首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
OBJECTIVE: To evaluate the efficacy and safety of add-on insulin glargine versus rosiglitazone in insulin-na?ve patients with type 2 diabetes inadequately controlled on dual oral therapy with sulfonylurea plus metformin. RESEARCH DESIGN AND METHODS: In this 24-week multicenter, randomized, open-label, parallel trial, 217 patients (HbA(1c) [A1C] 7.5-11%, BMI >25 kg/m(2)) on > or =50% of maximal-dose sulfonylurea and metformin received add-on insulin glargine 10 units/day or rosiglitazone 4 mg/day. Insulin glargine was forced-titrated to target fasting plasma glucose (FPG) < or =5.5-6.7 mmol/l (< or =100-120 mg/dl), and rosiglitazone was increased to 8 mg/day any time after 6 weeks if FPG was >5.5 mmol/l. RESULTS: A1C improvements from baseline were similar in both groups (-1.7 vs. -1.5% for insulin glargine vs. rosiglitazone, respectively); however, when baseline A1C was >9.5%, the reduction of A1C with insulin glargine was greater than with rosiglitazone (P < 0.05). Insulin glargine yielded better FPG values than rosiglitazone (-3.6 +/- 0.23 vs. -2.6 +/- 0.22 mmol/l; P = 0.001). Insulin glargine final dose per day was 38 +/- 26 IU vs. 7.1 +/- 2 mg for rosiglitazone. Confirmed hypoglycemic events at plasma glucose <3.9 mmol/l (<70 mg/dl) were slightly greater for the insulin glargine group (n = 57) than for the rosiglitazone group (n = 47) (P = 0.0528). The calculated average rate per patient-year of a confirmed hypoglycemic event (<70 mg/dl), after adjusting for BMI, was 7.7 (95% CI 5.4-10.8) and 3.4 (2.3-5.0) for the insulin glargine and rosiglitazone groups, respectively (P = 0.0073). More patients in the insulin glargine group had confirmed nocturnal hypoglycemia of <3.9 mmol/l (P = 0.02) and <2.8 mmol/l (P < 0.05) than in the rosiglitazone group. Effects on total cholesterol, LDL cholesterol, and triglyceride levels from baseline to end point with insulin glargine (-4.4, -1.4, and -19.0%, respectively) contrasted with those of rosiglitazone (+10.1, +13.1, and +4.6%, respectively; P < 0.002). HDL cholesterol was unchanged with insulin glargine but increased with rosiglitazone by 4.4% (P < 0.05). Insulin glargine had less weight gain than rosiglitazone (1.6 +/- 0.4 vs. 3.0 +/- 0.4 kg; P = 0.02), fewer adverse events (7 vs. 29%; P = 0.0001), and no peripheral edema (0 vs. 12.5%). Insulin glargine saved $235/patient over 24 weeks compared with rosiglitazone. CONCLUSIONS: Low-dose insulin glargine combined with a sulfonylurea and metformin resulted in similar A1C improvements except for greater reductions in A1C when baseline was > or =9.5% compared with add-on maximum-dose rosiglitazone. Further, insulin glargine was associated with more hypoglycemia but less weight gain, no edema, and salutary lipid changes at a lower cost of therapy.  相似文献   

2.
OBJECTIVE: To elucidate the effects of pioglitazone treatment on glucose and lipid metabolism in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS: A total of 23 diabetic patients (age 30-70 years BMI < 36 kg/m2) who being treated with a stable dose of sulfonylurea were randomly assigned to receive either placebo (n = 11) or pioglitazone (45 mg/day) (n = 12) for 16 weeks. Before and after 16 weeks of treatment, all subjects received a 75-g oral glucose tolerance test (OGTT) and hepatic peripheral insulin sensitivity was measured with a two-step euglycemic insulin (40 and 160 mU x min(-1) x m(-2) clamp performed with 3-[3H]glucose and indirect calorimetry HbA1c measured monthly throughout the study period. RESULTS: After 16 weeks of pioglitazone treatment, the fasting plasma glucose (FPG; 184 +/- 15 to 135 +/- 11 mg/dl, P < 0.01), mean plasma glucose during OGTT(293 +/- 12 to 225 +/- 14 mg/dl, P < 0.01), and HbA1c (8.9 +/- 0.3 to 7.2 +/- 0.5%, P < 0.01 ) decreased significantly without change in fasting or glucose-stimulated insulin/C-peptide concentrations. Fasting plasma free fatty acid (FFA; 647 +/- 39 to 478 +/- 49) microEq/l, P < 0.01) and mean plasma FFA during OGTT (485 +/- 30 to 347 +/- 33 microEq/l, P < 0.01) decreased significantly after pioglitazone treatment. Before and after pioglitazone treatment, basal endogenous glucose prodution (EGP) and FPG were strongly correlated (r = 0.67, P < 0.01). EGP during the first insulin clamp step was significantly decreased after pioglitazone treatment (P < 0.05) whereas insulin-stimulated total and nonoxidative glucose disposal during the second insulin clamp was increased (P < 0.01). The change in FPG was related to the change in basal EGP, EGP during the first insulin clamp step, and total glucose disposal during the second insulin clamp step. The change in mean plasma glucose concentration during the OGGTT was strongly related to the change in total body glucose disposl during the second insulin clamp step. CONCLUSIONS: These results suggest that pioglitazone therapy in type 2 diabetic patients decreases lasting and postprandial plasma glucose levels by improving hepatic and peripheral (muscle) tissue sensitivity to insulin.  相似文献   

