首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 324 毫秒
1.
Multiple protein tyrosine kinases regulate neurite outgrowth in the developing nervous system. To begin to unravel the complexity of this regulation, we addressed the role of one specific kinase, pp60(c-src), in chick dorsal root ganglion (DRG) neurons grown on laminin-1, a well-characterized system to study neurite outgrowth. Pharmacological inhibition of all tyrosine kinases by genestein treatment of chick DRG neurons significantly increased neurite number and length by approximately 50%. Similar increases in these parameters occurred when src-family kinases were inhibited using PP2. To implicate pp60(c-src) directly in neurite outgrowth, we inactivated it in DRG neuronal growth cones using Chromophore-Assisted Laser Inactivation (CALI). CALI of pp60(c-src) resulted in an 85% inactivation of its kinase activity and a 63% reduction in phosphotyrosine immunofluorescence in neurons. Microscale CALI of pp60(c-src) in DRG growth cones caused a significant and acute two-fold increase in neurite extension rate during irradiation. These findings demonstrate that pp60(c-src) is a negative regulator of laminin-1-mediated neurite outgrowth in chick sensory neurons.  相似文献   

2.
The normal src protein (pp60c-src) is localized principally in the nerve growth cone of developing neurons and declines to low levels with synaptic maturation. To determine whether pp60c-src is reexpressed in regenerating axons, its expression was studied by immunoblotting and immunocytochemical analyses in adult chicken sciatic nerve following nerve crush injury. pp60c-src expression was found to increase during nerve repair with a temporal and spatial pattern consistent with a localization in regenerating axons. At the crush site, pp60c-src increased to maximal levels 7 days postinjury, increasing fivefold relative to 0 day nerve. In the nerve segment distal to the injury, the maximal increase in pp60c-src was sevenfold and occurred between 11 and 21 days postinjury. Immunoperoxidase staining revealed pp60c-src in regenerating axons and certain nonneuronal cells at the site of nerve repair. pp60c-src was induced in both motor and sensory neurons, as shown by increased pp60c-src immunoreactivity in their cell bodies located in the spinal cord and dorsal root ganglion. Phosphotyrosine-modified proteins that were potential targets of pp60c-src increased following nerve crush, and were localized to outgrowing neurites as well as to nonneuronal cells. These results suggest that pp60c-src is a common component of cellular mechanisms regulating growth cone migration in both regenerating and developing axons.  相似文献   

3.
Since little is known about the intracellular changes that take place in response to Schwann cell-neuron interactions that occur during neurite outgrowth and myelination, we investigated the expression of a protein-tyrosine kinase, pp60c-src, during peripheral nerve regeneration through a silicone tube. Segments of regenerated nerve, extracted at various times following nerve-transection, showed an induction of in vitro c-src kinase activity as measured by autophosphorylation of immunoprecipitated pp60c-src. This activity occurred at 7 days following nerve transection coincident with the onset of neurite outgrowth in vivo. This kinase activity, which peaked out between 21 and 35 days and decreased thereafter, appeared to be associated with axonal growth and myelination, but not mitogenesis in the tube. Analysis of c-src proteins levels by Western blot showed a similar expression profile as that of the kinase activity. Qualitatively, the expression of an immunoreactive c-src band, migrating slightly slower than pp60, was detected in extracts of regenerating nerve segments as well as in the corresponding L4 and L5 dorsal root ganglia. This protein may be the CNS neuronal-specific form (pp60+) of the c-src protein. In situ hybridization revealed that Schwann cells and sensory and motor neurons associated with the regenerated sciatic nerve were positive for c-src mRNA during regeneration possibly accounting for the increased src protein expression during regeneration. Since the increased expression of pp60c-src in regenerated nerve segments coincides with both axonal sprouting and myelination, our findings suggest that the c-src protein may play a role in Schwann cell-neuron interactions which facilitate the occurrence of these events during regeneration. In addition, although pp60+ is generally not detectable in the mature PNS, our findings show that this protein may be induced during conditions of PNS differentiation which promote neurite outgrowth.  相似文献   

