首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background and purpose:

The aim of this study was to assess the relative bioavailability of diazepam after administration of diazepam itself or as a water-soluble prodrug, avizafone, in humans.

Experimental approach:

The study was conducted in an open, randomized, single-dose, three-way, cross-over design. Each subject received intramuscular injections of avizafone (20 mg), diazepam (11.3 mg) or avizafone (20 mg) combined with atropine (2 mg) and pralidoxime (350 mg) using a bi-compartmental auto-injector (AIBC). Plasma concentrations of diazepam were quantified using a validated LC/MS–MS assay, and were analysed by both a non-compartmental approach and by compartmental modelling.

Key results:

The maximum concentration (Cmax) of diazepam after avizafone injection was higher than that obtained after injection of diazepam itself (231 vs. 148 ng·mL−1), while area under the curve (AUC) values were equal. Diazepam concentrations reached their maximal value faster after injection of avizafone. Injection of avizafone with atropine–pralidoxime (AIBC) had no effect on diazepam Cmax and AUC, but the time to Cmax was increased, relative to avizafone injected alone. According to the Akaike criterion, the pharmacokinetics of diazepam after injection as a prodrug was best described as a two-compartment with zero-order absorption model. When atropine and pralidoxime were injected with avizafone, the best pharmacokinetic model was a two-compartment with a first-order absorption model.

Conclusion and implications:

Diazepam had a faster entry to the general circulation and achieved higher Cmax after injection of prodrug than after the parent drug. Administration of avizafone in combination with atropine and pralidoxime by AIBC had no significant effect on diazepam AUC and Cmax.  相似文献   

2.
This study investigates the potential of supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS) to improve the bioavailability of poorly water-soluble drugs compared to conventional SNEDDS. Conventional SNEDDS contained simvastatin (SIM) at 75% of the equilibrium solubility (Seq). Super-SNEDDS containing SIM at 150 and 200% of Seq were produced by subjecting the SNEDDS preconcentrates to a heating and cooling cycle. The super-SNEDDS were physically stable over 10 months. During in vitro lipolysis of SNEDDS and super-SNEDDS the SIM concentration in the aqueous phase increased for the first 30 min almost proportional to the drug loads and amounts of preconcentrate employed. The 200% drug-loaded super-SNEDDS generated an amorphous SIM precipitate at the end of in vitro lipolysis. In vivo, the relative bioavailability of SIM from super-SEDDDS increased significantly to 180 ± 53.3% (p = 0.014) compared to the dosing of two capsules of (dose equivalent) 75% drug-loaded SNEDDS. A significant increase in the terminal half-life of elimination was observed for super-SNEDDS (2.3 ± 0.6 h) compared to conventional SNEDDS (1.4 ± 0.3 h) as well as a decreased area under the curve ratio of the SIM metabolite simvastatin acid to the parent compound (0.57 ± 0.20 and 0.90 ± 0.3), possibly due to a combination of saturation effects on presystemic metabolising enzymes and prolonged absorption along the small intestine. In summary, this study demonstrated that super-SNEDDS are a viable formulation option to enhance the bioavailability of poorly water-soluble drugs such as simvastatin while reducing the pill burden by an increased drug load of SNEDDS.Key words: bioavailability, in vitro digestion, in vitro lipolysis, simvastatin, supersaturated self-nanoemusifying drug delivery systems (super-SNEDDS) poorly soluble drugs  相似文献   