3.
Insulin resistance in uremia.   总被引:11,自引:7,他引:11  
Tissue sensitivity to insulin was examined with the euglycemic insulin clamp technique in 17 chronically uremic and 36 control subjects. The plasma insulin concentration was raised by approximately 100 microU/ml and the plasma glucose concentration was maintained at the basal level with a variable glucose infusion. Under these steady-state conditions of euglycemia, the glucose infusion rate is a measure of the amount of glucose taken up by the entire body. In uremic subjects insulin-mediated glucose metabolism was reduced by 47% compared with controls (3.71 +/- 0.20 vs. 7.38 +/- 0.26 mg/kg . min; P less than 0.001). Basal hepatic glucose production (measured with [3H]-3-glucose) was normal in uremic subjects (2.17 +/- 0.04 mg/kg . min) and suppressed normally by 94 +/- 2% following insulin administration. In six uremic and six control subjects, net splanchnic glucose balance was also measured directly by the hepatic venous catheterization technique. In the postabsorptive state splanchnic glucose production was similar in uremics (1.57 +/- 0.03 mg/kg . min) and controls (1.79 +/- 0.20 mg/kg . min). After 90 min of sustained hyperinsulinemia, splanchnic glucose balance reverted to a net uptake which was similar in uremics (0.42 +/- 0.11 mg/kg . min) and controls (0.53 +/- 0.12 mg/kg . min). In contrast, glucose uptake by the leg was reduced by 60% in the uremic group (21 +/- 1 vs. 52 +/- 8 mumol/min . kg of leg wt; P less than 0.005) and this decrease closely paralleled the decrease in total glucose metabolism by the entire body. These results indicate that: (a) suppression of hepatic glucose production by physiologic hyperinsulinemia is not impaired by uremia, (b) insulin-mediated glucose uptake by the liver is normal in uremic subjects, and (c) tissue insensitivity to insulin is the primary cause of insulin resistance in uremia.  相似文献   

4.
OBJECTIVE: Available basal insulin formulations do not provide a constant and reliable 24-h insulin supply. We compared the efficacy and safety of glargine (a long-acting insulin analog) and NPH insulins in insulin-naive type 2 diabetic patients treated with oral antidiabetic agents. RESEARCH DESIGN AND METHODS: There were 426 type 2 diabetic patients (age 59 +/- 9 years, BMI 28.9 +/- 4.3 kg/m2, mean +/- SD) with poor glycemic control on oral antidiabetic agents randomized to treatment for 1 year with bedtime insulin glargine or bedtime NPH insulin. Oral agents were continued unchanged. The fasting blood glucose (FBG) target was 6.7 mmol/l (120 mg/dl). RESULTS: Average glycemic control improved similarly with both insulins (HbA(1c), [reference range <6.5%] 8.3 +/- 0.1 vs. 8.2 +/- 0.1% at 1 year, glargine vs. NPH, mean +/- SEM, P < 0.001 vs. baseline for both). However, there was less nocturnal hypoglycemia (9.9 vs. 24.0% of all patients, glargine vs. NPH, P < 0.001) and lower post-dinner glucose concentrations (9.9 +/- 0.2 vs. 10.7 +/- 0.3 mmol/l, P < 0.02) with insulin glargine than with NPH. Insulin doses and weight gain were comparable. In patients reaching target FBG, HbA(1c) averaged 7.7 and 7.6% in the glargine and NPH groups at 1 year. CONCLUSIONS: Use of insulin glargine compared with NPH is associated with less nocturnal hypoglycemia and lower post-dinner glucose levels. These data are consistent with peakless and longer duration of action of insulin glargine compared with NPH. Achievement of acceptable average glucose control requires titration of the insulin dose to an FBG target < or =6.7 mmol/l. These data support use of insulin glargine instead of NPH in insulin combination regimens in type 2 diabetes.  相似文献   

5.
OBJECTIVE: The aim of this study was to test whether vascular reactivity is modified by improving metabolic control and peripheral insulin resistance in type 2 diabetes. RESEARCH DESIGN AND METHODS: In a randomized, double-blind design, we assigned 74 type 2 diabetic patients to rosiglitazone (8 mg/day), metformin (1,500 mg/day), or placebo treatment for 16 weeks and measured insulin sensitivity (euglycemic insulin clamp), ambulatory blood pressure, and forearm blood flow response to 1) intra-arterial acetylcholine (ACh), 2) intra-arterial nitroprusside, 3) the clamp, and 4) blockade of nitric oxide (NO) synthase. RESULTS: Compared with 25 nondiabetic subjects, patients had reduced insulin sensitivity (30 +/- 1 vs. 41 +/- 3 micromol. min(-1). kg fat-free mass(-1); P < 0.001) and reduced maximal response to ACh (586 +/- 42 vs. 883 +/- 81%; P < 0.001). Relative to placebo, 16 weeks of rosiglitazone and metformin similarly reduced fasting glucose (-2.3 +/- 0.5 and -2.3 +/- 0.5 mmol/l) and HbA(1c) (-1.2 +/- 0.3 and -1.6 +/- 0.3%). Insulin sensitivity increased with rosiglitazone (+6 +/- 3 micromol. min(-1). kg fat-free mass(-1); P < 0.01) but not with metformin or placebo. Ambulatory diastolic blood pressure fell consistently (-2 +/- 1 mmHg; P < 0.05) only in the rosiglitazone group. Nitroprusside dose response, clamp-induced vasodilatation, and NO blockade were not affected by either treatment. In contrast, the slope of the ACh dose response improved with rosiglitazone (+40% versus baseline, P < 0.05, +70% versus placebo, P < 0.005) but did not change with either metformin or placebo. This improvement in endothelium-dependent vasodilatation was accompanied by decrements in circulating levels of free fatty acids and tumor necrosis factor-alpha. CONCLUSIONS: At equivalent glycemic control, rosiglitazone, but not metformin, improves endothelium dependent vasodilatation and insulin sensitivity in type 2 diabetes.  相似文献   

