首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Molecular modeling was undertaken at aims to analyze the interactions between oleic acid and human leukocyte elastase (HLE), plasmin and matrix metalloproteinase-2 (MMP-2), involved in the inhibitory capacity of fatty acid towards those proteases. The carboxylic acid group of the fatty acid was found to form a salt bridge with Arg217 of HLE while unsaturation interacted with Phe192 and Val216 at the S3 subsite, and alkyl end group occupied S1 subsite. In keeping with the main contribution of kringle 5 domain in plasmin–oleic acid interaction [Huet E et al. Biochem Pharmacol 2004;67(4):643–54], docking computations revealed that the long alkyl chain of fatty acid inserted within an hydrophobic groove of this domain with the carboxylate forming a salt bridge with Arg512. Finally, blind docking revealed that oleic acid could occupy both S′1 subsite and Fn(II)3 domain of MMP-2. Several residues involved in Fn(II)3/oleic acid interaction were similarly implicated in binding of this domain to collagen.Oleic acid was covalently linked to galardin (at P′2 position): OL-GAL (CONHOH) or to its carboxylic acid counterpart: OL-GAL (COOH), with the idea to obtain potent MMP inhibitors able to also interfere with elastase and plasmin activity. OL-GALs were found less potent MMP inhibitors as compared to galardin and no selectivity for MMP-2 or MMP-9 could be demonstrated. Docking computations indicated that contrary to oleic acid, OL-GAL binds only to MMP-2 active site and surprisingly, hydroxamic acid was unable to chelate Zn, but instead forms a salt bridge with the N-terminal Tyr110. Interestingly, oleic acid and particularly OL-GALs proved to potently inhibit MMP-13. OL-GAL was found as potent as galardin (Ki equal to 1.8 nM for OL-GAL and 1.45 nM for GAL) and selectivity for that MMP was attained (2–3 log orders of difference in inhibitory potency as compared to other MMPs).Molecular modeling studies indicated that oleic acid could be accommodated within S′1 pocket of MMP-13 with carboxylic acid chelating Zn ion. OL-GAL also occupied such pocket but hydroxamic acid did not interact with Zn but instead was located at 2.8 Å from Tyr176.Since these derivatives retained, as their oleic acid original counterpart, the capacity to inhibit the amidolytic activity of HLE and plasmin as well as to decrease HLE- and plasmin-mediated pro MMP-3 activation, they might be of therapeutic value to control proteolytic cascades in chronic inflammatory disorders.  相似文献   

2.
Impaired wound healing and skin aging are characterized by neutral protease-mediated destruction of matrix macromolecules associated with disturbance in tissue repair. We synthesized a fatty acyl-peptide derivative at aims to simultaneously activate latent TGF-beta through its peptide domain, KFK, and inhibit MMPs through its lipophilic moiety, elaidic acid. Elaidyl-KFK as well as KFK were shown to activate LAP-TGF-beta both in vitro, using a solid phase assay with immobilized LAP-TGF-beta, and ex vivo using human dermal fibroblasts cultures. In both assays, as much as up to 10% of LAP-TGF-beta added could be recovered as active form. KQK, KQFK as well as their lipopeptide counterparts were inactive. Elaidyl-KFK-mediated LAP-TGF-beta activation led to up-regulation of collagen and TIMP-1 production and down regulation of PMA-induced MMP-1 expression in fibroblasts cultures. Those effects could be suppressed by supplementing cell culture medium with blocking TGF-beta antibody. Elaidyl-KFK inhibited MMP-2, MMP-9, MMP-3, MMP-1, in vitro with IC(50) equal to 1.2, 1.0, 0.24 and 8.9 microM, respectively. Its ex vivo inhibitory capacity, as assessed using skin tissue sections, towards the elastin-degrading capacity of MMP-9 was even more pronounced. At a 1 microM concentration, the lipopeptide decreased by up to 80% enzyme activity. Thus, "Lipospondin," i.e. elaidyl-KFK might be considered as a promising model compound to prevent age-associated dermal alterations.  相似文献   