3.
The intranasal (IN) administration of lorazepam is desirable in order to maximize speed of onset and minimise carry-over sedation; however, this benzodiazepine is prone to chemical hydrolysis and poor airway retention, and thus, innovative epithelial presentation is required. The aim of this study was to understand how the in situ self-assembly of a mucoretentive delivery system, formed by the dissolution of vinyl polymer-coated microparticles in the nasal mucosa, would influence lorazepam pharmacokinetics (PK). IN administration of the uncoated lorazepam powder (particle size, 6.7 ± 0.1 μm) generated a biphasic PK profile, which was indicative of sequential intranasal and oral absorption (n = 6; dose, 5 mg/kg). Coating the drug with the vinyl polymer, MP1 (9.9 ± 0.5 μm with 38.8 ± 14.0%, w/w lorazepam) and MP2 (10.7 ± 0.1 μm with 47.0 ± 1.0%, w/w lorazepam), allowed rapid systemic absorption (MP1, Tmax 14.2 ± 4.9 min; MP2, Tmax 9.3 ± 3.8 min) in rabbits and modified the PK profiles in a manner that suggested successful nasal retention. The poly(vinyl pyrrolidone)-rich MP2 system provided the best comparative bioavailability, it prolonged the early-phase nasal drug absorption and minimised drug mucociliary clearance, which correlated well with the intermolecular hydrogen-bond-driven vinyl polymer interactions observed in vitro.KEY WORDS: intranasal, lorazepam, microparticles, pharmacokinetics, poly(vinyl alcohol)  相似文献   

4.
This study was designed to test the hypothesis that a triggered release of a topical microbicide (tenofovir) from hyaluronic acid nanoparticles (HA-NPs) can be achieved under the influence of hyaluronidase (HAase) enzyme. A fractional factorial experimental design was used to examine the factors [molar concentrations of adipic acid dihydrazide (X1) and 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (X2), volume of acetone (X3) and reaction time (X4)] influencing the responses, Y1; particle mean diameter: PMD (nanometers: nm), Y2; polydispersity index: PDI and Y3; zeta (ζ) potential: (millivolts). The amide bond formation between HA and ADH after cross-linking was confirmed by FT-IR and 13C-NMR analyses. These NPs were also characterized for cytotoxicity on a human vaginal epithelial cell line and L. crispatus. When formulated with factors X1; 2.49 mM, X2; 9.96 mM, X3; 60 mL, X4; 6 h, HA-NPs exhibited a spherical shape with PMD, PDI, ζ potential, encapsulation efficiency, and drug loading of 70.6 ± 4.1 nm, 0.07 ± 0.02, −38.2 ± 2.8 mV, 51.8 ± 2.4% w/w and 26.1 ± 1.2% w/w, respectively, (n = 3). Unlike for HA based gel, HAase significantly triggered the drug release and HA degradation from the NPs after 24 h (∼90% w/w and 65% w/w, respectively); whereas, in its absence, these values were ∼39% w/w and 26% w/w, respectively. The NPs were non-cytotoxic to human vaginal VK2/E6E7, End1/E6E7 cells and Lactobacillus crispatus. These data highlight the potential of HAase-sensitive HA-NPs templates for the controlled and vaginal delivery of anti-HIV/AIDS microbicides.

Electronic supplementary material

The online version of this article (doi:10.1208/s12248-013-9546-7) contains supplementary material, which is available to authorized users.KEY WORDS: experimental design, hyaluronic acid, hyaluronidase, microbicide, nanoparticles  相似文献   

5.
Variations in influx transport at the blood-brain barrier might affect the concentration of psychotropic drugs at their site of action and as a consequence might alter therapy response. Furthermore, influx transporters in organs such as the gut, liver and kidney may influence absorption, distribution, and elimination. Here, we analyzed 30 commonly used psychotropic drugs using a parallel artificial membrane permeability assay. Amisulpride and sulpiride showed the lowest membrane permeability (Pe < 1.5 × 10−6 cm/s) and will require influx transport to penetrate the blood-brain barrier and other physiological barriers. We then studied the uptake of amisulpride and sulpiride by the organic cation transporters of the SLC22 family OCT1, OCT2, OCT3, OCTN1, and OCTN2 Amisulpride was found to be transported by all five transporters studied. In contrast, sulpiride was only transported by OCT1 and OCT2. OCT1 showed the highest transport ability both for amisulpride (CLint = 1.9 ml/min/mg protein) and sulpiride (CLint = 4.2 ml/min/mg protein) and polymorphisms in OCT1 significantly reduced the uptake of both drugs. Furthermore, we observed carrier-mediated uptake that was inhibitable by known OCT inhibitors in the immortalized human brain microvascular endothelial cell line hCMEC/D3. In conclusion, this study demonstrates that amisulpride and sulpiride are substrates of organic cation transporters of the SLC22 family. SLC22 transporters may play an important role in the distribution of amisulpride and sulpiride, including their ability to penetrate the blood-brain barrier.

