首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cell bodies and proximal dendrites of postsynaptic dorsal column neurons were examined for synaptic boutons which displayed immunoreactivity for the principal excitatory and inhibitory neurotransmitters, glutamate and GABA. The neurons were labelled by retrograde transport of horseradish peroxidase and GABA or glutamate-containing boutons were revealed by performing postembedding immunogold reactions on electron microscope sections. Five neurons were examined and all of them were postsynaptic to boutons which contained either GABA or glutamate. Quantitative analysis of two of the cells revealed that more than 90% of the synaptic profiles associated with them displayed immunogold reactions for these transmitters. Analysis of series of alternate sections, which were reacted for either GABA or glutamate, showed that there was no overlap in the populations of immunoreactive boutons. Furthermore, GABA and glutamate immunoreactions were associated with boutons which had different morphological characteristics. In addition, some large glutamate-enriched boutons were postsynaptic to small boutons which displayed immunogold reactions for GABA. This study demonstrates morphological bases for direct excitation, postsynaptic inhibition and presynaptic inhibition of postsynaptic dorsal column cells.  相似文献   

2.
Rabbits were immunized with reduced glutathione (γ-glutamyl-cysteinyl-glycine) coupled to bovine serum albumin by glutaraldehyde or a mixture of glutaraldehyde and formaldehyde. The antisera that were formed were tested qualitatively, by screening them against more than 50 amino acids and peptide conjugates that had been immobilized on cellulose discs (spot test), and quantitatively, by immunogold analysis of test conjugates that had been embedded in an epoxy resin. It was shown that the antisera selectively recognized the reduced and oxidized forms of glutathione and that they did not exhibit any significant crossreactivity with glutamate, cysteine, glycine, γ-glutamyl-cysteine or cysteinyl-glycine. Immunocytochemistry of Vibratome sections of rat cerebellum suggested that glutathione occurs in glial cells as well as in neurons. This was confirmed by electron microscopic, immunogold cytochemistry of tissue from rat cerebellum that had been freeze-substituted and embedded in Lowicryl under low temperature. Gold particles were concentrated over Golgi epithelial cells and perivascular glial processes, but also occurred over several types of neuronal profile including Purkinje and granule cell bodies, and mossy fibre terminals. At the subcellular level, glutathione-like immunoreactivity was found in the cytoplasmic matrix, mitochondria and nuclei. The immunolabelling intensity was strongly reduced in animals that had been pretreated with buthionine sulphoximine, which is known to depress the level of glutathione by inhibiting γ-glutamyl-cysteine synthetase. The availability of antisera to glutathione is likely to further our understanding of the physiological and pathophysiological roles of this tripeptide.  相似文献   

3.
Detailed knowledge of the inhibitory input to trigeminal motoneurons is needed to understand better the central mechanisms of jaw movements. Here a quantitative analysis of terminals contacting somata of jaw-closing (JC) and jaw-opening (JO) alpha-motoneurons, and of JC gamma-motoneurons, was performed by use of serial sectioning and postembedding immunogold cytochemistry. For each type of motoneuron, the synaptic boutons were classified into four groups, i.e., immunonegative boutons or boutons immunoreactive to glycine only, to gamma-aminobutyric acid (GABA) only, or to both glycine and GABA. The density of immunolabeled boutons was much higher for the alpha- than for the gamma-motoneurons. In the alpha-motoneuron populations, the immunolabeled boutons were subdivided into one large group of boutons containing glycine-like immunoreactivity only, one group of intermediate size harboring both glycine- and GABA-like immunoreactivity, and a small group of boutons containing GABA-like immunoreactivity only. The percentage of immunolabeled boutons was higher for JC than JO alpha-motoneurons, the most pronounced difference being observed for glycine-like immunoreactivity. In contrast, on the somatic membrane of gamma-motoneurons, the three types of immunoreactive bouton occurred at similar frequencies. These results indicate that trigeminal motoneurons are strongly and differentially controlled by premotoneurons containing glycine and/or GABA and suggest that these neurons play an important role for the generation of masticatory patterns.  相似文献   