3.
The urokinase-type plasminogen activator (uPA) protein is a multifunctional protein involved in a myriad of biological activities including extracellular matrix degradation and cell invasion. Active uPA is a 411 amino acid protein consisting of 3 domains, each of which confers a particular biological function to the overall protein. The amino terminal domain or growth factor domain (GFD), comprised of amino acid residues 1 – 48, is involved in uPA interaction with its cell surface receptor, urokinase-type plasminogen activator receptor (UPAR). The interaction of uPA with UPAR promotes, in part, cell adhesion, migration and invasion. A second domain is the kringle domain, comprising amino acid residues 49 – 135. Initially thought to bind heparin, the kringle domain has more recently been shown to possess antiangiogenic activity. A third domain comprising amino acid residues 159 – 411, the serine protease domain, is involved in the proteolytic activation of plasminogen to plasmin. The production of plasmin by uPA begins a cascade of events manifested by extracellular matrix degradation. The recent patent literature describes small molecule compounds, which inhibit the interaction of uPA with UPAR, inhibit the proteolytic activity of the uPA serine protease domain and inhibit the interaction of uPA with its natural inhibitor, plasminogen activator inhibitor-1 (PAI-1). Small peptides encompassing residues 19 – 31 of the GFD have been developed which exhibit potent inhibition of the uPA–UPAR interaction and show efficacy in tumour-bearing animal models. Small molecules have been disclosed by Corvas, which are reported to be inhibitors of PAI-1. Finally, two approaches toward the development of inhibitors of the uPA serine protease domain have been described in the recent patent literature. The first approach describes non-covalent peptidederived inhibitors discovered by phage display techniques, which bind in the substrate-binding groove of the uPA active site. An alternative approach describes non-covalent small molecule inhibitors, which bind in the enzyme active site in a slightly different binding mode than the peptide-derived inhibitors. These small molecule non-peptide analogues inhibit the uPA proteolytic activity quite effectively and are reported to possess excellent enzyme selectivity and highly improved oral activity. The clinical utility of small molecule uPA enzyme inhibitor analogues awaits the results of a preliminary clinical evaluation of compounds described by Wilex.  相似文献   

4.
ProMMP-2 activation by Bothrops asper venom was investigated in mouse gastrocnemius muscle, mammalian cell culture and a cell-free system. Zymography revealed an increment of latent and activated forms of MMP-2 in muscle homogenates 1-3 days after venom injection. To clarify if venom can induce expression and activation of MMP-2, independently of the inflammatory response, venom was added to cultured human fibroblasts, endothelial and skeletal muscle cells, which expressed proMMP-2 constitutively. Venom activated proMMP-2 without promoting its expression. Venom also activated and degraded proMMP-2 in supernatants collected from fibroblast cultures, indicating that cells are not required for this activation. Pretreatment with EDTA increased MMP-2 activation and reduced degradation. Venom serine proteinases activated proMMP-2, whereas BaP1, a P-I metalloproteinase, predominantly degraded the latent and active forms of MMP-2. Moreover, pretreatment of conditioned medium with serine proteinase inhibitors greatly reduced the venom-induced activation, suggesting that venom proteinases activate MMP-2 via a serine proteinase secreted by fibroblasts. Venom also directly activated and degraded purified proMMP-2, albeit requiring a high concentration. Thus, B. asper venom proteinases activate and degrade proMMP-2 without inducing its synthesis. Serine proteinases play a dominant role in the activation, whereas metalloproteinases predominantly degrade MMP-2. Activation of proMMP-2 by snake venom proteinases, independently of the MT1-MMP/TIMP-2 pathway, extracellular matrix degradation or apoptosis, represents a novel mechanism in human fibroblasts.  相似文献   