Electronic supplementary material

The online version of this article (doi:10.1208/s12248-014-9649-9) contains supplementary material, which is available to authorized users.KEY WORDS: amisulpride, blood-brain barrier, membrane permeability, organic cation transporters, sulpiride  相似文献   

6.
The aim of this study was to elucidate the intestinal epithelial cell efflux transport processes that are involved in the intestinal transport of the H2 receptor antagonist nizatidine. The intestinal epithelial efflux transport mechanisms of nizatidine were investigated and characterized across Caco-2 cell monolayers, in the concentration range 0.05–10 mM in both apical–basolateral (AP–BL) and BL–AP directions, and the transport constants of P-glycoprotein (P-gp) efflux activity were calculated. The concentration-dependent effects of various P-gp (verapamil, quinidine, erythromycin, ketoconazole, and cyclosporine A), multidrug resistant-associated protein 2 (MRP2; MK-571, probenecid, indomethacin, and p-aminohipuric acid), and breast cancer resistance protein (BCRP; Fumitremorgin C) inhibitors on nizatidine bidirectional transport were examined. Nizatidine exhibited 7.7-fold higher BL–AP than AP–BL Caco-2 permeability, indicative of net mucosal secretion. All P-gp inhibitors investigated displayed concentration-dependent inhibition on nizatidine secretion in both directions. The IC50 of verapamil on nizatidine P-gp secretion was 1.2 × 10−2 mM. In the absence of inhibitors, nizatidine displayed concentration-dependent secretion, with one saturable (Jmax = 5.7 × 10−3 nmol∙cm−2∙s−1 and Km = 2.2 mM) and one nonsaturable component (Kd = 7 × 10−4 μL∙cm−2∙s−1). Under complete P-gp inhibition, nizatidine exhibited linear secretory flux, with a slope similar to the nonsaturable component. Vmax and Km estimated for nizatidine P-gp-mediated secretion were 4 × 10−3 nmol∙cm−2∙s−1 and 1.2 mM, respectively. No effect was obtained with the MRP2 or the BCRP inhibitors. Being a drug commonly used in pediatrics, adults, and elderly, nizatidine susceptibility to efflux transport by P-gp revealed in this paper may be of significance in its absorption, distribution, and clearance, as well as possible drug–drug interactions.Key words: BCS class III drugs, caco-2 permeability, efflux transporters, intestinal absorption, nizatidine, P-glycoprotein  相似文献   

7.
A super-saturated self-nanoemulsifying drug delivery system (super-SNEDDS), containing the poorly water-soluble drug halofantrine (Hf) at 150% of equilibrium solubility (Seq), was compared in vitro and in vivo with a conventional SNEDDS (75% of Seq) with respect to bioavailability and digestibility. Further, the effect of digestion on oral absorption of Hf from SNEDDS and super-SNEDDS was assessed by incorporation of the lipase inhibitor tetrahydrolipstatin (orlistat) into the SNEDDS. The SNEDDS contained soybean oil/Maisine 34-I (1:1), Kolliphor RH40, and ethanol at a ratio of 55:35:10, w/w percent. For the dynamic in vitro lipolysis, the precipitation of Hf at 60 min was significantly larger for the super-SNEDDS (66.8 ± 16.4%) than for the SNEDDS (18.5 ± 9.2%). The inhibition of the in vitro digestion by orlistat (1% (w/w)) lowered drug precipitation significantly for both the super-SNEDDS (36.8 ± 1.7%) and the SNEDDS (3.9 ± 0.7%). In the in vivo studies, the super-SNEDDS concept proved valid in a rat model with a significantly larger Cmax for the super-SNEDDS (964 ± 167 ng/mL) than for the SNEDDS (506 ± 112 ng/mL). The bioavailability of Hf dosed in super-SNEDDS (32.9 ± 3.6%) and SNEDDS (22.5 ± 6.3%) did not change significantly with co-administration of orlistat (45.5 ± 7.3% and 21.9 ± 6.5%, respectively). However, the pharmacokinetic parameters changed; the tmax of the super-SNEDDS (1.3 ± 0.1 h) and SNEDDS (2.8 ± 1.2 h) were significantly lower when dosed with orlistat (6.0 ± 1.3 and 6.3 ± 1.2 h, respectively). These findings suggest that the role of lipid digestion for the absorption of drugs from SNEDDS may be less important than previously thought.KEY WORDS: absorption, digestion, halofantrine, orlistat, SNEDDS, super-SNEDDS  相似文献   