6.
OBJECTIVE: To determine the safety and efficacy of the long-acting insulin analog, insulin glargine, as a component of basal bolus therapy in patients with type 1 diabetes. RESEARCH DESIGN AND METHODS: Patients with type 1 diabetes receiving basal-bolus insulin treatment with NPH human insulin and insulin lispro were randomized to receive insulin glargine (HOE 901), a long-acting basal insulin analog, once a day (n = 310) or NPH human insulin (n = 309) as basal treatment with continued bolus insulin lispro for 16 weeks in an open-label study NPH insulin patients maintained their prior schedule of administration once or twice a day, whereas insulin glargine patients received basal insulin once a day at bedtime. RESULTS: Compared with all NPH insulin patients, insulin glargine patients had significant decreases in fasting blood glucose measured at home (means +/- SEM, -42.0 +/- 4.7 vs. -12.4 +/- 4.7 mg/dl [-2.33 +/- 0.26 vs. -0.69 +/- 0.26 mmol/l]; P = 0.0001). These differences were evident early and persisted throughout the study More patients in the insulin glargine group (29.6%) than in the NPH group (16.8%) reached a target fasting blood glucose of 119 mg/dl (< 6.6 mmol/l). However, there were no differences between the groups with respect to change in GHb. Insulin glargine treatment was also associated with a significant decrease in the variability of fasting blood glucose values (P = 0.0124). No differences in the occurrence of symptomatic hypoglycemia, including nocturnal hypoglycemia, were observed. Overall, adverse events were similar in the two treatment groups with the exception of injection site pain, which was more common in the insulin glargine group (6.1%) than in the NPH group (0.3%). Weight gain was 0.12 kg in insulin glargine patients and 0.54 kg in NPH insulin patients (P = 0.034). CONCLUSIONS: Basal insulin therapy with insulin glargine once a day appears to be as safe and at least as effective as using NPH insulin once or twice a day in maintaining glycemic control in patients with type 1 diabetes receiving basal-bolus insulin treatment with insulin lispro.  相似文献   

7.
OBJECTIVE: 1) To evaluate the effect of a single oral dose of hexyl-insulin monoconjugate 2 (HIM2) on the rate of whole-body glucose disposal (Rd) and endogenous glucose production (EGP) in healthy nondiabetic subjects, 2) to examine the reproducibility of HIM2 on glucose metabolism, and 3) to compare the results obtained with HIM2 with those using a bioequivalent dose of subcutaneous lispro insulin. RESEARCH DESIGN AND METHODS: Six healthy subjects ([means +/- SE] aged 31 +/- 5 years and BMI 23.1 +/- 3.9 kg/m2) participated in four studies performed in random order on separate days. Subjects ingested a single dose of HIM2 (0.125, 0.5, and 0.75 mg/kg) or received subcutaneous lispro insulin (0.1 units/kg). Studies were performed with [3-3H]glucose, and plasma glucose concentration was maintained at basal levels for 4 h with the euglycemic clamp technique. After 6 weeks, subjects participated in two repeat studies to examine the reproducibility of HIM2 (0.5 mg/kg) and lispro insulin (0.1 units/kg). RESULTS: Fasting plasma insulin (7 muU/ml) increased to a maximum of 102, 321, and 561 muU/ml at 60 min after all three HIM2 doses (0.125, 0.5, and 0.75 mg/kg, respectively). A dose-related decrease in basal EGP was observed as the HIM2 dosage was increased from 0 to 0.125 to 0.5 mg/kg (P <0.05 vs. each preceding dose). Suppression of EGP was similar with the 0.5- and 0.75-mg/kg HIM2 doses. A dose-related stimulation of basal Rd was observed as the HIM2 dosage was increased from 0 to 0.125 to 0.5 (P <0.05 vs. each preceding dose) to 0.75 mg/kg (P <0.10 vs. preceding dose). Rd (0-240 min) was increased by 0.5 mg/kg oral HIM2 to a value similar to 0.1 units/kg lispro insulin. The 0.125-mg/kg HIM2 dose reduced EGP (0-240 min) to a value that was similar to 0.1 units/kg lispro insulin. The variability in the effect of HIM2 and lispro on Rd (25 +/- 7 vs. 27 +/- 1%, respectively) and on suppression of EGP (19 +/- 1 vs. 19 +/- 0.7%, respectively) was similar. CONCLUSIONS: Oral HIM2 suppresses EGP and increases tissue Rd in a dose-dependent manner. The effects of HIM2 on EGP and Rd persisted at 240 min, even though plasma insulin concentration had returned to basal levels. Oral HIM2 may provide an effective and reproducible means of controlling postprandial plasma glucose excursions in diabetic patients.  相似文献   

