu (CTG) to CCG (Pro) (L924P) in all affected members. COS-1 cells were transfected with expression vectors for either wild type or the mutant MR-L924P receptors, together with the reporter plasmid (glucocorticoid response element tk-CAT). Aldosterone increased CAT activity in cells expressing wild-type receptor, but had no effect in cells expressing the mutant receptors. These results suggest that mineralocorticoid resistance in this family is due to a missense mutation in the MR gene. To our knowledge, this is the first case of the missense mutation of the MR gene in renal PHA1.  相似文献   

14.
Objective  Pseudohypoaldosteronism type I (PHA1) is a rare inborn disease causing severe salt loss. Mutations in the three coding genes of the epithelial sodium channel (ENaC) are responsible for the systemic autosomal recessive form. So far, no phenotype has been reported in heterozygous carriers.
Patients  A consanguineous family from Somalia giving birth to a neonate suffering from PHA1 was studied including clinical and hormonal characteristics of the family, mutational analysis of the SCNN1A , SCNN1B , SCNN1G and CFTR genes and in vitro analysis of the functional consequences of a mutant ENaC channel.
Results  CFTR mutations have been excluded. SCNN1A gene analysis revealed a novel homozygous c.1684T > C mutation resulting in a S562P substitution in the αENaC protein of the patient. Functional analysis showed a significantly reduced S562P channel function compared to ENaC wild type. Protein synthesis and channel subunit assembly were not altered by the S562P mutation. Co-expression of mutant and wild-type channels revealed a dominant negative effect. In heterozygote carriers, sweat sodium and chloride concentrations were increased without additional hormonal or clinical phenotypes.
Conclusion  Hence, the novel mutation S562P is causing systemic PHA1 in the homozygous state. A thorough clinical investigation of the heterozygote SCNN1A mutation carriers revealed increased sweat sodium and chloride levels consistent with a dominant effect of the mutant S562P allele. Whether this subclinical phenotype is of any consequence for the otherwise asymptomatic heterozygous carriers has to be elucidated.  相似文献   

15.
Mutations of c-KIT causing spontaneous activation of the KIT receptor kinase are associated with sporadic adult human mastocytosis (SAHM) and with human gastrointestinal stromal tumors. We have classified KIT-activating mutations as either "enzymatic site" type (EST) mutations, affecting the structure of the catalytic portion of the kinase, or as "regulatory" type (RT) mutations, affecting regulation of an otherwise normal catalytic site. Using COS cells expressing wild-type or mutant KIT, 2 compounds, STI571 and SU9529, inhibited wild-type and RT mutant KIT at 0.1 to 1 microM but did not significantly inhibit the Asp816Val EST mutant associated with SAHM, even at 10 microM. Using 2 subclones of the HMC1 mast cell line, which both express KIT with an identical RT mutation but which differ in that one also expresses the Asp816Val EST mutation, both compounds inhibited the RT mutant KIT, thereby suppressing proliferation and producing apoptosis in the RT mutant-only cell line. Neither compound suppressed activation of Asp816Val EST mutant KIT, and neither produced apoptosis or significantly suppressed proliferation of the cell line expressing the Asp816Val mutation. These studies suggest that currently available KIT inhibitors may be useful in treating neoplastic cells expressing KIT activated by its natural ligand or by RT activating mutations such as gastrointestinal stromal tumors but that neither compound is likely to be effective against SAHM. Furthermore, these results help establish a general paradigm whereby classification of mutations affecting oncogenic enzymes as RT or EST may be useful in predicting tumor sensitivity or resistance to inhibitory drugs.  相似文献   

16.
A form of autosomal dominant macrothrombocytopenia is characterized by mild or no clinical symptoms, normal platelet function, and normal megakaryocyte count. Because this condition has so far received little attention, patients are subject to misdiagnosis and inappropriate therapy. To identify the molecular basis of this disease, 12 Italian families were studied by linkage analysis and mutation screening. Flow cytometry evaluations of platelet membrane glycoproteins (GPs) were also performed. Linkage analysis in 2 large families localized the gene to chromosome 17p, in an interval containing an excellent candidate, the GPIbalpha gene. GPIbalpha, together with other proteins, constitutes the plasma von Willebrand factor (vWF) receptor, which is altered in Bernard-Soulier syndrome (BSS). In 6 of 12 families, a heterozygous Ala156Val missense substitution was identified. Platelet membrane GP studies were performed in 10 patients. Eight were distinguished by a reduction of GPs comparable to that found in a BSS heterozygous condition, whereas the other 2, without the Ala156Val mutation, had a normal content of platelet GPs. In conclusion, the current study provides evidence that most (10 of 12) patients with an original diagnosis of autosomal dominant macrothrombocytopenia shared clinical and molecular features with the heterozygous BSS phenotype. The remaining 2 affected subjects represented patients with "true" autosomal dominant macrothrombocytopenia; the GPIb/IX/V complex was normally distributed on the surface of their platelets. Thus, the diagnosis of heterozygous BSS must always be suspected in patients with inherited thrombocytopenia and platelet macrocytosis.  相似文献   