4.
Neurons express high levels of a variant form of the c-src gene product, denoted pp60c-src(+), which contains a 6 amino acid insert in the amino-terminal half of the c-src protein. We have determined the localization of pp60c-src(+) in neurons using an affinity-purified anti-peptide antibody, referred to as affi-SB12, that exclusively recognizes this neuron-specific form of the c-src gene product. Using affi-SB12, we examined the distribution of pp60c-src(+) by immunoperoxidase staining of sections through adult rat brains, pp60c-src(+) was widely distributed in rat brain and appeared to be differentially expressed in subpopulations of neurons. The majority of immunoreactive neurons was found in the mesencephalon, cerebellum, pons, and medulla. Telencephalic structures that contained substantial populations of pp60c-src(+)-immunoreactive neurons included layer V of the cerebral cortex and the ventral pallidum. Within individual neurons, pp60c-src(+) immunoreactivity was localized to the cell soma and dendritic processes, while labeling of axons and nerve terminals (puncta) was not as readily detected. Dense accumulations of immunoreactive axons were rare, being most prominent in portions of the inferior and superior olive, and in the spinal trigeminal nucleus. While the regional distribution of pp60c-src(+) immunoreactivity does not correlate with any specific neuronal cell type or first messenger system, this unique pattern of expression of pp60c-src(+) suggests the existence of a previously uncharacterized functional organization within the brain. Furthermore, the localization of this neuron-specific tyrosine kinase in functionally important areas of the nerve cell, namely, dendritic processes, axons, and nerve terminals, suggests that pp60c-src(+) may regulate pleiotropic functions in specific classes of neurons in the adult central nervous system.  相似文献   

5.
D Dahl  A Bignami 《Brain research》1991,553(1):163-166
Axonless horizontal cells in the outer plexiform layer of rat retina were studied with 19 monoclonal antibodies reacting with phosphorylated and non-phosphorylated epitopes of the two high molecular weight neurofilament proteins (NF 150K and NF 200K). With 6 antibodies, immunoreactivity was confined to the nerve fiber layer on the inner surface of the retina. Horizontal cells were not stained. Four antibodies in this group were axon-specific, while the remaining two stained motor and sensory neuron perikarya in rat spinal cord and dorsal root ganglia, respectively. Of the 13 antibodies which stained horizontal cells, 11 reacted with phosphorylated epitopes and failed to decorate motor neuron perikarya in the spinal cord, while in dorsal root ganglia, they stained a subpopulation of sensory neurons.  相似文献   

6.
The effect of the substrate on neurofilament phosphorylation was studied in primary cultures of spinal cord and dorsal root ganglia dissociated from 15-day-old rat embryos. On polylysine and Primaria substrates, spinal cord neurons formed aggregates connected by bundles of neurites. (Primaria dishes have a modified plastic surface with a net positive charge). On both polylysine and Primaria substrates, spinal cord neurons were stained with neurofilament monoclonal antibodies reacting with phosphorylated epitopes appearing early in rat embryo development, i.e. soon after neurofilament expression. Conversely, immunoreactivity with antibodies recognizing late phosphorylation events was only observed on Primaria substrates. As reported by many investigators, fibronectin and laminin were excellent substrates for dorsal root ganglia neurons in culture. However, on both laminin and fibronectin substrates immunoreactivity with antibodies recognizing late phosphorylation events, was only observed on Primaria substrates. As reported by many investigators, fibronectin and laminin were excellent substrates for dorsal root ganglia neurons in culture. However, on both laminin and fibronectin substrates immunoreactivity with antibodies recognizing late phosphorylation events, only occurred after several days in culture, at a time when non-neuronal cells (mainly astrocytes) had formed a confluent monolayer.  相似文献   

