首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Gating modifier peptides bind to ion channels and alter the gating process of these molecules. One of the most extensively studied peptides, Hanatoxin (HaTx), isolated from a Chilean tarantula, has been used to characterize the blocking properties of the voltage-gated potassium channel Kv2.1. These studies have provided some insight into the gating mechanism in Kv channels. In this review we will discuss the interaction of HaTx and related spider peptides with Kv channels illustrating the properties of the binding surface of these peptides, their membrane partitioning characteristics, and will provide a working hypothesis for how the peptides inhibit gating of Kv channels. Advanced simulation results support the concept of mutual conformational changes upon peptide binding to the S3b region of the channel which will restrict movement of S4 and compromise coupling of the gating machinery to opening of the pore.  相似文献   

2.
Three novel peptides with the ability to inhibit voltage-dependent potassium channels in the shab (Kv2) and shal (Kv4) subfamilies were identified from the venom of the African tarantulas Stromatopelma calceata (ScTx1) and Heteroscodra maculata (HmTx1, HmTx2). The three toxins are 34- to 38-amino acid peptides that belong to the structural family of inhibitor cystine knot spider peptides reticulated by three disulfide bridges. Electrophysiological recordings in COS cells show that these toxins act as gating modifier of voltage-dependent K+ channels. ScTx1 is the first high-affinity inhibitor of the Kv2.2 channel subtype (IC50, 21.4 nM) to be described. ScTx1 also inhibits the Kv2.1 channels, with an IC50 of 12.7 nM, and Kv2.1/Kv9.3 heteromultimers that have been proposed to be involved in O2 sensing in pulmonary artery myocytes. In addition, it is the most effective inhibitor of Kv4.2 channels described thus far, with an IC50 of 1.2 nM. HmTx toxins share sequence similarities with both the potassium channel blocker toxins (HmTx1) and the calcium channel blocker toxin omega-GsTx SIA (HmTx2). They inhibit potassium current associated with Kv2 subtypes in the 100 to 300 nM concentration range. HmTx2 seems to be a specific inhibitor of Kv2 channels, whereas HmTx1 also inhibits Kv4 channels, including Kv4.1, with the same potency. HmTx1 is the first described peptide effector of the Kv4.1 subtype. Those novel toxins are new tools for the investigation of the physiological role of the different potassium channel subunits in cellular physiology.  相似文献   

3.
Novel insulinotropic agent nateglinide stimulates insulin via binding to sulfonylurea receptor and closing the ATP-dependent K+ (K(ATP)) channels in pancreatic beta-cells, leading to an increase in [Ca(2+)](i) for exocytosis. The voltage-dependent Ca(2+) channel and the delayed rectifier K+ (Kv) channels are also present in beta-cells and their activities determine the configuration of action potential and hence contribute to the regulation of [Ca(2+)](i) and insulin secretion. This study, by using the patch-clamp method in whole cell configuration, comparatively characterized the direct effects of sulfonylurea receptor ligands including nateglinide, glyburide, and repaglinide on Kv and Ca(2+) channels. Each agent inhibited Kv currents in a concentration-dependent manner with effective concentration range two to three orders higher than that for blocking K(ATP) channels. A marginal stimulation of Ca(2+) current was observed with all drugs, while repaglinide at concentration greater than 300 nM inhibited Ca(2+) current. The direct effects of these antidiabetic agents on Kv and Ca(2+) channels may act concertedly with their primary action on K(ATP) channels in regulating [Ca(2+)](i) and the stimulus-secretion coupling.  相似文献   

4.
ATP-sensitive potassium (K(ATP)) channels in pancreatic beta-cells comprise sulfonylurea receptor (SUR) 1 and inwardly-rectifying potassium channel (Kir) 6.2 subunits. We have evaluated the effect of intracellular taurine on K(ATP) channel activity in rat pancreatic beta-cells using the patch-clamp technique. The mechanism of taurine action was also examined using recombinant K(ATP) channels. The islets and single beta-cells from male Sprague-Dawley rats were collected by collagenase digestion technique. Single K(ATP) channel currents were recorded by the inside-out mode at a membrane potential of -60mV. Cytosolic free-Ca(2+) concentration ([Ca(2+)](c)) and insulin secretory capacity were measured by the dual-excitation fluorimetry and radioimmunoassay, respectively. The native beta-cell K(ATP) channel was directly inhibited by taurine in a dose-dependent manner. Taurine did not influence ATP-mediated inhibition or MgADP-induced activation of the channel activity. The sensitivity of the K(ATP) channel to glybenclamide, but not gliclazide, was enhanced by taurine. Glybenclamide elicited a greater increase in [Ca(2+)](c) and increased insulin secretion in the beta-cells when pretreated with taurine. Taurine did not inhibit Kir6.2DeltaC36 currents, a truncated form of Kir6.2, expressed in Xenopus oocytes without SUR. These results demonstrate that taurine inhibits the K(ATP) channel activity in the beta-cells, interacting with a benzamido-binding site on SUR1, but not Kir6.2.  相似文献   

