首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mirror neuron system (MNS) was first discovered in non-human primates; these neurons fire when a monkey performs an action or observes another monkey (or even some people) performing that same action. Recent findings have suggested that neural rehabilitation might be achieved through the activation of the MNS in patients after stroke. We propose two major mechanisms (one involving adult neurogenesis and another involving brain-derived neurotrophic factor) that may underlie the activation, modulation and experience-dependent plasticity in the MNS, for further study on promoting central nerve functional reconstruction and rehabilitation of patients with central nervous system injury.  相似文献   

2.
Although many studies have examined the location and function of the mirror neuron system (MNS) in human adults, we know relatively little about its development. The current study fills this gap by using fMRI to examine for the first time the development of the brain regions implicated in action execution, action observation, and their overlap. We examined age-related differences in brain activation by contrasting a group of children (n = 21) and adults (n = 18). Surfaced-based analyses of action execution and action observation revealed that brain activity for action observation and execution in children is similar to adults, though adults displayed greater activity than children within the right superior parietal lobe during action execution and the occipital lobe during action observation compared to control. Further, within-individual measures of overlapping activation between action observation and execution revealed age-related differences, such that adults, compared to children, displayed more spatial overlap. Moreover, the extent of the overlap in activation across conditions was related to better motor skills and action representation abilities in children. These data indicate that the MNS changes between middle childhood and adulthood. The data also demonstrate the functional significance of the putative MNS to motor skills and action representation during development.  相似文献   

3.
Traditionally the mirror neuron system (MNS) only includes premotor and posterior parietal cortices. However, somatosensory cortices, BA1/2 in particular, are also activated during action execution and observation. Here, we examine whether BA1/2 and the parietofrontal MNS integrate information by using functional magnetic resonance imaging (fMRI)-guided continuous theta-burst stimulation (cTBS) to perturb BA1/2. Measuring brain activity using fMRI while participants are under the influence of cTBS shows local cTBS effects in BA1/2 varied, with some participants showing decreases and others increases in the BOLD response to viewing actions vs control stimuli. We show how measuring cTBS effects using fMRI can harness this variance using a whole-brain regression. This analysis identifies brain regions exchanging action-specific information with BA1/2 by mapping voxels away from the coil with cTBS-induced, action-observation-specific BOLD contrast changes that mirror those under the coil. This reveals BA1/2 exchanges action-specific information with premotor, posterior parietal and temporal nodes of the MNS during action observation. Although anatomical connections between BA1/2 and these regions are well known, this is the first demonstration that these connections carry action-specific signals during observation and hence, that BA1/2 plays a causal role in the human MNS.  相似文献   

4.
镜像神经元系统在动作理解与语言演化中的作用   总被引:3,自引:0,他引:3  
镜像神经元是近年来认知神经科学领域最为重要的发现之一,其功能涵盖了动作理解、模仿学习、语言理解、共情、动作预测和语言的进化等多个领域。本文归纳了镜像神经元系统在动作理解和语言交流中的作用,进一步总结了进化过程中镜像神经元系统介入肢体语言到声音语言的可能性。针对镜像神经元系统的可塑性,我们讨论了通过调控镜像神经元系统的非侵入性治疗手段对自闭症以及外伤性神经损伤的实用性。  相似文献   

5.
The discovery of mirror neurons in the monkey, that fire during both the execution and the observation of the same action, sparked great interest in studying the human equivalent. For over a decade, both functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) have been used to quantify activity in the human mirror neuron system (MNS)-yet, little is still known about how fMRI and EEG measures of the MNS relate to each other. To test the frequent assumption that regions of the MNS as evidenced by fMRI are the origin of the suppression of the EEG μ-rhythm during both action execution and observation, we recorded EEG and BOLD-fMRI signals simultaneously while participants observed and executed actions. We found that the suppression of the μ-rhythm in EEG covaried with BOLD activity in typical MNS regions, inferior parietal lobe (IPL), dorsal premotor (dPM) and primary somatosensory cortex (BA2), during both action observation and execution. In contrast, in BA44, only nonoverlapping voxels correlated with μ-suppression during observation and execution. These findings provide direct support for the notion that μ-suppression is a valid indicator of MNS activity in BA2, IPL, and dPM, but argues against the idea that mirror neurons in BA44 are the prime source of μ-suppression. These results shed light on the neural basis of μ-suppression and provide a basis for integrating more closely the flourishing but often separate literatures on the MNS using fMRI and EEG.  相似文献   