7.
8.
SSeCKS immunolabeling in rat primary sensory neurons   总被引:3,自引:0,他引:3  
Siegel SM  Grove BD  Carr PA 《Brain research》2002,926(1-2):126-136
SSeCKS (src suppressed C kinase substrate) is a protein kinase C substrate that may play a role in tumor suppression. Recently described in fibroblasts, testes and mesangial cells, SSeCKS may have a function in the control of cell signaling and cytoskeletal arrangement. To investigate the distribution of SSeCKS throughout the nervous system, representative sections of brain, spinal cord and dorsal root ganglia were processed using immunofluorescence. Labeling of central axonal collaterals of primary sensory neurons was observed in the dorsal horn at all spinal levels. SSeCKS-immunoreactivity was also observed in the cerebellum, medulla and sensory ganglia (including trigeminal ganglia). The pattern and distribution of anti-SSeCKS labeling in dorsal root ganglia and the dorsal horn of the spinal cord was similar to that observed for other markers of small primary sensory neurons. Therefore, the coexistence of SSeCKS with substance P, CGRP and acid phosphatase was examined in sections of sensory ganglia, spinal cord and medulla using double immunofluorescent labeling for SSeCKS and substance P/CGRP or sequential SSeCKS immunofluorescence and acid phosphatase/fluoride-resistant acid phosphatase enzyme histochemistry. A small portion of the SSeCKS-labeled cell bodies appeared to represent a subpopulation of substance P (4.8%) and CGRP (4.7%) containing neurons, while 45.0% contained fluoride-resistant acid phosphatase reactivity. These results indicate that SSeCKS has a restricted distribution within the nervous system and that expression of this protein may reflect the specific signaling requirements of a distinct population of nociceptive sensory neurons.  相似文献   

9.
10.
Cultures of neurons from rat embryos have been shown previously to express high levels of a unique form of pp60c-src [Brugge et al (1985): Nature 316:524-526], the cellular homologue of the transforming protein of Rous sarcoma virus. This altered form of pp60c-src, designated pp60c-src(+), displays a retarded electrophoretic mobility due to a structural alteration within the aminoterminal region of the molecule [Brugge et al, 1985]. In order to investigate the distribution and possible role of pp60c-src(+) in intact brain, we have examined the expression of pp60c-src(+) in extracts from developing cerebella from wild-type mice and mutant mice that display progressive degeneration of specific classes of cerebellar neurons. The loss of pp60c-src(+) generally correlated with the loss of granule cells and Purkinje cells from the cerebella of mice carrying the staggerer (sg/sg) and Lurcher (Lc/+) mutations, with the most pronounced changes observed in cerebella from the more severely affected sg/sg mice. The expression of pp60c-src(+) in weaver wv/wv mice is qualitatively and quantitatively quite different. From the earliest time points, there was a significant reduction in the levels of pp60c-src(+), with no further loss of this form during the period of maximal neuronal differentiation. This suggests an early, predegenerative absence of pp60c-src(+) in this mutant strain, which is defective in granule-cell migration.  相似文献   

11.
Double immunofluorescence studies using antibodies against NF-L and peripherin revealed three distinct subpopulations of neurons in rat dorsal root ganglia (DRG). In the adult rat, 46% of the DRG neurons were small and peripherin-positive (NF-L-negative), and 48% were large and NF-L-positive (peripherin-negative). About 6% were both peripherin- and NF-L-positive. All of the DRG neurons reacted with antibodies to NF-M and nonphosphorylation-dependent or phosphorylation-independent antibodies to NF-H. The neuropeptides were predominantly found in the peripherin-positive small cell population. Eighty-seven percent of the peripherin-positive small cell population contained substance P immunoreactivity, while 43% of this cell population contained CGRP. In contrast, only 18-24% of the NF-L-positive large-cell population contained neuropeptides, and these were primarily in a smaller sized subpopulation. Similar patterns of antigen representation were observed in neonatal (PN2) DRG cell populations. Tissue cultures of sensory ganglion cells from PN2 DRG, in serum-free medium, stably maintained exclusively peripherin-positive neurons, with about 5% of these containing coexistent NF-L immunoreactivity. Very high levels of neuropeptide gene expression were exhibited by these postnatal neurons in culture.  相似文献   