8.
OBJECTIVE: To examine the effect of rosiglitazone on insulin resistance and blood pressure in patients with essential hypertension, classified based on abnormalities of their renin-angiotensin system. RESEARCH DESIGN AND METHODS: A total of 24 hypertensive nondiabetic patients (age 58 +/- 6 years, BMI 30 +/- 5 kg/m2) were studied before and after rosiglitazone treatment. After 2 weeks off antihypertensive medication, subjects received a euglycemic-hyperinsulinemic clamp (40 mU. m(-2). min(-1)) with 6,6-[2H2]glucose infusion, ambulatory blood pressure monitoring, and blood tests for cardiovascular risk factors. Subjects were then placed on rosiglitazone (4 mg orally b.i.d.) and their usual antihypertensive medications (but not ACE inhibitors) for 16 weeks, and baseline tests were repeated. RESULTS: There was no change in fasting plasma glucose (83 +/- 2 vs. 82 +/- 2 mg/dl, P = 0.60), but fasting insulin decreased (16.1 +/- 1.4 vs. 12.5 +/- 0.9 micro U/ml, P < 0.01). Total glucose disposal during the clamp increased (5.0 +/- 0.4 vs. 5.9 +/- 0.5 mg. kg(-1). min(-1), P < 0.001), with no change in suppression of hepatic glucose output. There were significant decreases in mean 24-h systolic (138 +/- 2 vs. 134 +/- 2 mmHg, P < 0.02) and diastolic (85 +/- 2 vs. 80 +/- 2 mmHg, P < 0.0001) blood pressure, and the decline in systolic blood pressure was correlated with the improvement in insulin sensitivity (r = 0.59, P < 0.005). Triglycerides (135 +/- 16 vs. 89 +/- 8 mg/dl, P < 0.01), LDL cholesterol (129 +/- 6 vs. 122 +/- 8 mg/dl, P = 0.18), and HDL cholesterol (51 +/- 3 vs. 46 +/- 3 mg/dl, P < 0.02) all decreased, with no change in the LDL-to-HDL ratio. Plasminogen activator inhibitor-1 and C-reactive protein also declined significantly. CONCLUSIONS: Rosiglitazone treatment of nondiabetic hypertensive patients improves insulin sensitivity, reduces systolic and diastolic blood pressure, and induces favorable changes in markers of cardiovascular risk. Insulin sensitizers may provide cardiovascular benefits when used in the treatment of patients with hypertension.  相似文献   

9.
A brief period of starvation (2-3) depletes the hepatic glycogen stores but results in only a limited reduction of the muscle glycogen depots. In this situation insulin resistance contributes to the glucose intolerance, but it is not known which tissue or tissues are responsible for the decreased insulin sensitivity. The present study was therefore undertaken to examine the influence of a 60-h fast on insulin sensitivity in splanchnic and peripheral tissues in normal humans. Euglycemic (95 mg/dl) 1-mU insulin and hyperglycemic (215-225 mg/dl) glucose clamp studies were conducted for 2 h in overnight (12 h) and prolonged (60 h) fasted nonobese subjects. Splanchnic exchange of glucose and gluconeogenic precursors was measured using the hepatic vein catheter technique. During the euglycemic clamp, insulin infusion resulted in similar steady state insulin levels in 60-h and 12-h fasted subjects (73 +/- 7 vs. 74 +/- 5 microU/ml). Total glucose disposal was reduced by 45% after 60 h of fasting (4.0 +/- 0.3 vs. 7.6 +/- 1.1 mg/kg per min, P less than 0.05) and the splanchnic glucose balance reverted from a net release in the basal state (12 h fast, -1.7 +/- 0.2, and 60-h fast, -0.9 +/- 0.1 mg/kg per min, P less than 0.01) to a net uptake during the clamps that was similar after 60 h and 12 h of fasting (0.6 +/- 0.1 vs. 0.6 +/- 0.2 mg/kg per min). During the hyperglycemic clamp, insulin levels rose rapidly in all subjects. In the 12-h fasted group this rise was followed by a further gradual one, reaching significantly higher values than in 60-h fasted subjects during the second hour (67 +/- 15 vs. 25 +/- 2 microU/ml, P less than 0.05). Total glucose disposal was lower, though not significantly so, after the 60-h fast (2.6 +/- 0.4 vs. 5.4 +/- 1.3 mg/kg per min, 0.05 less than P less than 0.10), and as with the euglycemic clamp, the splanchnic glucose balance was altered from a basal net release to a net uptake during the clamp (1.3 +/- 0.2 vs. 1.1 +/- 0.2 mg/kg per min). After an overnight fast, splanchnic lactate uptake fell and the arterial lactate concentration rose in response to both hyperglycemia and hyperinsulinemia, whereas these variables were unchanged in the 60-h fasted subjects during both types of clamp studies.  相似文献   

