首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
BACKGROUND AND OBJECTIVE: The antidiabetic repaglinide is metabolized by cytochrome P450 (CYP) 2C8 and CYP3A4. Telithromycin, an antimicrobial agent, inhibits CYP3A4 in vitro and in vivo. Montelukast, an antiasthmatic drug, is a potent inhibitor of CYP2C8 in vitro. We studied the effects of telithromycin, montelukast, and the combination of telithromycin and montelukast on the pharmacokinetics and pharmacodynamics of repaglinide. METHODS: In a randomized 4-phase crossover study, 12 healthy volunteers received 800 mg telithromycin, 10 mg montelukast, both telithromycin and montelukast, or placebo once daily for 3 days. On day 3, they ingested a single 0.25-mg dose of repaglinide. Plasma and urine concentrations of repaglinide and its metabolites M1, M2, and M4, as well as blood glucose concentrations, were measured for 12 hours. RESULTS: Telithromycin alone raised the mean peak plasma repaglinide concentration to 138% (range, 91%-209%; P = .006) and the total area under the plasma concentration-time curve from 0 hours to infinity [AUC0-infinity] of repaglinide to 177% (range, 125%-257%; P < .001) of control (placebo). Telithromycin reduced the AUC0-infinity ratio of the metabolite M1 to repaglinide by 68% (P < .001) and the urinary excretion ratio of M1 to repaglinide by 77% (P = .001). In contrast to previous estimates based on in vitro CYP2C8 inhibition data, montelukast had no significant effect on the pharmacokinetics of repaglinide or its metabolites and did not significantly alter the effect of telithromycin on repaglinide pharmacokinetics. Telithromycin, unlike montelukast, lowered the maximum blood glucose concentration (P = .002) and mean blood glucose concentration from 0 to 3 hours (P = .008) after repaglinide intake, as compared with placebo. CONCLUSIONS: Telithromycin increases the plasma concentrations and blood glucose-lowering effect of repaglinide by inhibiting its CYP3A4-catalyzed biotransformation and may increase the risk of hypoglycemia. Unexpectedly, montelukast has no significant effect on repaglinide pharmacokinetics, suggesting that it does not significantly inhibit CYP2C8 in vivo. The low free fraction of montelukast in plasma may explain the lack of effect on CYP2C8 in vivo, despite the low in vitro inhibition constant, highlighting the importance of incorporating plasma protein binding to interaction predictions.  相似文献   

2.
OBJECTIVE: Our objective was to study the effects of gemfibrozil on the pharmacokinetics and pharmacodynamics of glimepiride, a new sulfonylurea antidiabetic drug and a substrate of cytochrome P4502C9 (CYP2C9). METHODS: In a randomized, 2-phase crossover study, 10 healthy volunteers were treated for 2 days with 600 mg oral gemfibrozil or placebo twice daily. On day 3, they received a single dose of 600 mg gemfibrozil or placebo and 1 hour later a single dose of 0.5 mg glimepiride orally. Plasma glimepiride, serum insulin, and blood glucose concentrations were measured up to 12 hours. RESULTS: Gemfibrozil increased the mean total area under the plasma concentration-time curve of glimepiride by 23% (range, 6%-56%; P <.005). The mean elimination half-life of glimepiride was prolonged from 2.1 to 2.3 hours (P <.05) by gemfibrozil. No statistically significant differences were found in the serum insulin or blood glucose variables between the two phases. CONCLUSIONS: Gemfibrozil modestly increases the plasma concentrations of glimepiride. This may be caused by inhibition of CYP2C9.  相似文献   

3.
Rifampin decreases the plasma concentrations and effects of repaglinide   总被引:8,自引:0,他引:8  
OBJECTIVE: To study the effects of rifampin (INN, rifampicin) on the pharmacokinetics and pharmacodynamics of repaglinide, a new short-acting antidiabetic drug. METHODS: In a randomized, two-phase crossover study, nine healthy volunteers were given a 5-day pretreatment with 600 mg rifampin or matched placebo once daily. On day 6 a single 0.5-mg dose of repaglinide was administered. Plasma repaglinide and blood glucose concentrations were measured up to 7 hours. RESULTS: Rifampin decreased the total area under the concentration-time curve of repaglinide by 57% (P < .001) and the peak plasma repaglinide concentration by 41% (P = .001). The elimination half-life of repaglinide was shortened from 1.5 to 1.1 hours (P < .01). The blood glucose decremental area under the concentration-time curve from 0 to 3 hours was reduced from 0.94 to -0.23 mmol/L x h (P < .05), and the maximum decrease in blood glucose concentration from 1.6 to 1.0 mmol/L (P < .05) by rifampin. CONCLUSIONS: Rifampin considerably decreases the plasma concentrations of repaglinide and also reduces its effects. This interaction is probably caused by induction of the CYP3A4-mediated metabolism of repaglinide. It is probable that the effects of repaglinide are decreased during treatment with rifampin or other potent inducers of CYP3A4, such as carbamazepine, phenytoin, or St John's wort.  相似文献   