5.
BACKGROUND AND PURPOSE: Peroxisome proliferator-activated receptor (PPAR)-gamma ligands have been shown to inhibit cardiac fibrosis. However, the underlying mechanisms are poorly understood. We investigated the regulation by PPAR-gamma ligands of angiotensin (Ang) II-induced plasminogen activator inhibitor (PAI)-1, extracellular matrix (ECM) production and cell growth in cardiac fibroblasts. EXPERIMENTAL APPROACH: The effects of PPAR-gamma ligands on Ang II-induced PAI-1, ECM expression and cell growth were assessed in primary-cultured rat cardiac fibroblasts; cardiac PAI-1 and ECM production was examined in Ang II-infused rats. KEY RESULTS: In growth-arrested cardiac fibroblasts, PPAR-gamma ligands rosiglitazone and 15-deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2) dose-dependently attenuated Ang II-induced cell proliferation and expression of PAI-1, collagen type-I, collagen type-III and fibronectin. An accompanying increase in PPAR-gamma expression and activation was also observed. These suppressive effects were attenuated by the PPAR-gamma antagonists GW9662 and bisphenol A diglycidyl ether (BADGE). Moreover, rosiglitazone and 15d-PGJ2 inhibited in part the expression and phosphorylation of Ang II-induced transforming growth factor (TGF)-beta1, Smad2/3 and c-Jun NH(2)-terminal kinase (JNK). Ang II infusion in rats markedly increased left ventricular production of PAI-1, collagen and fibronectin, with a concurrent increase in the ratios of heart weight/body weight and left ventricle weight/body weight. Co-treatment with rosiglitazone significantly decreased these levels and upregulated PPAR-gamma expression. CONCLUSIONS AND IMPLICATIONS: Rosiglitazone and 15d-PGJ2 suppress Ang II-induced production of PAI-1 and ECM probably via interactions between PPAR-gamma and TGF-beta1/Smad2/3 and JNK signalling pathways. It is suggested that PPAR-gamma and its ligands may have potential applications in preventing cardiac fibrosis.  相似文献   

6.
Like the metastasis-associated protein S100A4, matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are important in physiological and pathological conditions. Previously, we showed that S100A4 is involved in the regulation of MMPs and TIMPs, and in the present work we have investigated whether the anti-inflammatory and microtubule-disrupting drug colchicine has an effect on the expression of these proteins in osteosarcoma cell lines (OHS) with high and low levels of S100A4. Colchicine treatment of the various OHS cells resulted in an increased expression of MT1-MMP and TIMP-2 mRNA, and a corresponding increase of these two proteins in isolated cell membranes. Colchicine-treated cells produced more of the activated form of MMP-2 than control cells. However, the drug did not affect the amount of MMP-2 and TIMP-1 mRNA or protein, and it reduced the S100A4 mRNA expression. Isolated cell membranes from the colchicine-treated cells were more effective in activating exogenous proMMP-2 than membranes from control cells, and inhibitory studies indicated that it was the colchicine-induced increase in MT1-MMP that caused the increased activation of endogenous MMP-2. A peptide inhibitor of nuclear factor kappaB nuclear translocation, SN50, blocked the colchicine-induced activation of proMMP-2 and reduced the synthesis of MMP-2 in colchicine-treated cells, but not in control cells. It can be concluded that colchicine modulates the expression of MT1-MMP and TIMP-2 and hence the activation of proMMP-2 independently of the S100A4 level in osteosarcoma cells.  相似文献   