8.
9.
A potent novel compound (MK-3577) was developed for the treatment of type 2 diabetes mellitus (T2DM) through blocking the glucagon receptor. A semi-mechanistic model was developed to describe the drug effect on glucagon and the interaction between glucagon, insulin, and glucose in healthy subjects (N = 36) during a glucagon challenge study in which glucagon, octreotide (Sandostatin), and basal insulin were infused for 2 h starting from 3, 12, or 24 h postdose of a single 0–900 mg MK-3577 administration. The drug effect was modeled by using an inhibitory Emax model (Imax = 0.96 and IC50 = 13.9 nM) to reduce the ability of glucagon to increase the glucose production rate (GPROD). In addition, an Emax model (Emax = 0.79 and EC50 = 575 nM) to increase glucagon secretion by the drug was used to account for the increased glucagon concentrations prechallenge (via compensatory feedback). The model adequately captured the observed profiles of glucagon, glucose, and insulin pre- and postchallenge. The model was then adapted for the T2DM patient population. A linear model to correlate fasting plasma glucose (FPG) to weighted mean glucose (WMG) was developed and provided robust predictions to assist with the dose adjustment for the interim analysis of a phase IIa study.KEY WORDS: glucagon challenge, glucagon receptor antagonist, glucose and insulin, modeling and simulation, type 2 diabetes  相似文献   

10.
Although arctigenin (AR) has attracted substantial research interests due to its promising and diverse therapeutic effects, studies regarding its biotransformation were limited. The current study aims to provide information regarding the pharmacokinetic properties of AR via various in vitro and in vivo experiments as well as semi-mechanistic pharmacokinetic modeling. Our in vitro rat microsome incubation studies revealed that glucuronidation was the main intestinal and liver metabolic pathway of AR, which occurred with Vmax, Km, and Clint of 47.5 ± 3.4 nmol/min/mg, 204 ± 22 μM, and 233 ± 9 μl/min/mg with intestinal microsomes and 2.92 ± 0.07 nmol/min/mg, 22.7 ± 1.2 μM, and 129 ± 4 μl/min/mg with liver microsomes, respectively. In addition, demethylation and hydrolysis of AR occurred with liver microsomes but not with intestinal microsomes. In vitro incubation of AR and its metabolites in intestinal content demonstrated that glucuronides of AR excreted in bile could be further hydrolyzed back to the parent compound, suggesting its potential enterohepatic circulation. Furthermore, rapid formation followed by fast elimination of arctigenic acid (AA) and arctigenin-4′-O-glucuronide (AG) was observed after both intravenous (IV) and oral administrations of AR in rats. Linear pharmacokinetics was observed at three different doses for AR, AA, and AG after IV administration of AR (0.48–2.4 mg/kg, r2 > 0.99). Finally, an integrated semi-mechanistic pharmacokinetic model using in vitro enzyme kinetic and in vivo pharmacokinetic parameters was successfully developed to describe plasma concentrations of AR, AA, and AG after both IV and oral administration of AR at all tested doses.