4.
Little is known about the differences in the distributions of inhibitory and excitatory synapses in the dendritic tree of single motoneurons in the brainstem and spinal cord. In this study, the distribution of gamma-aminobutyric acid (GABA)-, glycine-, and glutamate-like immunoreactivity in axon terminals on dendrites of cat masseter alpha-motoneurons, stained intracellularly with horseradish peroxidase, was examined by using postembedding immunogold histochemistry in serial ultrathin sections. The dendritic tree was divided into three segments: primary (Pd) and distal (Dd) dendrites and intermediate (Id) dendrites between the two segments. Quantitative analysis of 175, 279, and 105 boutons synapsing on 13 Pd, 54 Id, and 81 Dd, respectively, was performed. Fifty percent of the total number of studied boutons were immunopositive for GABA and/or glycine and 48% for glutamate. Among the former, 27% showed glycine immunoreactivity only and 14% were immunoreactive to both glycine and GABA. The remainder (9%) showed immunoreactivity for GABA only. As few as 3% of the boutons were immunonegative for the three amino acids. Most boutons immunoreactive to inhibitory amino acid(s) contained a mixture of spherical, oval, and flattened synaptic vesicles. Most boutons immunoreactive to excitatory amino acid contained clear, spherical, synaptic vesicles with a few dense-cored vesicles. When comparisons of the inhibitory and excitatory boutons were made between the three dendritic segments, the proportion of the inhibitory to the excitatory boutons was high in the Pd (60% vs. 37%) but somewhat low in the Id (46% vs. 52%) and Dd (44% vs. 53%). The percentage of synaptic covering and packing density of the inhibitory synaptic boutons decreased in the order Pd, Id, and Dd, but this trend was not applicable to the excitatory boutons. The present study provides possible evidence that the spatial distribution patterns of inhibitory and excitatory synapses are different in the dendritic tree of jaw-closing alpha-motoneurons.  相似文献   

5.
In adult rats, we have induced retinal ischemia and investigated anterogradely labeled surviving retinal ganglion cell (RGC) afferents to the contralateral superior colliculus (SC). The animals received topically in their left eyes two 5-microl drops of saline or saline-containing 0.5% brimonidine (BMD), 1 h before 90 min of retinal ischemia induced by ligature of the left ophthalmic vessels. Two months after ischemia, the anterogradely transported neuronal tracer cholera toxin B subunit (CTB) was injected in the ischemic eyes and animals were processed 4 days later. As controls and for comparison, the retinotectal innervation of unlesioned age-matched control rats was also examined with CTB. In control and experimental animals, serial coronal sections of the mesencephalon and brainstem were immunoreacted for CTB and the area and thickness of the two most superficial layers of the SC containing densely CTB-labeled profiles were estimated with an image analysis system. Ninety minutes of ischemia resulted 2 months later in reduced density of CTB-labeled profiles in the contralateral SC of the vehicle-treated rats, representing less than one half the area occupied by CTB-labeled profiles in control rats. This resulted in shrinkage of these layers and in the presence of areas virtually devoid of CTB immunoreactivity, suggesting orthograde degeneration of retinal terminals and/or decrease of anterograde axonal transport. Topical pretreatment with BMD resulted 2 months later in CTB immunoreactivity that occupied the superficial layers of the contralateral SC in an area of approximately 86% of that observed in the unlesioned control group of animals, indicating that BMD protects against ischemia-induced degeneration of the retinotectal projection, and preserves anterograde axonal transport.  相似文献   