5.
The MinK-related peptides   总被引:12,自引:0,他引:12  
Voltage-gated potassium (Kv) channels mediate rapid, selective diffusion of K+ ions through the plasma membrane, controlling cell excitability, secretion and signal transduction. KCNE genes encode a family of single transmembrane domain proteins called MinK-related peptides (MiRPs) that function as ancillary or beta subunits of Kv channels. When co-expressed in heterologous systems, MiRPs confer changes in Kv channel conductance, gating kinetics and pharmacology, and are fundamental to recapitulation of the properties of some native currents. Inherited mutations in KCNE genes are associated with diseases of cardiac and skeletal muscle, and the inner ear. This article reviews our current understanding of MiRPs--their functional roles, the mechanisms underlying their association with Kv alpha subunits, their patterns of native expression and emerging evidence of the potential roles of MiRPs in the brain. The ubiquity of MiRP expression and their promiscuous association with Kv alpha subunits suggest a prominent role for MiRPs in channel dependent systems.  相似文献   

6.
In order to find new peptide inhibitors for voltage-dependent potassium (Kv) channels, we examined the effects of venom from Theraphosa leblondi on Kv channel-mediated currents with the whole-cell patch-clamp technique. Both A-type currents in cultured hippocampal neurons and A-type currents recorded from HEK 293 cells transiently expressing recombinant Kv4.2 channels were selectively inhibited by T. leblondi venom. No venom activity was observed on recombinant Kv1.3, Kv1.4, Kv2.1 or Kv3.4 channels. We purified and sequenced three novel homologous peptides from this venom, which are related to previously identified Kv4 channel-specific peptide inhibitors and were named T. leblondi toxin (TLTx) 1, 2 and 3. The mode of action of TLTx1 on recombinant Kv4.2 channels was studied in more detail. TLTx1 inhibited Kv4.2-mediated currents with an IC50 of 200 nM, and macroscopic current inactivation was slowed in the presence of TLTx1. Notably, TLTx1 also caused a shallower voltage dependence of Kv4.2 peak conductance and a shift of the activation midpoint to more positive potentials (ΔV1/2=+35 mV). TLTx1 caused a noticable slowing of Kv4.2 activation kinetics, and Kv4.2 deactivation kinetics were accelerated by TLTx1 as infered from Rb+ tail current measurements. Chimeric Kv2.1(4.2L3-4) channels, in which the linker region between S3 and S4 of the TLTx1-insensitive Kv2.1 channel was replaced by the corresponding Kv4.2 domain, were sensitive to TLTx1. Apparently, TLTx1 can act as a gating modifier of Kv4.2 channels.  相似文献   