4.
BACKGROUND AND PURPOSE: A triple therapy with omeprazole, amoxicillin (INN, amoxicilline), and clarithromycin is widely used for the eradication of Helicobacter pylori. Omeprazole and clarithromycin are metabolized by CYP2C19 and CYP3A4. This study aimed to elucidate whether clarithromycin affects the metabolism of omeprazole. METHODS: After administration of placebo or 400 mg clarithromycin twice a day for 3 days, 20 mg omeprazole and placebo or 400 mg clarithromycin were administered to 21 healthy volunteers. Plasma concentrations of omeprazole and clarithromycin and their metabolites were determined before and 1, 2, 3, 5, 7, 10, and 24 hours after dosing. CYP2C19 genotype status was determined by a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. RESULTS: Subjects were classified into three groups on the basis of PCR-RFLP analyses for CYP2C19: homozygous extensive metabolizer group (n = 6), heterozygous extensive metabolizer group (n = 11), and poor metabolizer group (n = 4). Mean area under the plasma concentration-time curves from 0 to 24 hours (AUC) of omeprazole in the homozygous extensive metabolizer, heterozygous extensive metabolizer, and poor metabolizer groups were significantly increased by clarithromycin from 383.9 to 813.1, from 1001.9 to 2110.4, and from 5589.7 to 13098.6 ng x h/mL, respectively. There were significant differences in the mean AUC values of clarithromycin among the three groups. CONCLUSION: Clarithromycin inhibits the metabolism of omeprazole. Drug interaction between clarithromycin and omeprazole may underlie high eradication rates achieved by triple therapy with omeprazole, amoxicillin, and clarithromycin.  相似文献   

5.
Cyclosporine markedly raises the plasma concentrations of repaglinide   总被引:8,自引:0,他引:8  
BACKGROUND AND OBJECTIVE: Repaglinide is an antidiabetic drug metabolized by cytochrome P450 (CYP) 2 C 8 and 3A4, and it appears to be a substrate of the hepatic uptake transporter organic anion transporting polypeptide 1B1 (OATP1B1). We studied the effects of cyclosporine (INN, ciclosporin), an inhibitor of CYP3A4 and OATP1B1, on the pharmacokinetics and pharmacodynamics of repaglinide. METHODS: In a randomized crossover study, 12 healthy volunteers took 100 mg cyclosporine or placebo orally at 8 pm on day 1 and at 8 am on day 2. At 9 am on day 2, they ingested a single 0.25-mg dose of repaglinide. Concentrations of plasma and urine repaglinide and its metabolites (M), blood cyclosporine, and blood glucose were measured for 12 hours. The subjects were genotyped for single-nucleotide polymorphisms in CYP2C8, CYP3A5, SLCO1B1 (encoding OATP1B1), and ABCB1 (P-glycoprotein). The effect of cyclosporine on repaglinide metabolism was studied in human liver microsomes in vitro. RESULTS: During the cyclosporine phase, the mean peak repaglinide plasma concentration was 175% (range, 56%--365%; P=.013) and the total area under the plasma concentration-time curve [AUC0--infinity] was 244% (range, 119%--533%; P<.001) of that in the placebo phase. The amount of unchanged repaglinide and its metabolites M2 and M4 excreted in urine were raised 2.7--fold, 7.5--fold, and 5.0--fold, respectively, by cyclosporine (P<.001). The amount of M1 excreted in urine remained unchanged, but cyclosporine reduced the ratio of M1 to repaglinide by 62% (P<.001). Cyclosporine had no significant effect on the elimination half-life or renal clearance of repaglinide. Although the mean blood glucose-lowering effect of repaglinide was unaffected in this low-dose study with frequent carbohydrate intake, the subject with the greatest pharmacokinetic interaction had the greatest increase in blood glucose-lowering effect. The effect of cyclosporine on repaglinide AUC0-infinity was 42% lower in subjects with the SLCO1B1 521TC genotype than in subjects with the 521TT (reference) genotype (P=.047). In vitro, cyclosporine inhibited the formation of M1 (IC50 [concentration of inhibitor to cause 50% inhibition of original enzyme activity], 0.2 micromol/L) and M2 (IC50, 4.3 micromol/L) but had no effect on M4. CONCLUSIONS: Cyclosporine raised the plasma concentrations of repaglinide, probably by inhibiting its CYP3A4-catalyzed biotransformation and OATP1B1-mediated hepatic uptake. Coadministration of cyclosporine may enhance the blood glucose-lowering effect of repaglinide and increase the risk of hypoglycemia.  相似文献   