10.
OBJECTIVE: Impaired insulin-mediated hepatic glucose uptake (HGU) has been implicated in the hyperglycemia of type 2 diabetes. We examined the effects of metformin (2 g/day) and rosiglitazone (8 mg/day) monotherapy on HGU and its relation to subcutaneous fat, visceral fat (VF), and whole-body insulin-mediated glucose metabolism in type 2 diabetic patients. RESEARCH DESIGN AND METHODS: Glucose uptake was measured before and after 26 weeks of treatment using positron emission tomography with [(18)F]2-fluoro-2-deoxyglucose during euglycemic hyperinsulinemia; fat depots were quantified by magnetic resonance imaging. RESULTS: Fasting plasma glucose levels were significantly decreased after either rosiglitazone (-0.9 +/- 0.5 mmol/l) or metformin treatment (-1.1 +/- 0.5 mmol/l) in comparison with placebo; only metformin was associated with weight loss (P < 0.02 vs. placebo). When controlling for the latter, the placebo-subtracted change in whole-body glucose uptake averaged -1 +/- 4 micromol x min(-1) x kg(-1) in metformin-treated patients (NS) and +9 +/- 3 micromol x min(-1) x kg(-1) in rosiglitazone-treated patients (P = 0.01). Both rosiglitazone and metformin treatment were associated with an increase in HGU; versus placebo, the change reached statistical significance when controlling for sex (placebo-subtracted values = +0.008 +/- 0.004 micromol x min(-1) x kg(-1) x pmol/l(-1), P < 0.03, for metformin; and +0.007 +/- 0.004, P < 0.07, for rosiglitazone). After treatment with either drug, insulin-mediated VF glucose uptake (VFGU) was higher than with placebo. In the whole dataset, changes in HGU were negatively related to changes in HbA(1c) (r = 0.43, P = 0.01) and positively associated with changes in VFGU (r = 0.48, P < 0.01). CONCLUSIONS: We conclude that both metformin and rosiglitazone monotherapy increase HGU in type 2 diabetes; direct drug actions, better glycemic control, and enhanced VF insulin sensitivity are likely determinants of this phenomenon.  相似文献   

11.
Evidence has accumulated suggesting that the state of secondary hyperparathyroidism and the elevated blood levels of parathyroid hormone (PTH) in uremia participate in the genesis of many uremic manifestations. The present study examined the role of PTH in glucose intolerance of chronic renal failure (CRF). Intravenous glucose tolerance tests (IVGTT) and euglycemic and hyperglycemic clamp studies were performed in dogs with CRF with (NPX) and without parathyroid glands (NPX-PTX). There were no significant differences among the plasma concentrations of electrolytes, degree of CRF, and its duration. The serum levels of PTH were elevated in NPX and undetectable in NPX-PTX. The NPX dogs displayed glucose intolerance after CRF and blood glucose concentrations during IVGTT were significantly (P less than 0.01) higher than corresponding values before CRF. In contrast, blood glucose levels after IVGTT in NPX-PTX before and after CRF were not different. K-g rate fell after CRF from 2.86 +/- 0.48 to 1.23 +/- 0.18%/min (P less than 0.01) in NPX but remained unchanged in NPX-PTX (from 2.41 +/- 0.43 to 2.86 +/- 0.86%/min) dogs. Blood insulin levels after IVGTT in NPX-PTX were more than twice higher than in NPX animals (P less than 0.01) and for any given level of blood glucose concentration, the insulin levels were higher in NPX-PTX than NPX dogs. Clamp studies showed that the total amount of glucose utilized was significantly lower (P less than 0.025) in NPX (6.64 +/- 1.13 mg/kg X min) than in NPX-PTX (10.74 +/- 1.1 mg/kg X min) dogs. The early, late, and total insulin responses were significantly (P less than 0.025) greater in the NPX-PTX than NPX animals. The values for the total response were 143 +/- 28 vs. 71 +/- 10 microU/ml, P less than 0.01. There was no significant difference in the ratio of glucose metabolized to the total insulin response, a measure of tissue sensitivity to insulin, between the two groups. The glucose metabolized to total insulin response ratio in NPX (5.12 +/- 0.76 mg/kg X min per microU/ml) and NPX-PTX (5.18 +/- 0.57 mg/kg X min per microU/ml) dogs was not different but significantly (P less than 0.01) lower than in normal animals (9.98 +/- 1.26 mg/kg X min per microU/ml). The metabolic clearance rate of insulin was significantly (P less than 0.02) reduced in both NPX (12.1 +/- 0.7 ml/kg X min) and NPX-PTX (12.1 +/- 0.9 ml/kg X min) dogs, as compared with normal animals (17.4 +/- 1.8 ml/kg X min). The basal hepatic glucose production was similar in both groups of animals and nor different from normal dogs; both the time course and the magnitude of suppression of hepatic glucose production by insulin were similar in both in groups. There were no differences in the binding affinity, binding sites concentration, and binding capacity of monocytes to insulin among NPX, NPX-PTX, and normal dogs. The data show that (a) glucose intolerance does not develop with CRF in the absence of PTH, (b) PTH does not affect metabolic clearance of insulin or tissue resistance to insulin in CRF, and (c) the normalization of metabolism in CRF in the absence of PTH is due to increased insulin secretion. The results indicate that excess PTH in CRF interferes with the ability of the beta-cells to augment insulin secretion appropriately in response to the insulin-resistant state.  相似文献   