6.
The ability to understand competitive games is closely connected to the mirror neuron system (MNS). This network is activated not only when an action is performed, but also when it is observed. Apart from allowing the understanding of actions performed by others, the MNS has been implicated in predicting subsequent actions. However, the results concerning the modulation of this network by the final outcome of these predictions are contradictory. These contradictions may be related to the use of complex experimental conditions. The aim of this research is to identify changes in the activity of the MNS when the predictions are or are not satisfied in a simple intransitive action‐based game. An event‐related functional magnetic resonance imaging study was conducted. It consisted of the observation of videos with two actors playing the well‐known rock–paper–scissors game. The participants were asked to predict the response of the second actor when the first actor performed one of the three possible actions. In some videos (congruents) the prediction was satisfied, but in the rest of the videos (incongruents) the prediction was not satisfied. When the result was shown, higher activity in the MNS was observed in the congruent videos than in the incongruent ones. Therefore, the observation of a simple manual game leads to a significant activation of the MNS, and this activity seems to be modulated by the final outcome of a prediction, and when predictions are satisfied the activity is higher.  相似文献   

7.
The mirror-neuron system (MNS) connects sensory information that describes an action with a motor plan for performing that action. Recently, studies using the repetition-suppression paradigm have shown that strong activation occurs in the left premotor and superior temporal areas in response to action-related, but not non-action-related, stimuli. However, few studies have investigated the mirror system by using event-related potentials (ERPs) and employing more than one sensory modality in the same sample. In the present study, we compared ERPs that occurred in response to visual and auditory action/non-action-related stimuli to search for evidence of overlapping activations for the two modalities. The results confirmed previous studies that investigated auditory MNS and extended these studies by showing that similar activity existed for the visual modality. Furthermore, we confirmed that the responses to action- and non-action-related stimuli were distinct by demonstrating that, in the case of action-related stimuli, activity was restricted mainly to the left hemisphere, whereas for non-action-related stimuli, activity tended to be more bilateral. The time course of ERP brain sources showed a clear sequence of events that subtended the processing of action-related stimuli. This activity seemed to occur in the left temporal lobe and, in agreement with findings from previous studies of the mirror-neuron network, the information involved appeared to be conveyed subsequently to the premotor area. The left temporo-parietal activity observed following a delay might reflect processing associated with stimulus-related motor preparation.  相似文献   

8.
Previous studies have shown that the mirror neuron system (MNS) plays an important role in action understanding. However, whether and how the MNS activity is different in individuals with autism spectrum disorders (ASD) and typically developed (TD) individuals are still unclear. The current study used activation likelihood estimation to conduct a meta-analysis of functional magnetic resonance imaging studies that investigated action observation and imitation in ASD and TD individuals. Thirteen studies were selected, and the contrasts focused on the brain effects in ASD and TD participants and the differences between the two groups. The results showed that compared with TD individuals, ASD individuals exhibited stronger effects in the anterior inferior parietal lobule, a part of the putative human MNS. In addition, the ASD group demonstrated altered effects in the occipital cortex, dorsolateral prefrontal cortex, cingulate cortex, and insula. These results suggest that ASD individuals demonstrate dysfunction of the MNS during action observation and imitation. Furthermore, brain regions involved in visual processing, executive function, and social cognitive function might also show dysfunction during action task performance.  相似文献   

9.
Apolipoprotein E plays a crucial role in inhibiting chronic neurodegenerative processes. Howev-er, its impact on neurological function following diffuse brain injury is still unclear. This study was designed to evaluate the therapeutic effects and mechanisms of action of apolipoprotein E mimetic peptide on diffuse brain injury. Apolipoprotein E mimetic peptide was administered into the caudal vein of rats with diffuse brain injury before and after injury. We found that apo-lipoprotein E mimetic peptide signiifcantly decreased the number of apoptotic neurons, reduced extracellular signal-regulated kinase1/2 phosphorylation, down-regulated Bax and cytochrome c expression, decreased malondialdehyde content, and increased superoxide dismutase activity in a dose-dependent manner. These experimental ifndings demonstrate that apolipoprotein E mimetic peptide improves learning and memory function and protects against diffuse brain injury-induced apoptosis by inhibiting the extracellular signal-regulated kinase1/2-Bax mito-chondrial apoptotic pathway.  相似文献   