6.
There appears to be specificity in the regrowth of nerve fibers in the fish central nervous system. However, the distribution of terminal boutons is unknown. This study was undertaken to ascertain the reinnervation of neurons by boutons in the regenerated goldfish spinal cord. The spinal cord of 60 goldfish was transected and a segment 2 cm caudal to the lesion was examined 5, 10, 15, 20, 25, 30, 45, and 60 days postoperatively. In another group of animals the spinal cord was retransected after 60 days regeneration time and examined 5 days later to show contributions of long regenerated tracts. The spinal cord segment was stained for boutons by the Rasmussen technique. Boutons were counted on the soma of neurons in medial intermediate gray, ventral horn motoneurons, and ventral horn interneurons and in addition, on primary dendrite of motoneurons. Animals were observed daily for the return of normal swimming. Neurons in the intermediate gray region showed a gradual linear decrease in boutons for 30 days and they remained at this level from 30 to 60 days. Motoneuron soma and primary dendrite showed an abrupt decrease in boutons at 5 days, with a linear increase in boutons to normal levels by 60 days. Retransection of the spinal cord after 60 days did not result in bouton loss on soma or dendrite. These data indicate that the motoneuron was originally innervated by descending long tracts but was now reinnervated by other tracts. Ventral-horn interneuron soma showed an initial loss of boutons followed by return to normal numbers by 30 days and hyperinnervation between 30 and 60 days. Retransection resulted in the return of boutons to normal levels. Thus, this interneuron was reinnervated by regenerated descending tracts. Despite this synaptic reorganization of spinal neurons, normal swimming returned. We conclude that specificity of regeneration is not selective for soma or dendrite of spinal neurons but is probably selective for the neuronal pools or circuits necessary for swimming.  相似文献   

7.
Spasticity of the midline (axial) musculature may hinder (1) performing transfers, (2) efficient extremity and head movements, and (3) efficient respiration. Currently, gaps exist in our knowledge of the pathophysiology involved in spasticity development within the axial musculature. The goals of this study were (1) to study the effects of S(2) transection on the number and distribution of glutamatergic inputs, arising from primary afferents, and glycinergic inputs to sacrocaudal motoneurons; and (2) to correlate changes in these synaptic inputs with the development of spasticity within the tail musculature, which are the caudal counterparts to the trunk axial musculature. Animals with S(2) spinal transection were tested behaviorally using our established system. At 1, 2, 4, and 12 weeks post-injury, sacrocaudal motoneurons were retrogradely labeled with cholera toxin beta-subunit (CTB), and temporal changes in vesicular glutamate transporter 1 (VGLUT1) and glycine transporter 2 (GlyT2) inputs to CTB-labeled motoneurons were visualized using antibodies specific for each synaptic type and confocal microscopy. These time points correspond to each of 4 stages of spasticity development. There was no significant change in either VGLUT1 or GlyT2 labeling of sacrocaudal motoneurons at any of the time points examined. Spinal cord injury-induced spasticity, in the tail musculature, does not appear to involve either an increase in monosynaptic glutamatergic inputs from myelinated afferents or a decrease in glycinergic inputs to sacrocaudal motoneurons.  相似文献   

8.
The morphology, synaptic contacts, and neurotransmitter enrichment of postsynaptic dorsal column terminals in the cuneate nucleus of rats were investigated and compared with those of identified primary afferents. For this purpose, anterograde transport of horseradish peroxidase–based tracers injected in the spinal cord was combined with postembedding immunogold labeling for glutamate and gamma-aminobutyric acid (GABA). Anterogradely labeled postsynaptic dorsal column terminals were morphologically homogeneous: they were small (mean area = 1. 37 μM2) and dome-shaped, contacted single dendritic shafts or cell bodies, and were not involved in axoaxonic synapses. The majority of them were not enriched in glutamate or GABA immunoreactivity compared with other tissue components. Their morphology, size, and neurotransmitter content thus differed from that of primary afferents. These differences are consistent with distinct functional roles for the two main afferent systems ascending to the cuneate nucleus. © 1995 Wiley-Liss, Inc.  相似文献   