12.
Although the importance of the hepatic glucose load in the regulation of liver glucose uptake has been clearly demonstrated in in vitro systems, the relationship between the hepatic glucose load and hepatic glucose uptake has yet to be defined in vivo. Likewise, the effects of the route of glucose delivery (peripheral or portal) on this relationship have not been explored. The aims of the present study were to determine the relationship between net hepatic glucose uptake (NHGU) and the hepatic glucose load in vivo and to examine the effects of the route of glucose delivery on this relationship. NHGU was evaluated at three different hepatic glucose loads in 42-h fasted, conscious dogs in both the absence (n = 7) and the presence (n = 6) of intraportal glucose delivery. In the absence of intraportal glucose delivery and in the presence of hepatic glucose loads of 50.5 +/- 5.9, 76.5 +/- 10.0, and 93.6 +/- 10.0 mg/kg/min and arterial insulin levels of approximately 33 microU/ml, NHGU was 1.16 +/- 0.37, 2.78 +/- 0.82, and 5.07 +/- 1.20 mg/kg/min, respectively. When a portion of the glucose load was infused into the portal vein and similar arterial insulin levels (approximately 36 microU/ml) and hepatic glucose loads (52.5 +/- 4.5, 70.4 +/- 5.6, and 103.6 +/- 18.4 mg/kg/min) were maintained, NHGU was twice that seen in the absence of portal loading (3.77 +/- 0.40, 4.80 +/- 0.59, and 9.62 +/- 1.43 mg/kg/min, respectively). Thus, net hepatic glucose uptake demonstrated a direct dependence on the hepatic glucose load that did not reach saturation even at elevations in the hepatic glucose load of greater than three times basal. In addition, the presence of intraportal glucose delivery increased net hepatic glucose uptake apparently by lowering the threshold at which the liver switched from net glucose output to net glucose uptake.  相似文献   

13.
The mechanism(s) and site(s) of the insulin resistance were examined in nine normal-weight noninsulin-dependent diabetic (NIDD) subjects. The euglycemic insulin clamp technique (insulin concentration approximately 100 microU/ml) was employed in combination with hepatic and femoral venous catheterization and measurement of endogenous glucose production using infusion of tritiated glucose. Total body glucose metabolism in the NIDD subjects (4.37 +/- 0.45 mg/kg per min) was 38% (P less than 0.01) lower than in controls (7.04 +/- 0.63 mg/kg per min). Quantitatively, the most important site of the insulin resistance was found to be in peripheral tissues. Leg glucose uptake in the diabetic group was reduced by 45% as compared with that in controls (6.0 +/- 0.2 vs. 11.0 +/- 0.1 mg/kg leg wt per min; P less than 0.01). A strong positive correlation was observed between leg and total body glucose uptake (r = 0.70, P less than 0.001). Assuming that muscle is the primary leg tissue responsible for glucose uptake, it could be estimated that 90 and 87% of the infused glucose was disposed of by peripheral tissues in the control and NIDD subjects, respectively. Net splanchnic glucose balance during insulin stimulation was slightly more positive in the control than in the diabetic subjects (0.31 +/- 0.10 vs. 0.05 +/- 0.19 mg/kg per min; P less than 0.07). The difference (0.26 mg/kg per min) in net splanchnic glucose balance in NIDD represented only 10% of the reduction (2.67 mg/kg per min) in total body glucose uptake in the NIDD group and thus contributed very little to the insulin resistance. The results emphasize the importance of the peripheral tissues in the disposal of infused glucose and indicate that muscle is the most important site of the insulin resistance in NIDD.  相似文献   

14.
Studies were done to determine whether the minimal model approach and the glucose clamp measure equivalent indices of insulin action. Euglycemic glucose clamps (glucose, G: 85 mg/dl) were performed at two rates of insulin (I) infusion (15 and 40 mU/min per m2) in 10 subjects (body mass index, BMI, from 21 to 41 kg/m2). Insulin sensitivity index (SI) from clamps varied from 0.15 to 3.15 (mean: 1.87 +/- 0.36 X 10(-2) dl/[min per m2] per microU/ml), and declined linearly with increasing adiposity (versus BMI: r = -0.97; P less than 0.001). SI from modeling the modified frequently sampled intravenous tolerance test varied from 0.66 to 7.34 X 10(-4) min-1 per microU/ml, and was strongly correlated with SIP(clamp) (r = 0.89; P less than 0.001). SI and SIP(clamp) were similar (0.046 +/- 0.008 vs. 0.037 +/- 0.007 dl/min per microU/ml, P greater than 0.35); the relation had a slope not different from unity (1.05 P greater than 0.70) and passed through the origin (P greater than 0.40). However, on a period basis, SI exceeded SIP(clamp) slightly, due to inhibition of hepatic glucose output during the FSIGT, not included in SIP(clamp). These methods are equivalent for assessment of overall insulin sensitivity in normal and insulin-resistant nondiabetic subjects.  相似文献   

15.
To examine the relationship between net hepatic glucose uptake (NHGU) and the insulin level and to determine the effects of portal glucose delivery on that relationship, NHGU was evaluated at three different insulin levels in seven 42-h-fasted, conscious dogs during peripheral glucose delivery and during a combination of peripheral and portal glucose delivery. During peripheral glucose delivery, at arterial blood glucose levels of approximately 175 mg/dl and insulin levels reaching the liver of 51 +/- 2, 92 +/- 6, and 191 +/- 6 microU/ml, respectively, NHGUs were 0.55 +/- 0.30, 1.52 +/- 0.44, and 3.04 +/- 0.79 mg/kg per min, respectively. At hepatic glucose loads comparable to those achieved during peripheral glucose delivery and inflowing insulin levels of 50 +/- 4, 96 +/- 5, and 170 +/- 8 microU per ml, respectively, NHGUs were 1.96 +/- 0.48, 3.67 +/- 0.68, and 5.52 +/- 0.92 mg/kg per min when a portion of the glucose load was delivered directly into the portal vein. The results of these studies thus indicate that net hepatic glucose uptake is dependent on both the plasma insulin level and the route of glucose delivery and that under physiological conditions the "portal" signal is at least as important as insulin in the determination of net hepatic glucose uptake.  相似文献   