Electronic supplementary material

The online version of this article (doi:10.1208/s12248-014-9664-x) contains supplementary material, which is available to authorized users.KEY WORDS: arctigenic acid, arctigenin, arctigenin-4′-O-glucuronide, pharmacokinetics, semi-mechanistic pharmacokinetic modeling  相似文献   

11.
Antivenom is the definitive treatment for venomous snakebites. Alternative treatments warrant investigation because antivenom is sometimes unavailable, expensive, and can have deleterious side effects. This study assesses the efficacy of trypsin to treat coral snake envenomation in an in vivo porcine model. A randomized, blinded study was conducted. Subjects were 13 pigs injected subcutaneously with 1 mL of eastern coral snake venom (10 mg/mL) in the right distal hind limb. After 1 min, subjects were randomized to have the envenomation site injected with either 1 mL of saline or 1 mL of trypsin (100 mg/mL) by a blinded investigator. Clinical endpoint was survival for 72 h or respiratory depression defined as respiratory rate <15 breaths per minute, falling pulse oximetry, or agonal respirations. Fisher’s exact t test was used for between group comparisons. Average time to toxicity for the saline control was 263 min (191–305 min). The development of respiratory depression occurred more frequently in control pigs than treated pigs (p = 0.009). Four of the six pigs that received trypsin survived to the end of the 3-day study. No control pigs survived. Two of the trypsin treatment pigs died with times to toxicity of 718 and 971 min. Survival to 12 and 24 h was significantly greater in the trypsin treatment group (p = 0.002, p = 0.009, respectively). Local injection of trypsin, a proteolytic enzyme, at the site of envenomation decreased the toxicity of eastern coral snake venom and increased survival significantly. Further investigation is required before these results can be extended to human snakebites.  相似文献   

12.
Both alcohol withdrawal syndrome (AWS) and benzodiazepines can cause delirium. Benzodiazepine-associated delirium can complicate AWS and prolong hospitalization. Benzodiazepine delirium can be diagnosed with flumazenil, a GABA-A receptor antagonist. By reversing the effects of benzodiazepines, flumazenil is theorized to exacerbate symptoms of AWS and precludes its use. For patients being treated for alcohol withdrawal, flumazenil can diagnose and treat benzodiazepine delirium without precipitating serious or life-threatening adverse events. Hospital admission records were retrospectively reviewed for patients with the diagnosis of AWS who received both benzodiazepines and flumazenil from December 2006 to June 2012 at a university-affiliated inpatient toxicology center. The day of last alcohol consumption was estimated from available blood alcohol content or subjective history. Corresponding benzodiazepine, flumazenil, and adjunctive sedative pharmacy records were reviewed, as were demographic, clinical course, and outcome data. Eighty-five patients were identified (average age 50.3 years). Alcohol concentrations were detectable for 42 patients with average 261 mg/dL (10–530 mg/dL). Eighty patients were treated with adjunctive agents for alcohol withdrawal including antipsychotics (n = 57), opioids (n = 27), clonidine (n = 35), and phenobarbital (n = 23). Average time of flumazenil administration was 4.7 days (1–11 days) after abstinence, and average dose was 0.5 mg (0.2–1 mg). At the time of flumazenil administration, delirium was described as hypoactive (n = 21), hyperactive (n = 15), mixed (n = 41), or not specified (n = 8). Response was not documented in 11 cases. Sixty-two (72.9 %) patients had significant objective improvement after receiving flumazenil. Fifty-six patients required more than one dose (average 5.6 doses). There were no major adverse events and minor adverse effects included transiently increased anxiety in two patients: 1 patient who received 0.5 mg on abstinence day 2 and another patient who received 0.2 mg flumazenil on abstinence day 11. This is the largest series diagnosing benzodiazepine delirium after AWS in patients receiving flumazenil. During the treatment of AWS, if delirium is present on day 5, a test dose of flumazenil may be considered to establish benzodiazepine delirium. With the limited data set often accompanying patients with AWS, flumazenil diagnosed benzodiazepine delirium during the treatment of AWS and improved impairments in cognition and behavior without serious or life-threatening adverse events in our patients.  相似文献   