10.
To assess the relationship between the mirror-neuron system (MNS), an observation-execution matching system, and handedness, we acquired functional magnetic resonance imaging from 11 right-handed (RH) and eight left-handed (LH) subjects to identify regions involved in processing action (execution and observation) of the right and left upper limbs. During the execution tasks, LH subjects had a more bilateral pattern of activation than RH. An interaction between handedness and hand observed during the observation conditions was detected in several areas of the MNS and the motor system. The within- and between-groups analyses confirmed different lateralizations of the MNS and motor system activations in RH and LH subjects during the observation tasks of the dominant and nondominant limbs. The comparison of the execution vs. observation task demonstrated that during the execution task with their dominant limbs, RH subjects activated areas of the motor system in the left hemisphere, whereas LH subjects also activated areas of the MNS. During the execution task with the nondominant limbs, both groups activated regions of the MNS and motor system. Albeit this study is based on a small sample, the patterns of MNS activations observed in RH and LH subjects support the theory that suggests that this system is involved in brain functions lateralization. In LH people, this system might contribute to their adaptation to a world essentially built for right-handers through a mechanism of mirroring and imitation.  相似文献   

11.
Although the mirror neuron system (MNS) has been extensively studied in monkeys and adult humans, very little is known about its development. Previous studies suggest that the MNS is present by infancy and that the brain and MNS-related cognitive abilities (such as language, empathy, and imitation learning) continue to develop after childhood. In humans, the PFt area of the inferior parietal lobule (IPL) seems to particularly correlate with the functional properties of the PF area in primates, which contains mirror neurons. However, little is known about the functional connectivity (FC) of the PFt area with other brain areas and whether these networks change over time. Here, we investigated the FC development of the PFt area-based network in 59 healthy subjects aged 7–26 years at resting-state to study brain development from late childhood through adolescence to early adulthood. The bilateral PFt showed similar core FC networks, which included the frontal lobe, the cingulate gyri, the insula, the somatosensory cortex, the precuneus, the superior and inferior parietal lobules, the temporal lobe, and the cerebellum posterior lobes. Furthermore, the FC between the left PFt and the left IPL exhibited a significantly positive correlation with age, and the FC between the left PFt and the right postcentral gyrus exhibited a significantly negative correlation with age. In addition, the FC between the right PFt and the right putamen exhibited a significantly negative correlation with age. Our findings suggest that the PFt area-based network develops and is reorganized with age.  相似文献   

12.
Little is known regarding the effect of chronic changes in neuronal activity on the extent of collateral sprouting by identified CNS neurons. We have investigated the relationship between activity and sprouting in oxytocin (OT) and vasopressin (VP) neurons of the hypothalamic magnocellular neurosecretory system (MNS). Uninjured MNS neurons undergo a robust collateral-sprouting response that restores the axon population of the neural lobe (NL) after a lesion of the contralateral MNS (). Simultaneously, lesioned rats develop chronic urinary hyperosmolality indicative of heightened neurosecretory activity. We therefore tested the hypothesis that sprouting MNS neurons are hyperactive by measuring changes in cell and nuclear diameters, OT and VP mRNA pools, and axonal cytochrome oxidase activity (COX). Each of these measures was significantly elevated during the period of most rapid axonal growth between 1 and 4 weeks after the lesion, confirming that both OT and VP neurons are hyperactive while undergoing collateral sprouting. In a second study the hypothesis that chronic inhibition of neuronal activity would interfere with the sprouting response was tested. Chronic hyponatremia (CH) was induced 3 d before the hypothalamic lesion and sustained for 4 weeks to suppress neurosecretory activity. CH abolished the lesion-induced increases in OT and VP mRNA pools and virtually eliminated measurable COX activity in MNS terminals. Counts of the total number of axon profiles in the NL revealed that CH also prevented axonal sprouting from occurring. These results are consistent with the hypothesis that increased neuronal activity is required for denervation-induced collateral sprouting to occur in the MNS.  相似文献   