7.
8.
Ultraviolet (UV) irradiation leads to distinct changes in skin connective tissues by degradation of collagen, which is a major structural component in the extracellular matrix most likely mediated by matrix metalloproteinases (MMP), collagenases. These changes in collagenous skin tissues have been suggested to be causes of the skin wrinkling observed in premature aging of the skin. This study mimicked the action of environmental ultraviolet on skin and investigated whether (-)epigallocatechin gallate (EGCG), a bioactive catechin component of green tea, mechanistically inhibited activation of MMP-1, MMP-8, and MMP-13 and destruction of collagen in UV-B irradiated human dermal fibroblasts by modulating cellular signaling pathways. Cell viability was moderately decreased by > or = 30% in human dermal fibroblasts treated with 100 mJ/cm2 UV-B, accompanying a substantial generation of reactive oxygen species evidenced by DCF staining. Western blot analysis and immunocytochemical staining revealed that EGCG markedly suppressed collagen degradation enhanced in UV-B-exposed human dermal fibroblast. Pre-treatment of fibroblasts with EGCG also inhibited UV-B-induced production of collagenases, MMP-1, MMP-8 and MMP-13, in a dose-dependent manner. In addition, EGCG rapidly and substantially hampered UV-B irradiation-induced activation of ASK-1 and phosphorylation of MAPK, JNK, p38 MAPK, and ERK1/2, in dermal fibroblasts. These results demonstrate that EGCG has abilities to hamper UV-B-induced collagenolytic MMP production via interfering with the MAPK-responsive pathways. Therefore, EGCG may be a potential agent for the prevention and treatment of skin photoaging.  相似文献   

9.
Abstract: Aromatic amino acid residues within kringle domains play important roles in the structural stability and ligand-binding properties of these protein modules. In previous investigations, it has been demonstrated that the rigidly conserved Trp25 is primarily involved in stabilizing the conformation of the kringle-2 domain of tissue-type plasminogen activator (K2tPA), whereas Trp63, Trp74, and Tyr76 function in ω-amino acid ligand binding, and, to varying extents, in stabilizing the native folding of this kringle module. In the current study, the remaining aromatic residues of K2tPA, viz., Tyr2, Phe3, Tyr9, Tyr35, Tyr52, have been subjected to structure–function analysis via site-directed mutagenesis studies. Ligand binding was not significantly influenced by conservative amino acid mutations at these residues, but a radical mutation at Tyr35 destabilized the interaction of the ligand with the variant kringle. In addition, as reflected in the values of the melting tempe0ratures, changes at Tyr9 and Tyr52 generally destabilized the native structure of K2tPA to a greater extent than changes at Tyr2, Phe3, and Tyr35. Taken together, results to date show that, in concert with predictions from the crystal structure of K2tPA, ligand binding appears to rely most on the integrity of Trp63 and Trp74, and aromaticity at Tyr76. With regard to aromatic amino acids, kringle folding is most dependent on Tyr9, Trp25, Tyr52, Trp63, and Tyr76. As yet, no obvious major roles have been uncovered for Tyr2, Phe3, or Tyr35 in K2tPA.  相似文献   

10.
Human paraoxonase (PON1) was previously shown to hydrolyze over 30 different lactones (cyclic esters). In the present study purified human PON1 was found to catalyze the reverse reaction (lactonization) of a broad range of hydroxy acids. Hydroxy acid lactonization or lactone hydrolysis is catalyzed until equilibrium between the open and closed forms is reached. Lactonization by PON1 was calcium-dependent, had a pH optimum of 5.5-6 and could be stimulated with dilauroylphosphatidylcholine. Rabbit serum PON3 and a serine esterase in mouse plasma, presumably a carboxylesterase, also catalyzed hydroxy acid lactonization. Two endogenous oxidized unsaturated fatty acids, (+/-)4-hydroxy-5E,7Z,10Z,13Z,16Z,19Z-docosahexaenoic acid (4-HDoHE) and (+/-)5-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-HETE) lactone, were very efficiently lactonized and hydrolyzed, respectively, by PON1. Human and mouse plasma samples also catalyzed 4-HDoHE lactonization and 5-HETE lactone hydrolysis. Studies with the PON1 inhibitor EDTA and the serine esterase inhibitor phenylmethylsulfonylfluoride suggest that about 80-95% of both activities can be attributed to PON1 in the human samples. In the mouse sample, PON1 accounted for about 30% of the 4-HDoHE lactonizing activity and 72% of the 5-HETE lactonase activity. Our results demonstrate that PON1 can lactonize the hydroxy acid form of its lactone substrates and that reversible hydrolysis of lactones may be a property of lactonases that is not generally considered. Also, the high activity of PON1 towards 4-HDoHE and 5-HETE lactone suggests that oxidized eicosanoids and docosanoids may be important physiological substrates for PON1.  相似文献   