9.
The excitatory synapses on the jaw-closing (JC) motoneurons mediate the neuronal input that ensures smooth and rhythmic movements of the jaw. Recently, we have shown that the neurotransmitter phenotype of the inhibitory boutons onto JC motoneurons shifts from GABA to glycine, and new inhibitory synapses onto JC motoneurons are continuously formed during postnatal development (Paik et al. [2007] J. Comp. Neurol. 503:779–789). To test whether the developmental pattern of the excitatory synapses onto JC motoneurons differs from that of the inhibitory synapses, we studied the distribution of glutamate-immunopositive boutons onto the rat JC motoneurons during postnatal development by using a combination of retrograde labeling with horseradish peroxidase (HRP), postembedding immunogold staining, and quantitative ultrastructural analysis. The analysis of 175, 281, and 465 boutons contacting somata of JC motoneurons at postnatal days P2, P11, and P31, respectively, revealed that the number of glutamate-immunopositive (Glut(+)) boutons increased by 2.6 times from P2 to P11 and showed no significant change after that, whereas the length of apposition of these boutons increased continuously from P2 to P31, suggesting that the time course for the development of Glut(+) boutons differed from that for Glut(-) boutons, most of which were immunopositive for GABA and/or glycine. Our findings indicate that excitatory and inhibitory synapses onto JC motoneurons exhibit distinctly different developmental patterns that may be closely related to the maturation of the masticatory system.  相似文献   

10.
Four spinocervical tract cells in lumbosacral spinal cords of adult cats were physiologically characterized and intracellularly labelled with horseradish peroxidase. The neurones were examined with a light microscope and reconstructed. Selected regions were chosen for ultrastructural analysis. Thin sections were treated to reveal the presence of L-glutamate by using the postembedding immunogold method. Two antisera, which specifically recognise the presence of fixed glutamate in tissue, were used in the study. Somata, proximal, and distal dendrites of all four neurones received synaptic contacts from boutons which displayed an obvious immunogold reaction. These boutons formed between 35% and 48% of all synaptic contacts onto spinocervical tract cells. Glutamate-enriched boutons were associated with gold particle densities which were 2-3 times greater than the average densities associated with the surrounding neuropil. Their profiles had a mean diameter of 1.68 microns, contained round agranular synaptic vesicles, and formed asymmetrical synaptic junctions. However, not all boutons displaying these characteristics were enriched with glutamate. Immunogold studies of alternate thin sections, which were incubated with glutamate or GABA antiserum, demonstrated that synaptic boutons on spinocervical tract cells were either enriched with GABA or with glutamate and formed two separate populations which had distinct morphological characteristics. GABA-containing boutons contained irregularly shaped agranular vesicles and formed symmetrical synaptic junctions, whereas glutamate-enriched boutons corresponded to those described above. A further population of boutons, containing highly flattened vesicles, was not immunoreactive for GABA or glutamate. The evidence supports the idea that much of the excitatory transmission into the SCT is mediated by L-glutamate.  相似文献   

11.
Previous pharmacological and physiological data on GABA and glycine receptor-dependent components of miniature inhibitory post-synaptic currents show that the electrophysiological characteristics of synaptic transmission from inhibitory synapses on spinal motoneurons are highly variable. Although post-synaptic factors are thought to be the major underlying cause of this variability, quantitative immunohistochemical data suggest that the transmitter content of afferents also vary from terminal to terminal. To examine whether ratios of amino acid staining densities vary similar to those of components of post-synaptic currents mediated by the corresponding receptors, we quantified immunogold labeling for GABA, glycine and the major excitatory transmitter, glutamate, in nerve terminals contacting the dendrites of motoneurons retrogradely labeled from the rat hindlimb muscle, biceps femoris. Nearly all terminals (94%) were immunoreactive for at least one amino acid and 64% of these contained two or three amino acids. All possible combinations of GABA, glycine and glutamate labeling were found. Over 70% of the terminals contained glycine, of which 60% also labeled for GABA. Of these GABA/glycine boutons, 40% also had glutamate. Half of all terminals contained GABA, but terminals immunoreactive for GABA alone were extremely rare. Immunoreactivity for glutamate occurred in 48% of all terminals and nearly 60% of these also contained glycine. Labeling densities for GABA, glycine and glutamate varied over a wide range from terminal to terminal. We hypothesize that this diversity in amino acid content may be a major underlying cause of variability in GABA- and glycine receptor-mediated components of miniature inhibitory post-synaptic currents in motoneurons.  相似文献   