6.
OBJECTIVE: Our objective was to investigate the effects of genetic polymorphisms of cytochrome P450 (CYP) 2C8 on the pharmacokinetics and pharmacodynamics of the meglitinide analog antidiabetic drug repaglinide. METHODS: We genotyped 28 healthy volunteers who had participated in our pharmacokinetic studies on repaglinide for variant alleles of the CYP2C8 gene. Each subject ingested a 0.25-mg dose of repaglinide, and plasma drug and blood glucose concentrations were monitored for 7 hours after dosing. RESULTS: There were 19 subjects (68%) with the CYP2C8*1/*1 genotype (wild type), 6 subjects (21%) with the CYP2C8*1/*3 genotype, and 3 subjects (11%) with the CYP2C8*1/*4 genotype. In the 3 genotypic groups, the mean +/- SD area under the plasma repaglinide concentration-time curve from time 0 to infinity [AUC(0- infinity )] was 5.8 +/- 2.5 ng. h/mL for CYP2C8*1/*1, 3.6 +/- 0.9 ng. h/mL for CYP2C8*1/*3, and 5.1 +/- 3.6 ng. h/mL for CYP2C8*1/*4. The mean AUC(0- infinity ) of repaglinide was 45% (P <.005) lower and the peak concentration in plasma was 39% lower (P <.05) in subjects with the CYP2C8*1/*3 genotype compared with those with the CYP2C8*1/*1 genotype. No statistically significant differences were found in the blood glucose response to repaglinide between the genotypes. CONCLUSIONS: Unexpectedly, the CYP2C8*3 variant allele was associated with reduced plasma concentrations of repaglinide. The effects of CYP2C8 polymorphisms on the pharmacokinetics of CYP2C8 substrates warrant further study.  相似文献   

7.
OBJECTIVE: Our objective was to study the effects of fluconazole and fluvoxamine on the pharmacokinetics and pharmacodynamics of glimepiride, a new sulfonylurea antidiabetic drug. METHODS: In this randomized, double-blind, three-phase crossover study, 12 healthy volunteers took 200 mg of fluconazole once daily (400 mg on day 1), 100 mg of fluvoxamine once daily, or placebo once daily for 4 days. On day 4, a single oral dose of 0.5 mg of glimepiride was administered. Plasma glimepiride and blood glucose concentrations were measured up to 12 hours. RESULTS: In the fluconazole phase, the mean total area under the plasma concentration-time curve of glimepiride was 238% (P <.0001) and the peak plasma concentration was 151% (P <.0001) of the respective control value. The mean elimination half-life of glimepiride was prolonged from 2.0 to 3.3 hours (P <.0001) by fluconazole. In the fluvoxamine phase, the mean area under the plasma concentration-time curve of glimepiride was not significantly different from that in the placebo phase. However, the mean peak plasma concentration of glimepiride was 143% (P <.05) of the control and the elimination half-life was prolonged from 2.0 to 2.3 hours (P <.01) by fluvoxamine. Fluconazole and fluvoxamine did not cause statistically significant changes in the effects of glimepiride on blood glucose concentrations. CONCLUSIONS: Fluconazole considerably increased the area under the plasma concentration-time curve of glimepiride and prolonged its elimination half-life. This was probably caused by inhibition of the cytochrome P-450 2C9-mediated biotransformation of glimepiride by fluconazole. Concomitant use of fluconazole with glimepiride may increase the risk of hypoglycemia as much as would a 2- to 3-fold increase in the dose of glimepiride. Fluvoxamine moderately increased the plasma concentrations and slightly prolonged the elimination half-life of glimepiride.  相似文献   