16.
OBJECTIVE: To investigate the pharmacodynamic profile and duration of action for five subcutaneous doses of insulin detemir (0.1, 0.2, 0.4, 0.8, and 1.6 units/kg; 1 unit = 24 nmol) and one subcutaneous dose of NPH insulin (0.3 IU/kg; 1 IU = 6 nmol). RESEARCH DESIGN AND METHODS: This single-center, randomized, double-blind, six-period, crossover study was carried out as a 24-h isoglycemic clamp (7.2 mmol/l) in 12 type 1 diabetic patients. RESULTS: Duration of action for insulin detemir was dose dependent and varied from 5.7, to 12.1, to 19.9, to 22.7, to 23.2 h for 0.1, 0.2, 0.4, 0.8, and 1.6 units/kg, respectively. Interpolation of the dose-response relationships for AUC(GIR) (area under the glucose infusion rate curve) revealed that a detemir dose of 0.29 units/kg would provide the same effect as 0.3 IU/kg NPH but has a longer duration of action (16.9 vs. 12.7 h, respectively). Lower between-subject variability was observed for insulin detemir on duration of action (0.4 units/kg insulin detemir vs. 0.3 IU/kg NPH, P < 0.05) and GIR(max) (maximal glucose infusion rate) (0.2 and 0.4 units/kg insulin detemir vs. 0.3 IU/kg NPH, both P < 0.05). Assessment of endogenous glucose production (EGP) and peripheral glucose uptake (PGU) resulted in an AOC(EGP) (area over the EGP curve) of 636 mg/kg (95% CI 279-879) vs. 584 (323-846) and an AUC(PGU) (area under the PGU curve) of 173 (47-316) vs. 328 (39-617) for 0.29 units/kg detemir vs. 0.3 IU/kg NPH, respectively. CONCLUSIONS: This study shows that insulin detemir provides a flat and protracted pharmacodynamic profile.  相似文献   

17.
Insulin resistance has been reported in normal ageing but discrepancies between such studies may be related to compounding factors such as body composition and exercise patterns. We employed a two-step hyperinsulinaemic euglycaemic clamp to assess peripheral and hepatic tissue insulin sensitivity and glucose recycling in 13 elderly (E) and 14 young (Y) healthy subjects controlling for the above factors. There was no difference in basal hepatic glucose production (E: 2.36 +/- 0.06, Y: 2.47 +/- 0.1 mg kg-1 min-1; P = 0.4). At step 1 (insulin infusion 15 mU kg-1 h-1) glucose turnover was similar (E: 2.65 +/- 0.13, Y: 2.88 +/- 0.22 mg kg-1 min-1; P = 0.4) but hepatic glucose production was lower in the elderly group (0.20 +/- 0.16 vs 0.64 +/- 0.10 mg kg-1 min-1; P = 0.03). At step 2 (insulin infusion 50 mU kg-1 h-1) glucose turnover was similar (E: 7.60 +/- 0.24, Y: 8.05 +/- 0.34 mg kg-1 min-1; P = 0.3) and hepatic glucose production was equal but negative (E: -1.35 +/- 0.18, Y: -1.34 +/- 0.22 mg kg-1 min-1; P = 0.9). Glucose recycling did not differ between the groups at any stage. Similar serum insulin levels were achieved in both groups at each step. Decreased glucose tolerance was confirmed in E with a higher 2 h blood glucose after an OGTT (5.3 +/- 0.4 vs 4.1 +/- 0.3 mmol l-1; P = 0.03) but incremental insulin response was similar (E: 3236 +/- 289, Y: 3586 +/- 463 mU l-1 min-1; P = 0.5). We conclude that changes in hepatic tissue insulin sensitivity do not cause the deterioration in glucose tolerance observed with age. A small reduction in both peripheral tissue insulin sensitivity and late insulin secretion may be responsible.  相似文献   

18.
OBJECTIVE: Diabetic hyperglycemia results from insulin resistance of peripheral tissues and glucose overproduction due to increased gluconeogenesis (GNG). Thiazolidinediones (TZDs) improve peripheral insulin sensitivity, but the effect on the liver is less clear. The goal of this study was to examine the effect of TZDs on GNG. RESEARCH DESIGN AND METHODS: Twenty sulfonylurea-treated type 2 diabetic subjects were randomly assigned (double-blind study) to receive pioglitazone (PIO group; 45 mg/day) or placebo (Plc group) for 4 months to assess endogenous glucose production (EGP) (3-(3)H-glucose infusion), GNG (D2O technique), and insulin sensitivity by two-step hyperinsulinemic-euglycemic clamp (240 and 960 pmol/min per m2). RESULTS: Fasting plasma glucose (FPG) (10.0 +/- 0.8 to 7.7 +/- 0.7 mmol/l) and HbA1c (9.0 +/- 0.4 to 7.3 +/- 0.6%) decreased in the PIO and increased in Plc group (P < 0.05 PIO vs. Plc). Insulin sensitivity increased approximately 40% during high insulin clamp after pioglitazone (P < 0.01) and remained unchanged in the Plc group (P < 0.05 PIO vs. Plc). EGP did not change, while GNG decreased in the PIO group (9.6 +/- 0.7 to 8.7 +/- 0.6 micromol x min(-1) x kg(ffm)(-1)) and increased in the Plc group (8.0 +/- 0.5 to 9.6 +/- 0.8) (P < 0.05 PIO vs. Plc). Change in FPG correlated with change in GNG flux (r = 0.63, P < 0.003) and in insulin sensitivity (r = 0.59, P < 0.01). Plasma adiponectin increased after pioglitazone (P < 0.001) and correlated with delta FPG (r = -0.54, P < 0.03), delta GNG flux (r = -0.47, P < 0.05), and delta insulin sensitivity (r = 0.65, P < 0.005). Plasma free fatty acids decreased after pioglitazone and correlated with delta GNG flux (r = 0.54, P < 0.02). From stepwise regression analysis, the strongest determinant of change in FPG was change in GNG flux. CONCLUSIONS: Pioglitazone improves FPG, primarily by reducing GNG flux in type 2 diabetic subjects.  相似文献   