12.
The supratrigeminal region (Vsup) is important for coordination of smooth jaw movement. However, little is known about the synaptic connections of the Vsup premotoneurons with the trigeminal motor neurons. In the present study, we examined axon terminals of Vsup premotoneurons in the contralateral trigeminal motor nucleus (Vmo) by a combination of anterograde tracing with cholera toxin B–horseradish peroxidase (CTB‐HRP), postembedding immunohistochemistry for the amino acid transmitters glutamate, GABA, and glycine, and electron microscopy. Tracer injections resulted in anterograde labeling of axon terminals of the Vsup premotoneurons in the motor trigeminal nucleus (Vmo). The labeled boutons in Vmo exhibited immunoreactivity for glutamate, GABA, or glycine: glutamate‐immunopositive boutons (69%) were more frequently observed than GABA‐ or glycine‐immunopositive boutons (19% and 12%, respectively). Although most labeled boutons (97%) made synaptic contacts with a single postsynaptic dendrite, a few glutamate‐immunopositive boutons (3%) showed synaptic contact with two dendrites. No labeled boutons participated in axoaxonic synaptic contacts. Most labeled boutons (78%) were presynaptic to dendritic shafts, and the remaining 22% were presynaptic to somata or primary dendrites. A large proportion of GABA‐ or glycine‐immunopositive boutons (40%) were presynaptic to somata or primary dendrites, whereas most glutamate‐immunopositive boutons (86%) were presynaptic to dendritic shafts. These results indicate that axon terminals of Vsup premotoneurons show simple synaptic connection with Vmo neurons. This may provide the anatomical basis for the neural information processing responsible for jaw movement control. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
The excitatory amino acid, glutamate, has long been thought to be a transmitter that plays a major role in the control of the firing pattern of midbrain dopaminergic neurons. The present study was aimed at elucidating the anatomical substrate that underlies the functional interaction between glutamatergic afferents and midbrain dopaminergic neurons in the squirrel monkey. To do this, we combined preembedding immunocytochemistry for tyrosine hydroxylase and calbindin D-28k with postembedding immunostaining for glutamate. On the basis of their ultrastructural features, three types (so-called types I, II, and III) of glutamate-enriched terminals were found to form asymmetric synapses with dendrites and perikarya of midbrain dopaminergic neurons. The type I terminals accounted for more than 70% of the total population of glutamate-enriched boutons in contact with dopaminergic cells in the dorsal and ventral tiers of the substantia nigra pars compacta as well as in the ventral tegmental area, whereas 5–20% of the glutamatergic synapses with dopaminergic neurons involved the two other types of terminals. The major finding of our study is that the glutamate-enriched boutons were involved in 70% of the axodendritic synapses in the ventral tegmental area. In contrast, less than 40% of the boutons in contact with dopaminergic dendrites were immunoreactive for glutamate in the dorsal and ventral tiers of the substantia nigra pars compacta. Approximately 50% of the terminals in contact with the perikarya of the different populations of midbrain dopaminergic neurons displayed glutamate immunoreactivity. In conclusion, our findings provide the first evidence that glutamate-enriched terminals form synapses with midbrain dopaminergic neurons in primates. The fact that the proportion of glutamatergic boutons in contact with dopaminergic cells is higher in the ventral tegmental area than in the substantia nigra pars compacta suggests that the different groups of midbrain dopaminergic neurons are modulated differently by extrinsic glutamatergic afferents in primates. © 1996 Wiley-Liss, Inc.  相似文献   