8.
OBJECTIVE: Our objective was to investigate the effect of rifampin (INN, rifampicin) on the pharmacokinetics and pharmacodynamics of gliclazide, a sulfonylurea antidiabetic drug. METHOD: In a randomized 2-way crossover study with a 4-week washout period, 9 healthy Korean subjects were treated once daily for 6 days with 600 mg rifampin or with placebo. On day 7, a single dose of 80 mg gliclazide was administered orally. Plasma gliclazide, blood glucose, and insulin concentrations were measured. RESULTS: Rifampin decreased the mean area under the plasma concentration-time curve for gliclazide by 70% (P <.001) and the mean elimination half-life from 9.5 to 3.3 hours (P <.05). The apparent oral clearance of gliclazide increased about 4-fold after rifampin treatment (P <.001). A significant difference in the blood glucose response to gliclazide was observed between the placebo and rifampin phases. CONCLUSION: The effect of rifampin on the pharmacokinetics and pharmacodynamics of gliclazide suggests that rifampin affects the disposition of gliclazide in humans, possibly by the induction of cytochrome P450 2C9. Concomitant use of rifampin with gliclazide can considerably reduce the glucose-lowering effects of gliclazide.  相似文献   

9.
10.
OBJECTIVE: Our objective was to examine the effects of itraconazole on the pharmacokinetics and cortisol-suppressant activity of budesonide administered by inhalation. METHODS: In a randomized, double-blind, 2-phase crossover study, 10 healthy subjects took 200 mg itraconazole or placebo orally once a day for 5 days. On day 5, 1 hour after the last dose of itraconazole or placebo, 1000 microg budesonide was administered by inhalation. Plasma budesonide and cortisol concentrations were measured up to 23 hours. RESULTS: Itraconazole increased the mean total area under the plasma concentration-time curve of inhaled budesonide 4.2-fold (range, 1.7-fold to 9.8-fold; P <.01) and the peak plasma concentration 1.6-fold (P <.01) compared with placebo. The mean terminal half-life of budesonide was prolonged from 1.6 to 6.2 hours (ie, 3.7-fold; range, 1.5-fold to 9.3-fold; P <.001) by itraconazole. The suppression of cortisol production after inhalation of budesonide was significantly increased by itraconazole as compared with placebo, as shown by a 43% reduction in the area under the plasma cortisol concentration-time curve from 0.5 to 10 hours (P <.001) and a 12% decrease in the cortisol concentration measured 23 hours after administration of budesonide, at 8 am (P <.05). CONCLUSIONS: Itraconazole markedly increased systemic exposure to inhaled budesonide, probably by inhibiting the cytochrome P4503A4-mediated metabolism of budesonide during both the first-pass and the elimination phases. This interaction resulted in enhanced systemic effects of budesonide, as shown by suppression of cortisol production. Long-term coadministration of budesonide and a potent CYP3A4 inhibitor may be associated with an increased risk of adverse effects of budesonide.  相似文献   

11.
OBJECTIVE: This study was designed to compare the pharmacodynamic effects of single doses of nateglinide (A-4166), repaglinide, and placebo on mealtime insulin secretion and glycemic control in healthy subjects. RESEARCH DESIGN AND METHODS: Fifteen healthy volunteers participated in this open-label five-period crossover study. They received single 10-min preprandial doses of 120 mg nateglinide, 0.5 or 2 mg repaglinide, or placebo or 1 min preprandially of 2 mg repaglinide. Subjects received each dose only once, 48 h apart. Pharmacodynamic and pharmacokinetic assessments were performed from 0 to 12 h postdose. RESULTS: Nateglinide induced insulin secretion more rapidly than 2 and 0.5 mg repaglinide and placebo (10 min preprandial), with mean rates of insulin rise of 2.3, 1.3, 1.15, and 0.8 microU x ml(-1) x min(-1), respectively, over the 0- to 30-min postmeal interval. After peaking, insulin concentrations decreased rapidly in the nateglinide-treated group and were similar to placebo within 2 h postdose. After 2 mg repaglinide, peak insulin concentrations were delayed and returned to baseline more slowly than with nateglinide treatment. Nateglinide treatment produced lower average plasma glucose concentrations in the 0- to 2-h postdose interval than either dose of repaglinide and placebo (P < 0.05 vs. 0.5 mg repaglinide and placebo). Plasma glucose concentrations returned more rapidly to predose levels with nateglinide treatment than with either dose of repaglinide. Treatment with repaglinide produced a sustained hypoglycemic effect up to 6 h postdose. CONCLUSIONS: In this single-dose study in nondiabetic volunteers, nateglinide provided a more rapid and shorter-lived stimulation of insulin secretion than repaglinide, resulting in lower meal-related glucose excursions. If similar results are observed in diabetes, nateglinide may produce a more physiological insulin secretory response with the potential for a reduced risk of postabsorptive hypoglycemia.  相似文献   