19.
OBJECTIVE: To evaluate the pharmacodynamic and pharmacokinetic properties and the dose-ranging effects of an oral insulin spray in comparison with subcutaneous regular insulin. RESEARCH DESIGN AND METHODS: In this randomized, five-way, cross-over study, seven healthy volunteers were assessed under euglycemic clamp and received four different doses of oral spray and one dose of subcutaneous regular insulin. RESULTS: The time to maximum insulin concentration was shorter for oral insulin than for subcutaneous insulin (25.9 +/- 9 vs. 145.7 +/- 49.5 min, P < 0.05). Maximum serum insulin levels (C(max)) were comparable between the subcutaneous and 20 puffs of oral insulin (39.1 +/- 19.6 vs. 34.0 +/- 7.4 microU/ml, NS). The Ins-AUC(0-120) (area under the curve from 0 to 120 min for serum insulin) (339.8 +/- 218, 681.3 +/- 407, and 1,586.7 +/- 8 microU/ml, P < 0.05) and C(max) (7.6 +/- 2.8, 16.4 +/- 9.3, and 39.1 +/- 19.6 microU/ml, P < 0.005) proved a dose-response relationship for the three doses of oral insulin (5, 10, and 20 puffs, respectively). Oral insulin had an earlier onset of action (31.7 +/- 12 vs. 77.8 +/- 3 min, P < 0.05), earlier peak (44.2 +/- 10 vs. 159.2 +/- 68 min, P < 0.05), and a shorter duration of action (85.1 +/- 25 vs. 319.2 +/- 45 min, P < 0.05) compared with subcutaneous insulin. The maximum metabolic effect (1.7 +/- 1.0, 3.09 +/- 1.7, and 4.6 +/- 1.5 mg . kg(-1) . min(-1), P < 0.05) and the GIR-AUC(0-120) (amount of glucose infused from 0 to 120 min) (106.7 +/- 74.3, 162.9 +/- 116.1, and 254 +/- 123 mg/kg) increased in a dose-dependent relationship for the three doses. CONCLUSIONS: Oral insulin was absorbed in direct relation to the amount given and had a faster onset and a shorter duration of action compared with subcutaneous regular insulin. A dose-response relationship in the absorption and metabolic effect of the oral insulin was noted.  相似文献   

20.
OBJECTIVE: To compare the effects of intravenously administered long-acting insulin analog glargine and regular human insulin on activation and deactivation of endogenous glucose output (EGO) and peripheral glucose uptake. RESEARCH DESIGN AND METHODS: In this single-center, randomized, double-blind, crossover euglycemic glucose clamp study, 15 healthy male volunteers (aged 27 +/- 4 years, BMI 24.2 +/- 0.7 kg/m(2) [mean +/- SE]) received a primed continuous intravenous infusion of 40 mU/m(2) of insulin glargine or regular human insulin on 2 different study days in a randomized order. Euglycemia was maintained at 90 mg/dl using a simultaneous variable intravenous infusion of 20% dextrose containing D-[3-(3)H]glucose. EGO and peripheral glucose disposal kinetics were determined during a 4-h insulin infusion activation period and a 3-h deactivation period. RESULTS: The results demonstrated no significant difference in activation or deactivation kinetics with respect to EGO and peripheral glucose disposal between insulin glargine and regular human insulin when given intravenously. The mean +/- SE time required for 50% suppression of EGO after insulin infusion was 73 +/- 23 min for regular insulin and 57 +/- 20 min for insulin glargine (NS). The mean maximum rate of glucose disposal was 10.10 +/- 0.77 and 9.90 +/- 0.85 mg. kg(-1). min(-1) for regular insulin and insulin glargine, respectively (NS). The mean time required for 50% suppression of incremental glucose disposal rate (GDR), defined as the time required for activation from the basal glucose disappearance rate (R(d)) to half-maximum insulin-stimulated R(d), was 32 +/- 5 and 42 +/- 10 min for regular insulin and insulin glargine, respectively (NS). The time required for deactivation from maximum insulin-stimulated GDR to half-maximum GDR after cessation of insulin infusion was 63 +/- 5 and 57 +/- 4 min for regular insulin and insulin glargine, respectively (NS). CONCLUSIONS: Activation and deactivation kinetics of EGO and peripheral glucose uptake as well as absolute disposal rate are similar between regular human insulin and insulin glargine when administered intravenously. Thus, the various biological actions of these insulin preparations when given subcutaneously are completely due to their different absorption kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号