11.
The fatty acid content and composition of hepatic microsomes of separated smooth and rough components and of isolated phosphatidylcholine and phosphatidylethanolamine fractions were studied in male albino rats treated with phenobarbital or carbon tetrachloride. Both test compounds significantly altered the fatty acid composition of the endoplasmic reticulum. The total amount was significantly raised by phenobarbital and reduced by carbon tetrachloride. Phenobarbital enhanced palmitic, stearic, arachidic, palmitoleic, linoleic, eicosenoic, eicosadienoic, eicosatrienoic, eicosapentenoic, docosatrienoic, and docosahexenoic acids. Carbon tetrachloride diminished all these, excluding palmitic and palmitoleic acids. The fatty acid content of rough microsomes was significantly increased by phenobarbital and decreased by carbon tetrachloride, while in smooth microsomes fatty acids were raised by phenobarbital but mainly unaffected by carbon tetrachloride. In microsomal phosphatidylcholine fractions, phenobarbital significantly elevated oleic, linoleic, eicosatrienoic, arachidonic, eicosapentenoic, docosapentenoic, and docosahexenoic acids, whereas all these were significantly reduced with carbon tetrachloride. In phosphatidylethanolamine fractions, phenobarbital increased palmitoleic, oleic, linoleic, and arachidonic acids; carbon tetrachloride elicited opposite effects on these acids. Phenobarbital increased and carbon tetrachloride reduced the fatty acid content in the phosphatidylcholine fraction of rough membranes. Opposite effects were seen in oleic, linoleic, arachidonic, and eicosapentenoic acids. Both test compounds brought about similar changes in the fatty acid composition of the phosphatidylethanolamine fractions of rough microsomes. In smooth microsomes, phosphatidylcholine fatty acids were significantly enhanced by phenobarbital and reduced by carbon tetrachloride. The fatty acid content of phosphatidylethanolamine was increased by phenobarbital, mainly manifesting in palmitoleic, oleic, linoleic, arachidonic, docosapentenoic, and docosahexenoic acids. Carbon tetrachloride elicited no major change in this fraction. Phenobarbital increased the production of unsaturated fatty acids, whereas carbon tetrachloride elevated the relative amount of saturated fatty acids. The saturated/unsaturated fatty acids ratio was reduced by phenobarbital and increased by carbon tetrachloride, and thus may indicate a selective difference between an inducer and hepatotoxin on fatty acid synthesis of the hepatic endoplasmic reticulum.  相似文献   

12.
Stromelysin-1 (matrix metalloproteinase-3: MMP-3) occupies a central position in collagenolytic and elastolytic cascades, leading to cutaneous intrinsic and extrinsic aging. We screened extracts of a propolis sample from Algeria with the aim to isolate compounds able to selectively inhibit this enzyme. A butanolic extract (B (3)) of the investigated propolis sample was found to potently inhibit MMP-3 activity (IC (50) = 0.15 ± 0.03 μg/mL), with no or only weak activity on other MMPs. This fraction also inhibited plasmin amidolytic activity (IC (50)?= 0.05 μg/mL) and impeded plasmin-mediated proMMP-3 activation. B (3) was fractionated by HPLC, and one compound, characterized by NMR and mass spectroscopy and not previously identified in propolis, i.e., (+)-chicoric acid, displayed potent IN VITRO MMP-3 inhibitory activity (IC (50)?= 6.3 × 10 (-7) M). In addition, both caffeic acid and (+)-chicoric acid methyl ester present in fraction B (3) significantly inhibited UVA-mediated MMP-3 upregulation by fibroblasts.  相似文献   