12.
Immunoreactivity to neurofilament (NF) antiserum appears early in the development of both the central and peripheral nervous systems of the rat fetus. In 10 somite embryos, positive cell bodies are present in the ventromedial part of anterior rhombencephalic and mesencephalic neural tube. From there the appearance of immunoreactivity spreads cranially to the prosencephalic anlage before closure of the anterior neuropore and caudally following the sequence of neural tube closure. Immunoreactivity increases rapidly in axon bundles of central and peripheral systems, but in immature cell bodies of sensory ganglia the NF material only forms a ring around the nucleus. At 16 days of gestation, some cell bodies are progressively loaded with NF-immunoreactive material as a thick perinuclear network first and then in more excentrically located aggregates. This category of neurons is mainly observed in the distal part of the trigeminal ganglion, in petrous and nodose ganglia and in cervical dorsal root ganglia. In adult ganglia large cell bodies and some small ones present high NF immunoreactivity. In autonomic cell bodies (in superior cervical ganglion and in parasympathetic cranial ganglia) the immunoreactive material only forms a perinuclear ring slowly transformed into a loose perinuciear meshwork at the end of gestation. Intensely reactive nerve fibers are observed in cranial sensory as well as in sympathetic and parasympathetic ganglia and nerves. No positive cell bodies and only a few NF-immunoreactive nerves are observed in the carotid bodies. The NF immunoreactivity is better visualized on sections of fresh frozen material, treated with acetone, than in fixed specimens.These results are compared to previous observations reported for other species and for developing dorsal root ganglia. This immunostaining may be used to detect differentiation of peripheral sensory and autonomic neurons under experimental conditions. The uneven distribution of NF immunoreactivity in sensory neurons from stage 16 days of gestation as specific for precise subpopulations of neurons is discussed.  相似文献   

13.
Two major neuronal populations were revealed in rat dorsal root ganglia, immunoreactive for either peripherin, or neurofilament triplet proteins (adult L2 ganglia: 66.2% and 25.6%, mainly small and large diameter cells, respectively), together with a minor, double-immunostained population (L2: 8.1%, mainly intermediate-size neurons). After capsaicin treatment, a striking expansion in the latter population was seen (L2: 22.0%) together with a significant increase in size, restricted to the same population and the (remaining) peripherin-only immunoreactive neurons. Calcitonin gene-related peptide (CGRP) immunoreactivity was revealed in neurons of all 3 groups, in both normal and capsaicin-treated rats.  相似文献   

14.
Rat dorsal root ganglia and spinal cord were stained with 12 monoclonal antibodies reacting with phosphorylated epitopes of two neurofilament proteins (NF 150K and NF 200K). Three monoclonal antibodies were axon-specific in both locations; neuronal perikarya were not stained. Nine monoclonal antibodies stained a subpopulation of neurofilament-positive sensory neurons, as indicated by double labeling experiments with polyclonal antibodies reacting with phosphorylated and dephosphorylated forms of the neurofilament protein triplet. Of these nine antibodies, two stained motor neuron perikarya in the spinal cord, while the remaining seven antibodies were axon-specific in this location. Subpopulations of stained and unstained motor neurons were not observed. With all 12 antibodies, the staining pattern in the lumbar dorsal root ganglia and spinal cord remained unchanged following sciatic nerve crush and ligature. The findings suggest that, in the neurofilament, some phosphorylated epitopes are axon specific, while other phosphorylated epitopes are present in both axons and perikarya. Furthermore, they suggest that differences exist between neuronal populations as to the presence of phosphorylated epitopes in perikaryal neurofilaments. It remains to be seen whether phosphorylation events in perikarya and axons have similar or different effects on neurofilament structure and function.  相似文献   

15.
16.
The origin of extrinsic substance P fibers in the guinea pig pyloric wall was investigated by combining retrograde axonal tracing and indirect immunofluorescence techniques. After injection of Fast Blue into the pyloric wall labeled cells were found in the T7-T9 dorsal root ganglia and the nodose and jugular ganglia. About 60% of the labeled cells in the dorsal root ganglia contained substance P-like immunoreactivity. After local application of colchicine, a few substance P positive cells were observed in the nodose and jugular ganglia, some of which also contained Fast Blue.  相似文献   

17.
The expression of full-length trkB protein, the functional high affinity receptor for BDNF and NT-4, was examined by immunohistochemistry in adult rat L4–L5 dorsal root ganglia after different types of sciatic nerve lesions. In normal ganglia, 52.5% of the neurons showed trkB-like immunoreactivity. Size measurements demonstrated that trkB-like immunoreactivity was seen predominantly in small- and medium-sized cells. This was confirmed by the finding that 28% of all trkB-positive neurons showed affinity to RT97, an antibody which lanels a neurofilament epitope specific for medium-sized and large primary afferent neurons. After crush, section or neuroma formation of the sciatic nerve, the proportion of trkB-positive cells was 64.5%, 58% and 61.9%, respectively. Since trkB-receptors are present in regenerating primary afferent neurons, these data could indicate that BDNF and/or NT-4 are involved in sensory nerve fiber regeneration after adult injury.  相似文献   