14.
Inhibitory and excitatory synaptic inputs onto trigeminal motoneurons play an important role in coordinating jaw movements. Previously, we reported that the phenotype of the inhibitory boutons apposing the somata of jaw-closing (JC) motoneurons changes from γ-aminobutyric acid (GABA)-positive (GABA+) to predominantly glycine-positive (Gly+) during development. In the present study, we investigated the development of inhibitory and excitatory boutons apposing antagonistic jaw-opening (JO) motoneurons (anterior digastric motoneurons) at postnatal day 2 (P2), P11, and P31 in the rat. JO motoneurons were retrogradely labeled with horseradish peroxidase. Postembedding immunogold staining with antisera against GABA, Gly, and glutamate (Glut) was performed and followed by quantitative ultrastructural analysis. The size of both small and large JO motoneurons increased during development. The number of excitatory (Glut+) and inhibitory (GABA+, Gly+, and GABA+/Gly+) boutons per JO motoneuron increased significantly from P2 to P11 and then remained unchanged until P31. The time course of inhibitory synapse formation differed between JO and JC motoneurons, whereas that of excitatory synapse formation was similar between the two neuronal populations. The fraction of GABA+ boutons decreased by 86% and the fraction of GABA+/Gly+ boutons increased by 200% from P11 to P31, suggesting a switch from GABA+ to GABA+/Gly+ phenotype. The fraction of Gly+ boutons remained unchanged. These results indicate that inhibitory synapses onto somata of JO motoneurons exhibit a developmental pattern distinct from that of synapses onto JC motoneurons, which may reflect distinctive maturation of oral motor system.  相似文献   

15.
Glutamate and aspartate immunoreactivity in hypothalamic presynaptic axons.   总被引:7,自引:0,他引:7  
Within the hypothalamus, a large number of neuroactive substances are found, many first detected in this part of the brain. Excitatory amino acids, recognized as important transmitters in other parts of the brain, have received little attention here. To study glutamate immunoreactivity at the ultrastructural level in the hypothalamus, postembedding colloidal gold or silver-intensified gold was used. Antisera raised against glutamate conjugated with glutaraldehyde to keyhole limpet hemocyanin were specific for glutamate, tested with a battery of tests including immunodot blot, ELISA assays. Western blot, and Sepharose epoxy-conjugated amino acids. Antisera did not cross-react with other amino acids and related compounds, with proteins containing glutamate, or with polyglutamate. A population of presynaptic boutons in the suprachiasmatic, arcuate, ventromedial, supraoptic, and parvocellular and magnocellular paraventricular nuclei showed strong immunoreactivity for glutamate. Highly labeled presynaptic axons generally made asymmetrical Gray type 1 synaptic contacts with dendrites or cell bodies and had up to eight times more immunogold particles per unit area than postsynaptic dendrites. Axon terminals exhibiting strong glutamate immunoreactivity had large numbers of round, clear vesicles adjacent to the synaptic specialization together with a few larger, dense-core vesicles. The largest number of gold particles over axons were located in regions containing the small clear vesicles. Axons in general had about three times more gold particles over them than did the postsynaptic dendrites. Staining of single boutons in adjacent serial ultrathin sections with glutamate or GABA antisera showed that non-GABAergic terminals had a higher level of glutamate staining than did axons immunoreactive for GABA. In control experiments, immunostaining with glutamate antiserum could be blocked by solid-phase absorption of the antiserum with glutamate conjugated with glutaraldehyde to proteins. Aspartate was also detected with immunocytochemistry in some presynaptic boutons in the medial hypothalamus. To compare the response of neurons to aspartate and glutamate, calcium-imaging dyes were used in combination with digital video microscopy. Whereas almost all neurons showed a rise in intracellular Ca2+ in response to glutamate, many but not all of the same cells also showed a Ca2+ rise of smaller magnitude in response to aspartate. These ultrastructural immunocytochemical data, taken in conjunction with biochemical and electrophysiological experiments, suggest that glutamate, and to a lesser extent aspartate, may play an important neurotransmitter role in a wide variety of hypothalamic circuits.  相似文献   