12.
Repaglinide is metabolized by cytochrome P450 (CYP) 2C8 and 3A4. Gemfibrozil has the effect of increasing the area under the concentration-time curve (AUC) of repaglinide eightfold. We studied the effect of dosing interval on the extent of the gemfibrozil-repaglinide interaction. In a randomized five-phase crossover study, 10 healthy volunteers ingested 0.25 mg repaglinide, with or without gemfibrozil pretreatment. Plasma repaglinide, gemfibrozil, their metabolites, and blood glucose were measured. When the last dose of 600 mg gemfibrozil was ingested simultaneously with repaglinide, or 3, 6, or 12 h before, it increased the AUC(0-infinity) of repaglinide 7.0-, 6.5-, 6.2- and 5.0-fold, respectively (P < 0.001). The peak repaglinide concentration increased approximately twofold (P < 0.001), and the half-life was prolonged from 1.2 h to 2-3 h (P < 0.001) during all the gemfibrozil phases. The drug interaction effects persisted at least 12 h after gemfibrozil was administered, although plasma gemfibrozil and gemfibrozil 1-O-beta-glucuronide concentrations were only 5 and 10% of their peak values, respectively. The long-lasting interaction is likely caused by mechanism-based inhibition of CYP2C8 by gemfibrozil glucuronide.  相似文献   

13.
Background: Oral ketamine is used as an adjuvant in the treatment of refractory neuropathic and cancer‐related pain. Drug interactions may alter the analgesic or other effects of ketamine. Aim and methods: The aim of the study was to investigate the effect of cytochrome P450 3A enzyme inhibition with clarithromycin on the pharmacokinetics and pharmacodynamics of oral S‐ketamine in a randomized controlled cross‐over study with two phases. Ten healthy subjects were pre‐treated with oral clarithromycin or placebo for 4 days. On day 4, they ingested an oral dose of 0.2 mg/kg of S‐ketamine syrup. Plasma concentrations of ketamine and norketamine were measured for 24 h. Analgesic effects were evaluated in a cold pressor test and psychomotor effects were followed for 12 h. Results: Clarithromycin increased the mean Cmax of ketamine by 3.6‐fold (p < 0.001) and the mean AUC0–∞ of ketamine by 2.6‐fold (p = 0.001). The relative amount of the CYP3A dependent metabolite norketamine was decreased by 54% by clarithromycin (p = 0.004). Self‐rated drug effect of S‐ketamine was enhanced by clarithromycin (p < 0.05) but other behavioral effects or cold pain scores were not affected. Conclusions: Clarithromycin strongly increases plasma concentrations of oral S‐ketamine probably by inhibiting its CYP3A‐mediated N‐demethylation. This increase is reflected as modest changes in behavioral effects of oral S‐ketamine.  相似文献   

14.
This study was conducted to determine (i) the effect of omeprazole on steady-state concentrations of clarithromycin and 14-(R)-hydroxyclarithromycin in plasma and gastric mucosa, (ii) the effect of clarithromycin on steady-state concentrations of omeprazole in plasma, and (iii) the effect of clarithromycin on the suppression of gastric acid secretion by omeprazole. Twenty healthy, Helicobacter pylori-negative male subjects completed this three-period, double-blind, randomized crossover study. In period 1, all subjects received 40 mg of omeprazole each morning for 6 days. Twenty-four-hour gastric pH monitoring took place on days -1 and 6. Pharmacokinetic sampling took place on day 6. In periods 2 and 3, subjects were randomly assigned to receive either 40 mg of omeprazole or omeprazole placebo daily for 6 days plus clarithromycin (500 mg) every 8 h for 5 days with a single 500-mg dose on day 6. Gastric tissue and mucus samples were obtained via endoscopy on day 5. Gastric pH monitoring and pharmacokinetic sampling took place on day 6. Two-week washout intervals separated the three study periods. Clarithromycin increased mean omeprazole area under the concentration-time curve from 0 to 24 h from 3.3 +/- 2.0 to 6.3 +/- 4.5 micrograms.h/ml (P < 0.05) and harmonic mean half-life from 1.2 to 1.6 h (P < 0.05) but did not significantly alter the effect of omeprazole on gastric pH. Mean clarithromycin area under the concentration-time curve from 0 to 8 h increased from 22.9 +/- 5.5 (placebo) to 26.4 +/- 5.7 micrograms.h/ml (omeprazole) (P < 0.05) when clarithromycin was administered with omeprazole. Analysis of variance revealed that mean concentrations of clarithromycin in tissue and mucus were statistically significantly higher when clarithromycin was given with omeprazole than when clarithromycin was given with placebo (P <0.001). Mean maximum observed concentrations of clarithromycin in the gastric fundus increased from 20.8 +/- 7.6 (placebo) to 24.3 +/- 6.4 micrograms/g (omeprazole), and those in the gastric mucous from 4.2 +/- 7.7 placebo to 39.3 +/- 32.8 micrograms/g (omeprazole). Similar increases were observed for the 14-(R)-hydroxyclarithromycin. These results show that omeprazole increases concentrations of clarithromycin in gastric tissue and mucus and may provide a mechanism for synergy between clarithromycin ad omeprazole that explains the excellent eradication of H. pylori seen in clinical trials.  相似文献   