13.
In this study we determined the in vitro effects of polysulfated glycosaminoglycan (PSGAG) and the glucocorticoid triamcinolone acetonid (TA) on the IL-1 altered expression and activity of matrix metalloproteinases (MMP-1, MMP-3), tissue inhibitor of metalloproteinases-1, the plasminogen activators tPA and uPA and plasminogen activator inhibitor 1 by articular chondrocytes. Bovine chondrocytes were cultured in alginate gel beads. Cells were treated with interleukin-1alpha (IL-1alpha) in the presence of vehicle or drugs at various concentrations. After 48hr mRNA expression of MMP-1, MMP-3, TIMP-1, uPA, tPA and PAI-1 was analyzed by RT-PCR-ELISA. The protein synthesis of TIMP-1 and MMP-3 was determined by immunoprecipitation, PAI-1 protein was quantitated by ELISA. The activity of enzymes and inhibitors was measured by functional assays. Treating chondrocytes with IL-1 induced the expression of MMPs and downregulated TIMP-1 but stimulated both the expression of PAs and PAI-1. Both drugs significantly reduced collagenase and proteoglycanase activities which was accompanied by inhibition of the expression of MMP-1 and MMP-3. The IL-1 decreased expression of TIMP-1 was further reduced by TA, which resulted in a significant loss of TIMP activity. No effects on TIMP activity or TIMP-1 biosynthesis were observed after treatment of chondrocytes with PSGAG. Both drugs inhibited the IL-1-induced mRNA expression of tPA, whereas expression of uPA was only mildly reduced by PSGAG, which also induced PAI-1 above IL-1 stimulated levels. As inhibition of collagenase activities and tPA expression by PSGAG occurred at physiological concentrations it might be of clinical relevance, indicating that PSGAG could help reducing cartilage degradation and has a strong anti-fibrinolytic potential. Due to their co-regulation of MMPs and TIMP(s) glucocorticoids should be carefully studied for their overall effect on extracellular matrix proteolysis.  相似文献   

14.
We evaluate the effect of a standardized dietary supplementation with ω-3 polyunsaturated fatty acids (n-3 PUFAs) on the level of some markers of vascular remodeling in patients with combined dyslipidemia. Three hundred and thirty-three patients received placebo or n-3 PUFAs for 6 months. We evaluated body mass index, glycemic profile, blood pressure, lipid profile, lipoprotein(a), plasminogen activator inhibitor-1, homocysteine, fibrinogen, high-sensitivity C reactive protein, ADP, MMP-2 and MMP-9, and tissue inhibitors of metalloproteinase-1 and -2. A significant increase of high-density lipoprotein-cholesterol, and a significant decrease of triglycerides were present after 3 and 6 months with n-3 PUFAs intake. A significant plasminogen activator inhibitor-1, fibrinogen and high-sensitivity C reactive protein decrease was obtained after 3 and 6 months and a significant ADP increase was observed after 3 and 6 months of n-3 PUFAs. A significant MMP-2, MMP-9, tissue inhibitors of metalloproteinase-1 and tissue inhibitors of metalloproteinase-2 decrease was obtained after 6 months compared to the baseline value with n-3 PUFAs intake. n-3 PUFAs give a better lipid profile and a better improvement of coagulation, fibrinolytic and inflammatory parameters than placebo. Furthermore, lowers levels of MMP-2, MMP-9 and their tissue inhibitors are obtained with n-3 PUFAs compared to placebo.  相似文献   