16.
Varicosities that made synapses or direct contacts with retrogradely labelled rat phrenic motoneurons were examined for their content of immunoreactivity for either glutamate or glutamate decarboxylase, the enzyme involved in synthesis of α-aminobutyric acid (GABA). Phrenic motoneurons were identified by retrograde tracing from the diaphragm with cholera toxin B subunit conjugated to horseradish peroxidase. Cell bodies and medium-sized to large dendrites were labelled. Preembedding immunocytochemistry identified glutamate decarboxylase-immunoreactive nerve fibres; glutamate-immunoreactive nerve terminals were identified using postembedding immunogold labelling of ultrathin sections. The presence of glutamate- or glutamate decarboxylase immunoreactivity in nerve terminals was correlated with the morphology of the synaptic vesicles. Two major classes of nerve terminals were identified. Nerve terminals with round (presumably spherical) synaptic vesicles (S terminals) comprised 55% of synapses and contacts on phrenic motoneuron somata and 58% of synapses and direct contacts with dendrites. Nerve terminals with flattened synaptic vesicles (F terminals) comprised 42% of synapses direct contacts with somata and 41% of synapses and direct contacts with dendrites. Analysis of immunogold-labelled sections showed that S terminals contained statistically higher levels of glutamate immunoreactivity than F terminals. At the light microscope level, many glutamate decarboxylase-immunoreactive nerve terminals surrounded retrogradely labelled motoneurons. Varicosities with glutamate decarboxylase immunoreactivity made 33% of all synapses and direct contacts on somata, and 33% of synapses and direct contacts with dendrites of the retrogradely labelled phrenic motoneurons. Flattened synaptic vesicles were present in those glutamate decarboxylase-immunoreactive nerve terminals in which synaptic vesicle morphology could be judged. An additional 10% of all nerve terminals were of the F type, but were not glutamate decarboxylase-immunoreactive. Three percent of terminals on somata and 1% of nerve terminals on dendrites could not be classified as S or F types. These findings suggest that more than 90% of all inputs to phrenic motoneuron cell bodies and proximal dendrites could contain either GABA or glutamate. Some of these glutamatergic and GABAergic nerve fibres undoubtedly represent the source of inspiratory drive to, or expiratory inhibition of, phrenic motoneurons. © 1996 Wiley-Liss, Inc.  相似文献   

17.
To investigate whether glutamate (Glu) may be a transmitter in terminals of ascending afferents to the lateral cervical nucleus (LCN), these terminals were identified by anterograde transport of wheatgerm agglutinin-horseradish peroxidase from the spinal cord, and their content of Glu-like immunoreactivity (Glu-LI) was assessed at the ultrastructural level by the immunogold technique. The gold particle density over the peroxidase-positive terminals of the spinocervical tract (SCT) was significantly higher (by a factor of 2.44) than over a reference terminal population containing flattened or pleomorphic vesicles. Further, LCN neurons were densely labeled by the Glu antiserum, although the gold particle density over neuronal cell bodies was not as high as in the SCT terminals. Previous investigations have shown enrichment of Glu-LI in putative glutamatergic terminals in other parts of the CNS. Hence, the present observations indicate that Glu may be a transmitter in the synapses between SCT terminals and LCN neurons. The cell body labeling in the LCN is more difficult to interpret because of possible interference of metabolic pools of glutamate.  相似文献   

18.
Dentate granule cells receive spatially segregated GABAergic innervation from at least five types of local circuit neurons, and express mRNA for at least 11 subunits of the GABAA receptor. At most two to four different subunits are required to make a functional pentamer, raising the possibility that cells have on their surface several types of GABAA receptor channel, which may not be uniformly distributed. In order to establish the subcellular location of GABAA receptors on different parts of dentate neurons, the distribution of immunoreactivity for the α1 and β2/3 subunits of the receptor was studied using high-resolution immunocytochemistry. Light microscopic immunoperoxidase reactions revealed strong GABAA receptor immunoreactivity in the molecular layer of the dentate gyrus. Pre-embedding immunogold localization of the α1 and β2/3 subunits consistently showed extrasynaptic location of the GABAA receptor on the somatic, dendritic and axon initial segment membrane of granule cells, but failed to show receptors in synaptic junctions. Using a postembedding immunogold technique on freeze-substituted, Lowicryl-embedded tissue, synaptic enrichment of immunoreactivity for these subunits was found on both granule and non-principal cells. Only the postembedding immunogold method is suitable for revealing relative differences in receptor density at the subcellular level, giving ~20 nm resolution. The immunolabelling for GABAA receptor occupied the whole width of synaptic junctions, with a sharp decrease in labelling at the edge of the synaptic membrane specialization. Both subunits have been localized in the synaptic junctions between basket cell terminals and somata, and between axo-axonic cell terminals and axon initial segments of granule cells, with no qualitative difference in labelling. Receptor-immunopositive synapses were found at all depths of the molecular layer. Some of the boutons forming these dendritic synapses have been shown to contain GABA, providing evidence that some of the GABAergic cells that terminate only on the dendrites of granule cells also act through GABAA receptors. Double immunolabelling experiments demonstrated that a population of GABA-immunopositive neurons expresses a higher density of immunoreactive GABAA receptor on their surface than principal cells. Interneurons were found to receive GABAA receptor-positive synapses on their dendrites in the hilus, molecular and granule cell layers. Receptor-immunopositive synapses were also present throughout the hilus on presumed mossy cells. The results demonstrate that both granule cells and interneurons exhibit a compartmentalized distribution of the GABAA receptor on their surface, the postjunctional membrane to GABAergic terminals having the highest concentration of receptor. The α1 and β2/3 subunits have a similar distribution in synapses on the axon initial segment, soma, proximal and distal dendrites of granule cells. The very strong immunoreactivity of a subpopulation of GABAergic interneurons for GABAA receptors containing the α1 and β2/3 subunits predicts their high sensitivity to GABA and modulators of the receptor complex.  相似文献   