15.
BACKGROUND: Ondansetron is an antiemetic agent metabolized by cytochrome P450 (CYP) enzymes. Rifampin (INN, rifampicin) is a potent inducer of CYP3A4 and some other CYP enzymes. We examined the possible effect of rifampin on the pharmacokinetics of orally and intravenously administered ondansetron. METHODS: In a randomized crossover study with 4 phases and a washout of 4 weeks, 10 healthy volunteers took either 600 mg rifampin (in 2 phases) or placebo (in 2 phases) once a day for 5 days. On day 6, 8 mg ondansetron was administered either orally (after rifampin and placebo) or intravenously (after rifampin and placebo). Ondansetron concentrations in plasma were measured up to 12 hours. RESULTS: The mean total area under the plasma concentration-time curve [AUC(0-infinity)] of orally administered ondansetron after rifampin pretreatment was reduced by 65% compared with placebo (P < .001). Rifampin decreased the peak plasma concentration of oral ondansetron by about 50% (from 27.2+/-3.0 to 13.8+/-1.5 ng/mL [mean +/- SEM]; P < .001]) and the elimination half-life (t1/2) by 38% (P < .01). The bioavailability of oral ondansetron was reduced from 60% to 40% (P < .01) by rifampin. The clearance of intravenous ondansetron was increased 83% (from 440+/-38.4 to 805+/-44.6 mL/min [P < .001]) by rifampin. Rifampin reduced the t1/2 of intravenously administered ondansetron by 46% (P < .001) and the AUC(0-infinity) by 48% (P < .001). CONCLUSIONS: Rifampin considerably decreases the plasma concentrations of ondansetron after both oral and intravenous administration. The interaction is most likely the result of induction of the CYP3A4-mediated metabolism of ondansetron. Concomitant use of rifampin or other potent inducers of CYP3A4 with ondansetron may result in a reduced antiemetic effect, particularly after oral administration of ondansetron.  相似文献   

16.
BACKGROUND AND OBJECTIVE: A large interindividual variability exists in the plasma concentrations of repaglinide. Our aim was to investigate possible associations between the pharmacokinetics of repaglinide and single nucleotide polymorphisms (SNPs) in the genes encoding for the drug transporters organic anion transporting polypeptide 1B1 (OATP1B1) (SLCO1B1 ) and P-glycoprotein ( MDR1 , ABCB1 ) and the drug-metabolizing enzymes cytochrome P450 (CYP) 2C8 and CYP3A5. METHODS: A total of 56 healthy volunteers ingested a single 0.25-mg dose of repaglinide. Plasma repaglinide and blood glucose concentrations were measured for up to 7 hours. All subjects were genotyped for the -11187G>A and 521T>C SNPs in SLCO1B1 and the 3435C>T and 2677G>T/A SNPs in ABCB1 , as well as for the CYP2C8*3 (416G>A, 1196A>G), CYP2C8*4 (792C>G), and CYP3A5*3 (6986A>G) alleles. RESULTS: The area under the plasma concentration-time curve from time 0 to infinity [AUC(0-infinity)] and peak concentration in plasma (Cmax) of repaglinide varied 16.9-fold and 10.7-fold, respectively, between individual subjects. Multiple regression analyses indicated that the SLCO1B1 521T>C SNP and the CYP2C8*3 allele were independent predictors of the AUC(0-infinity) and Cmax of repaglinide (adjusted multiple R2 = 45% and 36%, respectively). In subjects with the SLCO1B1 521CC genotype, the AUC(0-infinity) of repaglinide was 107% and 188% higher, respectively, than in subjects with the SLCO1B1 521TC or 521TT (reference) genotype (P < .0001). In subjects with the CYP2C8*1/*3 genotype, the AUC(0-infinity) and Cmax of repaglinide were 48% and 44% lower, respectively, than in those with the CYP2C8*1/*1 genotype (P < .05). The pharmacokinetics of repaglinide was not associated with the studied ABCB1 SNPs or the CYP3A5*3 allele. The elimination half-life of repaglinide was not associated with any SNP. Only the SLCO1B1 -11187GA genotype was significantly associated with an enhanced effect of repaglinide on blood glucose. CONCLUSIONS: Genetic polymorphism in SLCO1B1 is a major determinant of interindividual variability in the pharmacokinetics of repaglinide. The effect of SLCO1B1 polymorphism on the pharmacokinetics of repaglinide may be clinically important.  相似文献   