13.
While several studies have assessed the brain patterns of cortical activations following executed and observed movements of the dominant and non-dominant lower limbs in right-handed (RH) subjects, the functional correlates of foot movement in left-handed (LH) subjects have not been investigated, yet. We investigated brain function lateralization during action execution and observation with the dominant and non-dominant feet in 8 left-handers (LH). Thirteen right-handers (RH) were also studied while performing the same tasks with their right-foot.Compared to left-foot movement, during right-foot movement, LH had greater activations of the left primary sensorimotor cortex (SMC) and the right cerebellum. Compared to right-foot movement, during left-foot movement, LH subjects activated areas of the sensorimotor network, the mirror-neurons system (MNS) and the visual network lateralized to the contralateral hemisphere. During right-foot movement no between-group difference was found.LH had a pattern of activations lateralized to the right hemisphere during right-foot observation and to the left hemisphere during left-foot observation. Compared to left-foot observation, during right-foot observation, LH had greater activations of frontal and parietal regions and visual areas. The opposite contrast showed higher activation of the right lateral occipito-temporal cortex in LH during left-foot observation. During right-foot observation, compared to RH, LH had greater activations of the bilateral primary SMC and of MNS and visual system regions.In LH, the performance of simple motor acts with the dominant lower limb might be achieved through a complex adaptation and interaction between different neuronal pathways and the daily-life environment.  相似文献   

14.
We have previously suggested that the social symptoms of autism spectrum disorder (ASD) could be caused in part by a dysfunctional mirror neuron system (MNS). Since the recursive activity of a functioning MNS might enable the brain to integrate visual and motor sensations into a coherent body schema, the deficits in self-awareness often seen in ASD might be caused by the same mirror neuron dysfunction. CL is an autistic adolescent who is profoundly fascinated with his reflection, looking in mirrors at every opportunity. We demonstrate that CL’s abnormal gait improves significantly when using a mirror for visual feedback. We also show that both the fascination and the happiness that CL derives from looking at a computer-generated reflection diminish when a delay is introduced between the camera input and screen output. We believe that immediate, real-time visual feedback allows CL to integrate motor sensations with external visual ones into a coherent body schema that he cannot internally generate, perhaps due to a dysfunctional MNS.  相似文献   

15.
Sensory inputs from cutaneous and limb receptors are known to influence motor cortex network excitability. Although most recent studies have focused on the inhibitory influences of afferent inputs on arm motor responses evoked by transcranial magnetic stimulation (TMS), facilitatory effects are rarely considered. In the present work, we sought to establish how proprioceptive sensory inputs modulate the excitability of the primary motor cortex region controlling certain hand and wrist muscles. Suprathreshold TMS pulses were preceded either by median nerve stimulation (MNS) or index finger stimulation with interstimulus intervals (ISIs) ranging from 20 to 200 ms (with particular focus on 40–80 ms). Motor-evoked potentials recorded in the abductor pollicis brevis (APB), first dorsalis interosseus and extensor carpi radialis muscles were strongly facilitated (by up to 150%) by MNS with ISIs of around 60 ms, whereas digit stimulation had only a weak effect. When MNS was delivered at the interval that evoked the optimal facilitatory effect, the H-reflex amplitude remained unchanged and APB motor responses evoked with transcranial electric stimulation were not increased as compared with TMS. Afferent-induced facilitation and short-latency intracortical inhibition (SICI) and intracortical facilitation (ICF) mechanisms are likely to interact in cortical circuits, as suggested by the strong facilitation observed when MNS was delivered concurrently with ICF and the reduction of SICI following MNS. We conclude that afferent-induced facilitation is a mechanism which probably involves muscle spindle afferents and should be considered when studying sensorimotor integration mechanisms in healthy and disease situations.  相似文献   

16.
One influential theory posits that language has evolved from gestural communication through observation-execution matching processes in the mirror neuron system (MNS). This theory predicts that observation of speech-related lip movements or even listening to speech would result in effector and task specific increase of the excitability of the corresponding motor representations in the primary motor cortex (M1), since actual movement execution is known be effector and task specific. In addition, effector and task specific inhibitory control mechanisms should be important to prevent overt motor activation during observation of speech-related lip movements or listening to speech. We tested these predictions by applying focal transcranial magnetic stimulation to the left M1 of 12 healthy right-handed volunteers and measuring motor evoked potentials (MEPs) and short-interval intracortical inhibition (SICI) in a lip muscle, the right orbicularis oris (OO), vs. a hand muscle, the right first dorsal interosseus (FDI). We found that MEP and SICI increased only in the OO but not in the FDI during viewing of speech-related lip movements or listening to speech. These changes were highly task specific because they were absent when lip movements non-related to speech were viewed. Finally, the increase in MEP amplitude in the OO correlated inversely with accuracy of speech perception, i.e. the MEP increase was directly related to task difficulty. The MEP findings support the notion that observation-execution matching is an operating process in the putative human MNS that might have been fundamental for evolution of language. Furthermore, the SICI findings provide evidence that inhibitory mechanisms are recruited to prevent unwanted overt motor activation during action observation.  相似文献   