19.
In developing Wistar albino rats, ventral horn muscle afferent boutons are lost following corticospinal innervation. Motor cortex lesions rescue a proportion of these boutons and perturb activity dependent expression of cJun and parvalbumin (PV) in the spinal cord. Therefore, we tested whether activity-dependent competition between corticospinal and proprioreceptive afferents determines the balance of these inputs to motor output pathways by delivering the inhibitory GABA agonist muscimol unilaterally to the forelimb motor cortex using slow release polymer implants from postnatal day 7 (P7) coincident with corticospinal synaptogenesis. Controls received saline. Inhibition of immature cortical neurons by muscimol was confirmed with separate in vitro electrophysiological recordings. After P28, spinal cord sections were immunostained for PV, cJun and muscle afferents transganglionically labelled with cholera toxin-B (CTB). Unilateral inhibition reduced contralaterally the number of PV positive spinal cord neurons and muscle afferent boutons in the dorsolateral ventral horn, compared to controls, and significantly altered the distribution of motoneuronal cJun expression. Separately, descending tracts were retrogradely traced with CTB from the cervical hemicord contralateral to implants. Forelimb sensorimotor cortex sections were immunostained for either CTB or PV. In muscimol treated animals, significantly fewer neurons expressed PV in the inhibited hemicortex, but as many CTB labelled corticospinal neurons were present as in controls, along with an equally large corticospinal projection from contralateral to the implant, significantly greater than in controls. Unexpectedly, unilateral inhibition of the motor cortical input did not lead to an expanded muscle afferent input. Instead, this was reduced coincident with development of a bilateral corticospinal innervation.  相似文献   

20.
The object of the present study was to determine the nature and distribution of synaptic contacts on the terminals of rapidly adapting mechanosensory afferents innervating the glabrous skin of the rat foot. Afferents were physiologically characterized by intracellular recording, before injection with neurobiotin and preparation for electron microscopy. Axon terminals were serially sectioned and immunolabeled with antibodies against GABA and glycine using a postembedding immunogold method. Afferent boutons in lamina III were often surrounded by several presynaptic axons and postsynaptic dendrites (thus forming type II glomeruli), while boutons in laminae IV-V had only simple, nonglomerular interactions. In both regions triadic synaptic arrangements where presynaptic interneurons contact both afferent boutons and their postsynaptic dendrites were present in 50-75% of boutons. Approximately three-quarters of presynaptic axons were immunoreactive for both GABA and glycine and most of the remainder for GABA alone. Most postsynaptic dendrites were not immunoreactive. Comparisons are made with information from similar studies of other rat and cat afferents conducting in the Aalphabeta range. This demonstrates that although the principles of control may be similar for cutaneous afferents of this type there are significant differences between cutaneous and 1a muscle afferents in the rat. There are also differences in detail between the interactions of afferents of the same modality in rat and cat; in the rat there are greater numbers of presynaptic axons per bouton and a greater proportion of boutons receive axo-axonic contacts and are involved in synaptic triads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号