17.
We have analyzed the human mineralocorticoid receptor (hMR) gene in 14 families with autosomal dominant or sporadic pseudohypoaldosteronism (PHA1), a rare form of mineralocorticoid resistance characterized by neonatal renal salt wasting and failure to thrive. Six heterozygous mutations were detected. Two frameshift mutations in exon 2 (insT1354, del8bp537) and one nonsense mutation in exon 4 (C2157A, Cys645stop) generate truncated proteins due to premature stop codons. Three missense mutations (G633R, Q776R, L979P) differently affect hMR function. The DNA binding domain mutant R633 exhibits reduced maximal transactivation, although its binding characteristics and ED(50) of transactivation are comparable with wild-type hMR. Ligand binding domain mutants R776 and P979 present reduced or absent aldosterone binding, respectively, which is associated with reduced or absent ligand-dependent transactivation capacity. Finally, P979 possesses a transdominant negative effect on wild-type hMR activity, whereas mutations G633R and Q776R probably result in haploinsufficiency in PHA1 patients. We conclude that hMR mutations are a common feature of autosomal dominant PHA1, being found in 70% of our familial cases. Their absence in some families underscores the importance of an extensive investigation of the hMR gene and the role of precise diagnostic procedures to allow for identification of other genes potentially involved in the disease.  相似文献   

18.
OBJECTIVE: The aim of the study was to search for mutations of SCNN1B and SCNN1G in an Italian family with apparently dominant autosomal transmission of a clinical phenotype consistent with Liddle's syndrome. METHODS: Genetic analysis was performed in the proband, his relatives, and 100 control subjects. To determine the functional role of the mutation identified in the proband, we expressed the mutant or wild-type epithelial sodium channel in Xenopus laevis oocytes. RESULTS: A novel point mutation, causing an expected substitution of a leucine residue for the second proline residue of the conserved PY motif (PPP x Y) of the beta subunit was identified in the proband. The functional expression of the mutant epithelial sodium channel in X. laevis oocytes showed a three-fold increase in the amiloride-sensitive current as compared with that of the wild-type channel. CONCLUSION: This newly identified mutation adds to other missense mutations of the PY motif of the beta subunit of the epithelial sodium channel, thus confirming its crucial role in the regulation of the epithelial sodium channel. To our knowledge, this is the first report of Liddle's syndrome in the Italian population, confirmed by genetic and functional analysis, with the identification of a gain-of-function mutation not previously reported.  相似文献   

19.
Mutations in the cardiac myosin-binding protein C gene (MYBPC3) are responsible for up to 50% of familial cases with hypertrophic cardiomyopathy (HC). Compared to patients with mutations in other sarcomeric genes, patients with MYBPC3 mutations would have a milder form of the disease, with a lower incidence of sudden cardiac death. Because most of the mutations have been found in only one family, it is currently difficult to establish a correlation between a particular mutation and the HC phenotype. The aim of our study was to contribute to understanding of the role of MYBPC3 mutations in HC. We analysed the MYBPC3 exons and intron flanking regions in 10 patients from 10 families with at least two HC cases. After direct sequencing of polymerase chain reaction (PCR) fragments, we found three new mutations in three families (V771M, V342D, and A627V). These changes affected evolutionary conserved amino acids and were not found in 100 healthy controls. The Ala 627>Val was found homozygous in a 47-year-old patient with a severe form of HC, while his mother and a nephew were heterozygous carriers and asymptomatic. This fact suggests a dosage effect for mutations at the MYPBC3 gene.  相似文献   

20.
Deficiency of carnitine palmitoyltransferase II (CPTase II; palmitoyl-CoA:L-carnitine O-palmitoyltransferase, EC 2.3.1.21) is a clinically heterogeneous autosomal recessive disorder of energy metabolism. We studied the molecular basis of CPTase II deficiency in an early-onset patient presenting with hypoketotic hypoglycemia and cardiomyopathy. cDNA and genomic DNA analysis demonstrated that the patient was homozygous for a mutant CPTase II allele (termed ICV), which carried three missense mutations: a G-1203----A transition, predicting a Val-368----Ile substitution (V368I); a C-1992----T transition, predicting an Arg-631----Cys substitution (R631C); and an A-2040----G transition, predicting a Met-647----Val substitution (M647V). Genomic DNA analysis of family members showed that the mutations cosegregated with the disease in the family. However, screening of 59 healthy controls demonstrated that both the V368I and M647V mutations are sequence polymorphisms with allele frequencies of 0.5 and 0.25, respectively. By contrast, the R631C substitution was not detected in 22 normal individuals or in 12 of 14 CPTase II-deficient patients with the adult muscular form. Notably, 2 adult CPTase II-deficient patients were heterozygous for the ICV allele, thus suggesting compound heterozygosity for this and a different mutant allele. The consequences of the three mutations on enzyme activity were investigated by expressing normal and mutated CPTase II cDNAs in COS cells. The R631C substitution drastically depressed the catalytic activity of CPTase II, thus confirming that this is the crucial mutation. Interestingly, the V368I and M647V substitutions, which did not affect enzyme activity alone, exacerbated the effects of the R631C substitution. Biochemical characterization of mutant CPTase II in patient's cells showed that the mutations are associated with (i) severe reduction of Vmax (approximately 90%), (ii) normal apparent Km values, and (iii) decreased protein stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号