13.
Li Y  Wang J  Gao Y  Zhu J  Wientjes MG  Au JL 《The AAPS journal》2011,13(4):585-597
Positive surface charge enhances liposome uptake into cells. Pegylation, used to confer stealth properties to enable in vivo applications of cationic liposomes, compromises internalization. The goal of this study was to determine the quantitative relationships between these two liposome properties (separately and jointly), liposomes binding to cell membrane, and the subsequent internalization and residence in intracellular space (referred to as intracellular bioavailability). The results, obtained in pancreatic Hs-766T cancer cells, revealed nonlinear and inter-dependent relationships, as well as substantial qualitative and quantitative differences. The proportionality constant K of intracellular and membrane-bound liposomes at equilibrium (i.e., Ieq and Beq) showed a positive triphasic relationship with surface charge and a negative biphasic relationship with pegylation. Near-neutral liposomes showed little internalization of the membrane-bound moiety, increasing to a constant K value for medium charge liposomes (+15 to +35 mV zeta potential), followed by a further increase for highly charged liposomes (greater than or equal to +46 mV). The decline of pegylation with K value showed a breakpoint at 2%. The negative consequences of pegylation (%PEG) were partially offset by increasing charge (ZP). The best-fitting regression equations are: Beq = −1.36 × %PEG + 0.33 × ZP; Ieq = −1.52 × %PEG + 0.34 × ZP. It suggested that 1% pegylation increase can be offset with 4 mV ZP. The differences are such that it may be possible to balance these parameters to simultaneously maximize the stealth property and intracellular bioavailability of cationic liposomes.KEY WORDS: cationic liposomes, internalization, membrane binding, pegylation, zeta potential  相似文献   

14.
Humans and rats poisoned with sarin develop chronic neurological disabilities that are not prevented with standardized antidotal therapy. We hypothesized that rats poisoned with the sarin analogue diisopropylfluorophosphate (DFP) and resuscitated with atropine and pralidoxime would have long-term memory deficits that were preventable with naltrexone treatment. Long Evans rats (250–275 g) were randomized to: DFP (N = 8): single subcutaneous (SC) injection of DFP (5 mg/kg). Treatment (N = 9): DFP (5 mg/kg) followed by chronic naltrexone (5 mg/kg/day × 12 weeks). Control (N = 12): single SC injection of isopropyl alcohol, (DFP vehicle) followed by chronic naltrexone (5 mg/kg/day). If toxicity developed after injection, antidotal therapy was initiated with atropine (2 mg/kg) and pralidoxime (25 mg/kg) and repeated as needed. After 12 weeks, rats underwent testing for place learning (acquisition) across 5 days of training using the Morris Water Maze. On day 6 a memory retention test was performed. Statistical analysis was performed using IBM SPSS Statistics. Rats receiving DFP rapidly developed toxicity requiring antidotal rescue. No differences in acquisition were seen between the DFP vs. DFP + naltrexone rats. During memory testing, DFP-poisoned rats spent significantly less time (29.4 ± 2.11 versus 38.5 ± 2.5 s, p < 0.05) and traveled less distance (267 ± 24.6 versus 370 ± 27.5 cm, p < 0.05) in the target quadrant compared to the treatment group. Treatment rats performed as well as control rats (p > 0.05) on the test for memory retention. Poisoning with DFP induced impaired memory retention. Deficits were not prevented by acute rescue with atropine and pralidoxime. Chronic naltrexone treatment led to preserved memory after DFP poisoning.  相似文献   

15.
16.
Modafinil is a non-amphetamine wakefulness-promoting agent used for the treatment of various sleep disorders characterized by excessive daytime sleepiness. There is little information in the medical literature with respect to supratherapeutic doses of this medication. We performed a retrospective review of the California Poison Control System database for all cases of single-substance ingestion of modafinil with follow-up to a known outcome for the time period 1998–2008. Data collected included age, gender, dose ingested, clinical effects, and medical outcome. There were a total of 87 patients, 53 (61%) of which were female. Patient ages ranged from 1.25 to 72 years with a mean of 30 years; 17 (20%) patients were aged 6 years or less. Thirty-three (38%) were intentional overdoses. Most commonly reported effects were tachycardia (n = 23), agitation (n = 14), anxiety (n = 11), headache (n = 8), hypertension (n = 6), dystonia/tremor (n = 6), and dizziness (n = 5). Forty-nine patients (56%) were managed at home, and 38 (44%) were managed in a healthcare setting. Therapies administered included activated charcoal (n = 8), benzodiazepines (n = 7), antihistamines (n = 2), intravenous fluids (n = 2), haloperidol (n = 2), and beta-blockers (n = 1). Effects were classified as none (n = 22), minor (n = 54), and moderate (n = 11). No major effects and no deaths occurred. Effects of modafinil overdose appear to be mild in most cases, with tachycardia and CNS symptoms predominating. Clinically significant effects requiring treatment occurred in a small number of patients.  相似文献   