17.
BACKGROUND AND OBJECTIVE: The thiazolidinedione antidiabetic drug pioglitazone is metabolized mainly by cytochrome P450 (CYP) 2C8 and CYP3A4 in vitro. Our objective was to study the effects of gemfibrozil, itraconazole, and their combination on the pharmacokinetics of pioglitazone to determine the role of these enzymes in the fate of pioglitazone in humans. METHODS: In a randomized, double-blind, 4-phase crossover study, 12 healthy volunteers took either 600 mg gemfibrozil or 100 mg itraconazole (first dose, 200 mg), both gemfibrozil and itraconazole, or placebo twice daily for 4 days. On day 3, they received a single dose of 15 mg pioglitazone. Plasma drug concentrations and the cumulative excretion of pioglitazone and its metabolites into urine were measured for up to 48 hours. RESULTS: Gemfibrozil alone raised the mean total area under the plasma concentration-time curve from time 0 to infinity [AUC(0-infinity)] of pioglitazone 3.2-fold (range, 2.3-fold to 6.5-fold; P < .001) and prolonged its elimination half-life (t (1/2) ) from 8.3 to 22.7 hours ( P < .001) but had no significant effect on its peak concentration (C max ) compared with placebo (control). Gemfibrozil increased the 48-hour excretion of pioglitazone into urine by 2.5-fold ( P < .001) and reduced the ratios of the active metabolites M-III and M-IV to pioglitazone in plasma and urine. Gemfibrozil decreased the area under the plasma concentration-time curve from time 0 to 48 hours [AUC(0-48)] of the metabolites M-III and M-IV by 42% ( P < .05) and 45% ( P < .001), respectively, but their total AUC(0-infinity) values were reduced by less or not at all. Itraconazole had no significant effect on the pharmacokinetics of pioglitazone and did not alter the effect of gemfibrozil on pioglitazone pharmacokinetics. The mean area under the concentration versus time curve to 49 hours [AUC(0-49)] of itraconazole was 46% lower ( P < .001) during the gemfibrozil-itraconazole phase than during the itraconazole phase. CONCLUSIONS: Gemfibrozil elevates the plasma concentrations of pioglitazone, probably by inhibition of its CYP2C8-mediated metabolism. CYP2C8 appears to be of major importance and CYP3A4 of minor importance in pioglitazone metabolism in vivo in humans. Concomitant use of gemfibrozil with pioglitazone may increase the effects and risk of dose-related adverse effects of pioglitazone. However, studies in diabetic patients are needed to determine the clinical significance of the gemfibrozil-pioglitazone interaction.  相似文献   

18.
BACKGROUND: The calcium channel blockers mibefradil and isradipine inhibit CYP3A4 in vitro. However, their in vivo inhibitory effects on CYP3A4 are not known in detail, although mibefradil was recently withdrawn from the market because of serious drug interactions. METHODS: The effects of mibefradil and isradipine on the pharmacokinetics and pharmacodynamics of oral triazolam, a model substrate of CYP3A4, were studied in a randomized, double-blind crossover study with three phases. Nine healthy subjects took 50 mg mibefradil, 5 mg isradipine, or placebo orally once a day for 3 days. On day 3, each subject received a single 0.25 mg oral dose of triazolam. Thereafter, blood samples were collected up to 18 hours, and pharmacodynamic effects of triazolam were measured up to 8 hours. RESULTS: Mibefradil increased the total area under the plasma triazolam concentration-time curve [AUC(0 - infinity)] 9-fold compared with placebo (P < .001). The peak plasma concentration of triazolam was increased 1.8-fold (3.4+/-0.1 ng/mL versus 1.8+/-0.2 ng/mL [mean +/- SEM]; P < .001), and the elimination half-life (t 1/2) was increased 4.9-fold (18.5+/-1.9 hours versus 4.0+/-0.5 hours; P < .001) by mibefradil. In addition, mibefradil was associated with increased pharmacodynamic effects of triazolam. In contrast to mibefradil, isradipine reduced the AUC(0 - infinity) and t 1/2 of triazolam by about 20% (P < .05) and had no significant effects on the pharmacodynamics of triazolam. CONCLUSION: Mibefradil but not isradipine markedly increases the plasma concentrations of triazolam and thereby enhances and prolongs its pharmacodynamic effects, consistent with potent inhibition of CYP3A4.  相似文献   