15.
Glucocorticoids ameliorate erosion in animal osteoarthritis (OA) models and suppress synthesis of matrix metalloproteinases (MMP). However, in in vitro studies, their inhibitory effects on matrix degradation of cartilage have not been well documented by monitoring aggrecan. Collagen was monitored in this study to examine the effects of dexamethasone in cartilage explant culture. Dexamethasone clearly blocked collagen degradation induced by the combination of interleukin-1 (IL-1) and plasminogen at the concentration of 10(-9) M, which is much lower than the concentrations reportedly required to inhibit matrix synthesis. In addition, MMP-1 and MMP-3 were suppressed by dexamethasone treatment in a similar range of concentrations. The conversion of plasminogen to plasmin, however, was not blocked by treatment with dexamethasone. These results suggest that the inhibitory effect of dexamethasone on collagen degradation may be due to suppression of MMP production rather than suppression of fibrinolytic cascade. Thus, the ability of glucocorticoids to inhibit matrix degradation in vitro, which could be clearly shown by monitoring collagen degradation, may endorse their efficacy in animal OA models and suggest potential therapeutic effectiveness.  相似文献   

16.
The effect of 2 selected progesterone metabolites on the phospholipid fatty acid composition of the liver and microsomal function was studied in the female rat. 16α-Hydroxyprogesterone significantly increased microsomal phospholipid content and the total amount of fatty acids esterified to phospholipids parallel with aminopyrine N-demethylase activity. Phospholipid changes were attributable to phosphatidylcholine and phosphatidylethanolamine. Both saturated and unsaturated fatty acids were enhanced. In contrast, 5β-pregnane-3α-ol-20-one caused a reduction of microsomal phospholipids, phosphatidycholine, together with decreased aminopyrine N-demethylase activity and total microsomal fatty acid content. Pregnanolone decreased both saturated and unsaturated fatty acids and its action on unsaturated acyl components was greater than on the saturated ones. Changes in fatty acids were manifested in palmitic, stearic and lignoceric acids among saturated fatty acids and in palmitoleic, oleic, linoleic, eicosaenoic, eicosadienoic, eicosatrienoic, arachidonic, eicosapentenoic, docosatrienoic, docosapentenoic and docosahexenoic acids among unsaturated ones. Total liver phospholipids were unaltered by either 16α-hydroxyprogesterone or 5β-pregnane-3α-ol-20-one. These test compounds, however, modified total hepatic fatty acid content. 16α-Hydroxyprogesterone increased total fatty acids and both saturated and unsaturated acyl components, whereas 5β-pregnane-3α-ol-20-one decreased these parameters. Major changes were manifested in saturated fatty acids such as stearic, arachidic and lignoceric acids, and in unsaturated ones such as palmitoleic, linoleic, eicosatrienoic and docosapentenoic acids. The action of these compounds on phospholipid fatty acids of hepatic microsomes may be causally related to their effect on drug-metabolizing activity of the endoplasmic reticulum.  相似文献   

17.

BACKGROUND AND PURPOSE

Free fatty acids are important metabolic fuels for mammalian cells but, recently, it has become clear that they can also fulfil signalling functions, which are independent of their metabolic fate. We are investigating the ability of unsaturated free fatty acids to exert a cytoprotective response during exposure of insulin-secreting cells to toxic stimuli. The majority of earlier studies have focussed on monounsaturated fatty acids but this has now been extended to define the structural requirements of the cytoprotective effects of polyunsaturated species.

EXPERIMENTAL APPROACH

Clonal rat insulin-secreting cell lines, BRIN-BD11 or INS-1, were exposed to fatty acids or their derivatives complexed with BSA and the viability of the cells was analysed by flow cytometry after staining with propidium iodide.

KEY RESULTS

A variety of polyunsaturated fatty acids with chain lengths between C18–C22 attenuated the cytotoxic actions of the saturated fatty acid, palmitate (C16:0) in BRIN-BD11 and INS-1 cells. These effects were dose-dependent and displayed potencies that were much higher than those achieved with monounsaturated fatty acids. Methyl esters of the polyunsaturates were also effective. The cytoprotective responses were not altered by incubation of cells with inhibitors of cyclooxygenase or lipoxygenase enzymes although they were antagonized dose-dependently by arachidonyltrifluoromethylketone (AACOCF3).