17.
18.
Matrix metalloproteinases (MMPs) play an important role in alcoholic liver disease. In this study, we evaluated the relationship between pro MMP-9 (pMMP-9) and oxidative stress in plasma of rat exposed to chronic alcohol consumption. Twenty four rats were divided into four groups. Rats in the control group (n = 6) were subjected to physiologic saline by intragastric (i.g.) route. Group Ethanol (n = 6) was given 1 ml of 80% ethanol (v/v) in distilled water through i.g. route. Group Vitamin E (Vit E), (n = 6) was given vitamin E (100 mg kg−1 day−1) by intra peritonealy. Group Vitamin E + Ethanol (n = 6) was given vitamin E 2 h before the administration of ethanol. At the end of 4 weeks, blood samples were taken and plasma malondialdehyde (MDA), protein carbonyls (PCs), aspartate aminotransferase (AST), tumor necrosis factor-α (TNF-α) and pMMP-9 levels were measured. Chronic ethanol administration increased the AST, MDA, PCs, TNF-α and pMMP-9 levels when compared to those in control group (p < 0.05, p < 0.01, p < 0.01, p < 0.05, p < 0.05, respectively). Vitamin E treatment was found to decrease lipid peroxidation and protein oxidation (p < 0.01, p < 0.01, respectively). Also TNF-α and pMMP-9 levels returned to normal by vitamin E treatment. Within all subjects, there was positive correlation between pMMP-9 levels and MDA, PCs levels (p = 0.045, r = 0.454; p = 0.004, r = 0.574, respectively). We conclude that since antioxidant supplementation decreases the alcohol-induced pMMP-9 levels, oxidative stress could be one of the mediators of the generation of MMP-9.  相似文献   

19.
20.
It has been suggested that the neonatal Fc receptor (FcRn) is a primary determinant of the distribution of IgG to the brain. In the present report, 125I-labeled 7E3, a monoclonal IgG1 antibody, was injected intravenously to groups of FcRn-deficient mice and C57BL/6J control mice. Sub-groups of three mice were sacrificed at several time points. Blood and brain tissue were harvested and radioactivity was assessed. Antibody concentrations in brain were corrected for residual blood using 51Cr-labeled red blood cells. Data were analyzed via WinNonlin, and areas under plasma and tissue concentration vs. time curves (AUCs) were assessed via the Bailer method. The apparent plasma elimination half-life and clearance of 7E3 were 13.61 ± 0.61 days and 6.5 ± 0.10 ml/day/kg in control mice and 0.70 ± 0.05 days and 63.5 ± 2.7 ml/day/kg in the knockout mice. Plasma and brain AUCs (0–10 days) were found to be 3,338.7 ± 50.4 and 7.46 ± 0.5 nM day in control animals and 781.2 ± 16.6 and 1.65 ± 0.1 nM day in FcRn-deficient animals. There was no significant difference between brain-to-plasma AUC ratios in control and FcRn-deficient mice (0.0022 ± 0.00015 vs. 0.0021 ± 0.00011, p = 0.3347). Two-way analysis of variance showed no significant differences, at any time point, between brain-to-plasma concentration ratios determined from control and knockout animals. The results suggest that FcRn does not contribute significantly to the “blood–brain barrier” for IgG in mice, and the data suggest that FcRn is not responsible for the low exposure of IgG in the brain relative to plasma.Key words: antibody, blood brain barrier, FcRn, IgG, pharmacokinetics  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号