19.
BACKGROUND: Trimethoprim is a relatively selective inhibitor of the cytochrome P450 (CYP) 2C8 enzyme in vitro. Rifampin (INN, rifampicin) is a potent inducer of several CYP enzymes, and in vitro studies have suggested that it also induces CYP2C8. OBJECTIVE: Our aims were to investigate possible effects of trimethoprim and rifampin on CYP2C8 activity by use of rosiglitazone, a thiazolidinedione antidiabetic drug metabolized primarily by CYP2C8, as an in vivo probe. METHODS: Two separate randomized crossover studies with 2 phases were conducted. In study 1, 10 healthy volunteers took 160 mg trimethoprim or placebo orally twice daily for 4 days. On day 3, they ingested a single 4-mg dose of rosiglitazone. In study 2, 10 healthy volunteers took 600 mg rifampin or placebo orally once daily for 5 days. On day 6, they ingested a single 4-mg dose of rosiglitazone. In both studies, plasma rosiglitazone and N -desmethylrosiglitazone concentrations were measured for up to 48 hours. Results In study 1, trimethoprim raised the area under the plasma rosiglitazone concentration-time curve [AUC(0- infinity )] by 37% (range, 16% to 51%; P <.0001) and the peak plasma rosiglitazone concentration (C max ) by 14% (range, -3% to 38%; P =.0014). The elimination half-life (t 1/2 ) of rosiglitazone was prolonged from 3.8 to 4.8 hours ( P =.0013). Trimethoprim reduced the formation of N -desmethylrosiglitazone. In study 2, rifampin reduced the AUC(0- infinity ) and C max of rosiglitazone by 54% (range, 46% to 63%; P <.0001) and 28% (range, 2% to 56%; P =.0003), respectively. The t 1/2 of rosiglitazone was shortened from 3.8 to 1.9 hours ( P <.0001). Rifampin increased the formation of N -desmethylrosiglitazone. CONCLUSIONS: Trimethoprim raises and rifampin reduces the plasma concentrations of rosiglitazone by inhibiting and inducing, respectively, the CYP2C8-catalyzed biotransformation of rosiglitazone.  相似文献   

20.
OBJECTIVES: Our objective was to evaluate the effects of itraconazole and grapefruit juice on the pharmacokinetics of the beta-adrenergic receptor-blocking agent celiprolol in healthy volunteers. METHODS: In a randomized 3-phase crossover study, 12 healthy volunteers took itraconazole 200 mg orally or placebo twice a day or 200 mL grapefruit juice 3 times a day for 2 days. On the morning of day 3, 1 hour after ingestion of itraconazole, placebo, or grapefruit juice, each subject ingested 100 mg celiprolol with 200 mL of water (placebo and itraconazole phases) or grapefruit juice. In addition, 200 mL of water or grapefruit juice was ingested 4 and 10 hours after celiprolol intake. The plasma concentrations of celiprolol, itraconazole, and hydroxyitraconazole and the excretion of celiprolol into urine were measured up to 33 hours after dosing. Systolic and diastolic blood pressures and heart rate were recorded with subjects in a sitting position before the administration of celiprolol and 2, 4, 6, and 10 hours later. RESULTS: During the itraconazole phase, the mean area under the plasma concentration-time curve from 0 to 33 hours [AUC(0-33)] of celiprolol was 80% greater (P <.05) than in the placebo phase. During the grapefruit juice phase, the mean AUC(0-33) and peak plasma concentration values of celiprolol were reduced to about 13% (P <.001) and 5% (P <.001) of the respective placebo phase values. The cumulative excretion into urine of celiprolol was increased by 59% by itraconazole (P <.05) and decreased by 85% by grapefruit juice (P <.001). Hemodynamic variables did not differ between the phases. CONCLUSIONS: Itraconazole almost doubles but grapefruit juice greatly reduces plasma concentrations of celiprolol. The itraconazole-celiprolol interaction most likely resulted from increased absorption of celiprolol possibly as a result of P-glycoprotein inhibition in the intestine. The reduced celiprolol concentrations during the grapefruit juice phase were probably caused by physicochemical factors that interfered with celiprolol absorption, although other mechanisms cannot be excluded. The grapefruit juice-celiprolol interaction is probably of clinical relevance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号