CONCLUSIONS AND IMPLICATIONS

The results are consistent with the involvement of a specific fatty acid binding site having loose, but defined, structural criteria, in mediating the cytoprotective effects of unsaturated fatty acids. AACOCF3 may be of value in defining this site in molecular terms.  相似文献   

18.
The treatment of rat thymocytes with YO-2, a novel inhibitor of plasmin, resulted in an increase in DNA fragmentation. DNA fragmentation was also induced by another YO compounds such as YO-0, -3, -4 and -5. These YO compounds are the inhibitor of plasmin activity. On the other hand, YO-1, -6 and -8 that hardly inhibit plasmin activity had no effect on DNA fragmentation. Analysis of fragmented DNA from thymocytes treated with YO-2 by agarose gel electrophoresis revealed that the compound caused internucleosomal DNA fragmentation. In addition, judging from a laser scanning microscopy, annexin V-positive and propidium iodide-negative cells were increased by the treatment of the cells with the compound. Moreover, chromatin condensation was observed in thymocytes treated with the compound. These results demonstrated that YO-2 induces thymocyte apoptosis. There seemed to be some correlation between the apoptosis induced by YO compounds and their plasmin inhibitory effect. However, because the other protease inhibitors including pepstatin A, leupeptin, AEBSF, DFP and E-64-d did not affect DNA fragmentation, YO compounds are likely to have unique mechanism on plasmin or to show the effect on the other plasmin-like proteases. The plasmin inhibitory activity may have an important role in YO-2-induced apoptosis. Furthermore, the stimulations of caspase-8, -9 and -3-like activities were observed in thymocytes treated with YO-2. These results suggest that YO-2 induces thymocyte apoptosis via activation of caspase cascade.  相似文献   

19.
The present study investigated the release profiles of insulin from Pluronic F-127 (PF-127) gel containing unsaturated fatty acids such as oleic acid (18:1), eicosapentaenoic acid (20:5) or docosahexaenoic acid (22:6) and the hypoglycemic effect of insulin following the buccal administration of the gel formulations in normal rats. Insulin release from the gels decreased in the presence of unsaturated fatty acids. Remarkable and continuous hypoglycemia was induced by all PF-127 gels (insulin dose, 25 IU/kg) containing unsaturated fatty acids. PF-127 gels containing oleic acid showed the highest pharmacological availability (15.9+/-7.9%). Our finding demonstrate that 20% PF-127 gels containing unsaturated fatty acids are potential formulations for the buccal delivery of insulin.  相似文献   

20.
Acetyl CoA carboxylase (ACC1 and ACC2) generates malonyl CoA, a substrate for de novo lipogenesis (DNL) and an inhibitor of mitochondrial fatty acid β-oxidation (FAO). Malonyl CoA is also a substrate for microsomal fatty acid elongation, an important pathway for saturated (SFA), mono- (MUFA) and polyunsaturated fatty acid (PUFA) synthesis. Despite the interest in ACC as a target for obesity and cancer therapy, little attention has been given to the role ACC plays in long chain fatty acid synthesis. This report examines the effect of pharmacological inhibition of ACC on DNL and palmitate (16:0) and linoleate (18:2, n − 6) metabolism in HepG2 and LnCap cells. The ACC inhibitor, soraphen A, lowers cellular malonyl CoA, attenuates DNL and the formation of fatty acid elongation products derived from exogenous fatty acids, i.e., 16:0 and 18:2, n − 6; IC50 ∼ 5 nM. Elevated expression of fatty acid elongases (Elovl5, Elovl6) or desaturases (FADS1, FADS2) failed to override the soraphen A effect on SFA, MUFA or PUFA synthesis. Inhibition of fatty acid elongation leads to the accumulation of 16- and 18-carbon unsaturated fatty acids derived from 16:0 and 18:2, n − 6, respectively. Pharmacological inhibition of ACC activity will not only attenuate DNL and induce FAO, but will also attenuate the synthesis of very long chain saturated, mono- and polyunsaturated fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号