18.
The distribution and development of Met-enkephalin-Arg6-Gly7-Leu8 (Enk-8)-containing neurons in the sensory ganglia of the rat were investigated by means of immunocytochemistry using specific antiserum to this octapeptide. Enk-8-like immunoreactivity first appeared in neurons of the trigeminal ganglia of the 18-day embryo, then in the dorsal root ganglia of the 21-day embryo, thus exhibiting a rostrocaudal gradient in terms of appearance and abundance. The number of immunoreactive neurons in these sensory ganglia peaked on the 5th-7th postnatal days, with several small ones observed in each section (1.0-1.4% of total cell number). About 30-40% of these Enk-8-like immunoreactive neurons were also immunoreactive to substance P. Subsequently, Enk-8-like immunoreactivity in the sensory ganglia was decreased and was rarely detected in adult animals. However, colchicine treatment revealed the presence of several Enk-8-containing neurons per section prepared from mature rat. All these neurons were small (12.5-25 microns; mean +/- S.E.M., 19.86 +/- 3.26 microns). Some of these were also immunoreactive to substance P. These results strongly suggest that the preproenkephalin A system exists in subpopulations of both developing and matured sensory cells in the rat. Functional significance of this is discussed.  相似文献   

19.
Substance P-like immunoreactivity has been observed in fetal and adult cranial sensory ganglia. It first appears at day 16 of gestation in sensory neurons of trigeminal, superior-jugular, petrous and nodose ganglia, as well as in the autonomic myenteric plexus, and at day 17 in cervical dorsal root ganglion cells. Substance P immunoreactivity can be visualized much earlier (day 12) in the central nervous system. The ganglionic immunoreactivity subsequently increases during fetal life but drops at birth. The reactive material is first diffuse, then slowly becomes granular, and is mostly concentrated in coarse perinuclear inclusions in adult sensory neurons. Most substance P-positive neurons in trigeminal and superior-jugular ganglia are small, but medium-sized and large positive neurons are also observed in the trigeminal, petrous and nodose ganglia.Our observations give a precise picture of the development of substance P immunoreactivity in sensory neurons and are in general agreement with previous reports on some fetal and adult rat sensory ganglia. They indicate that in the rat, maturation of peripheral substance P-containing sensory neurons is slower than that of central substance P neurons or equivalent sensory neurons in other species. The examination of fetal material allows the observation of numerous immunoreactive sensory neurons which cannot be visualized after birth. We hypothesize a possible different embryonic origin (neural crest or placodal) for small nociceptive and larger substance P-containing neurons in rat cranial sensory ganglia.  相似文献   

20.
We examined by immunohistochemistry the expression of glial fibrillary acidic protein (GFAP) in enteric ganglia of the chick embryo, using a polyclonal antibody. The morphology of enteric ganglion cells was examined by electron microscopy. Faint GFAP immunoreactivity was detected in ganglion cells and cell processes from around day 7 in ovo. Later in development the intensity of the immunofluorescence increased and it became more evident that immunoreactive small ganglion cells (interpreted as primitive glial cells), and their processes, surrounded larger negative cell profiles (interpreted as primitive neuronal cells); GFAP immunofluorescence was also evident in intramuscular and mucosal nerve trunks. In colocalization experiments, GFAP immunoreactivity was detected in a proportion of HNK-1/N-CAM immunoreactive ganglion cells, in both the myenteric and submucosal plexus. In addition, we observed GFAP immunoreactive nerves in wholemount preparations of chick gut from as early as day 4.5 in ovo. In the ganglionated nerve of Remak, GFAP immunoreactive satellite and Schwann cells were in evidence from day 5 of incubation. Neuronal markers, such as neurofilament, have been detected very early in development in neural crest cell populations in chick enteric ganglia. In contrast, the expression of markers of the glial phenotype has previously been observed only in the late stages of embryonic development. From our experiments, we conclude that neuronal and glial phenotypes are immunohistochemically distinct from as early as day 4.5 of incubation, even if by ultrastructural criteria glial cells are clearly distinguishable from neurons only after day 16 in ovo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号