17.
Yawning is contagious. However, little research has been done to elucidate the neuronal representation of this phenomenon. Our study objective was to test the hypothesis that the human mirror neuron system (MNS) is activated by visually perceived yawning. We used functional magnetic resonance imaging to assess brain activity during contagious yawning (CY). Signal-dependent changes in blood oxygen levels were compared when subjects viewed videotapes of yawning faces as opposed to faces with a neutral expression. In response to yawning, subjects showed unilateral activation of their Brodmann’s area 9 (BA 9) portion of the right inferior frontal gyrus, a region of the MNS. In this way, two individuals could share physiological and associated emotional states based on perceived motor patterns. This is one component of empathy (motor empathy) that underlies the development of cognitive empathy. The BA 9 is reportedly active in tasks requiring mentalizing abilities. Our results emphasize the connection between the MNS and higher cognitive empathic functions, including mentalizing. We conclude that CY is based on a functional substrate of empathy.  相似文献   

18.
Mirror neurons, originally described in the monkey premotor area F5, are embedded in a frontoparietal network for action execution and observation. A similar Mirror Neuron System (MNS) exists in humans, including precentral gyrus, inferior parietal lobule, and superior temporal sulcus. Controversial is the inclusion of Broca's area, as homologous to F5, a relevant issue in light of the mirror hypothesis of language evolution, which postulates a key role of Broca's area in action/speech perception/production. We assess “mirror” properties of this area by combining neuroimaging and intraoperative neurophysiological techniques. Our results show that Broca's area is minimally involved in action observation and has no motor output on hand or phonoarticulatory muscles, challenging its inclusion in the MNS. The presence of these functions in premotor BA6 makes this area the likely homologue of F5 suggesting that the MNS may be involved in the representation of articulatory rather than semantic components of speech. Hum Brain Mapp 36:1010–1027, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
It has been proposed that there is a core impairment in autism spectrum conditions (ASC) to the mirror neuron system (MNS): If observed actions cannot be mapped onto the motor commands required for performance, higher order sociocognitive functions that involve understanding another person's perspective, such as theory of mind, may be impaired. However, evidence of MNS impairment in ASC is mixed. The present study used an ‘automatic imitation’ paradigm to assess MNS functioning in adults with ASC and matched controls, when observing emotional facial actions. Participants performed a pre-specified angry or surprised facial action in response to observed angry or surprised facial actions, and the speed of their action was measured with motion tracking equipment. Both the ASC and control groups demonstrated automatic imitation of the facial actions, such that responding was faster when they acted with the same emotional expression that they had observed. There was no difference between the two groups in the magnitude of the effect. These findings suggest that previous apparent demonstrations of impairments to the MNS in ASC may be driven by a lack of visual attention to the stimuli or motor sequencing impairments, and therefore that there is, in fact, no MNS impairment in ASC. We discuss these findings with reference to the literature on MNS functioning and imitation in ASC, as well as theories of the role of the MNS in sociocognitive functioning in typical development.  相似文献   

20.
Apolipoprotein E (apoE) is the primary apolipoprotein synthesized in the brain in response to injury with known neuroprotective effects exerted through antioxidant, antiinflammatory, antiexcitotoxic, and neurotrophic mechanisms. We have previously demonstrated that COG1410, an apoE mimetic peptide, exerts neuroprotective and antiinflammatory effects in a murine model of traumatic brain injury (TBI). As in TBI, ischemia-reperfusion injury is a component of acute stroke, which displays a pharmacogenetic association with the APOE4 gene. Using an intraluminal middle cerebral occlusion (MCAO) model in rats, we found that a single intravenous injection of COG1410 at 120 min post-MCAO significantly improved vestibulomotor function, decreased poststroke locomotor asymmetry, and decreased infarct volume of the ipsilateral hemisphere. These results support further exploration of a novel apoE-mimetic peptide, COG1410, as a therapeutic treatment for stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号