7.
Theoretical possibilities for the development of novel antiarrhythmic drugs   总被引:3,自引:0,他引:3  
One possible mechanism of action of the available K-channel blocking agents used to treat arrhythmias is to selectively inhibit the HERG plus MIRP channels, which carry the rapid delayed rectifier outward potassium current (I(Kr)). These antiarrhythmics, like sotalol, dofetilide and ibutilide, have been classified as Class III antiarrhythmics. However, in addition to their beneficial effect, they substantially lengthen ventricular repolarization in a reverse-rate dependent manner. This latter effect, in certain situations, can result in life-threatening polymorphic ventricular tachycardia (torsades de pointes). Selective blockers (chromanol 293B, HMR-1556, L-735,821) of the KvLQT1 plus minK channel, which carriy the slow delayed rectifier potassium current (I(Ks)), were also considered to treat arrhythmias, including atrial fibrillation (AF). However, I(Ks) activates slowly and at a more positive voltage than the plateau of the action potential, therefore it remains uncertain how inhibition of this current would result in a therapeutically meaningful repolarization lengthening. The transient outward potassium current (I(to)), which flows through the Kv 4.3 and Kv 4.2 channels, is relatively large in the atrial cells, which suggests that inhibition of this current may cause substantial prolongation of repolarization predominantly in the atria. Although it was reported that some antiarrhythmic drugs (quinidine, disopyramide, flecainide, propafenone, tedisamil) inhibit I(to), no specific blockers for I(to) are currently available. Similarly, no specific inhibitors for the Kir 2.1, 2.2, 2.3 channels, which carry the inward rectifier potassium current (I(kl)), have been developed making difficult to judge the possible beneficial effects of such drugs in both ventricular arrhythmias and AF. Recently, a specific potassium channel (Kv 1.5 channel) has been described in human atrium, which carries the ultrarapid, delayed rectifier potassium current (I(Kur)). The presence of this current has not been observed in the ventricular muscle, which raises the possibility that by specific inhibition of this channel, atrial repolarization can be lengthened without similar effect in the ventricle. Therefore, AF could be terminated and torsades de pointes arrhythmia avoided. Several compounds were reported to inhibit I(Kur)(flecainide, tedisamil, perhexiline, quinidine, ambasilide, AVE 0118), but none of them can be considered as specific for Kv 1.5 channels. Similarly to Kv 1.5 channels, acetylcholine activated potassium channels carry repolarizing current (I(KAch)) in the atria and not in the ventricle during normal vagal tone and after parasympathetic activation. Specific blockers of I(KAch) can, therefore, also be a possible candidate to treat AF without imposing proarrhythmic risk on the ventricle. At present several compounds (amiodarone, dronedarone, aprindine, pirmenol, SD 3212) were shown to inhibit I(KAch) but none of them proved to be selective. Further research is needed to develop specific K-channel blockers, such as I(Kur)and I(KAch) inhibitors, and to establish their possible therapeutic value.  相似文献   

8.
In order to find new peptide inhibitors for voltage-dependent potassium (Kv) channels, we examined the effects of venom from Theraphosa leblondi on Kv channel-mediated currents with the whole-cell patch-clamp technique. Both A-type currents in cultured hippocampal neurons and A-type currents recorded from HEK 293 cells transiently expressing recombinant Kv4.2 channels were selectively inhibited by T. leblondi venom. No venom activity was observed on recombinant Kv1.3, Kv1.4, Kv2.1 or Kv3.4 channels. We purified and sequenced three novel homologous peptides from this venom, which are related to previously identified Kv4 channel-specific peptide inhibitors and were named T. leblondi toxin (TLTx) 1, 2 and 3. The mode of action of TLTx1 on recombinant Kv4.2 channels was studied in more detail. TLTx1 inhibited Kv4.2-mediated currents with an IC50 of 200 nM, and macroscopic current inactivation was slowed in the presence of TLTx1. Notably, TLTx1 also caused a shallower voltage dependence of Kv4.2 peak conductance and a shift of the activation midpoint to more positive potentials (ΔV1/2=+35 mV). TLTx1 caused a noticable slowing of Kv4.2 activation kinetics, and Kv4.2 deactivation kinetics were accelerated by TLTx1 as infered from Rb+ tail current measurements. Chimeric Kv2.1(4.2L3-4) channels, in which the linker region between S3 and S4 of the TLTx1-insensitive Kv2.1 channel was replaced by the corresponding Kv4.2 domain, were sensitive to TLTx1. Apparently, TLTx1 can act as a gating modifier of Kv4.2 channels.  相似文献   

9.
Jingzhaotoxin-III (JZTX-III) is a peptide toxin isolated from the venom of the Chinese spider Chilobrachys jingzhao that inhibits Nav channels of rat cardiac myocytes by modifying voltage-dependent gating and also binds to Kv2.1 channel (Kd=0.43muM) with an action model similar to that of hanatoxin1 and SGTx1. The solution structure of JZTX-III was determined by (1)H 2D NMR method. The toxin adopts an ICK motif composed of three beta-strands connected by four turns. Structural comparison of JZTX-III with those of other ICK motif peptides shows that they all adopt a conserved surface profile, a hydrophobic patch surrounded by charged residues, which might be the crucial site for voltage-gating ion channel inhibition. Furthermore, the similar action model of JZTX-III affecting both Kv and Nav channels implies that JZTX-III recognized a conserved receptor within the voltage sensing domains, which is similar to that of hanatoxin1 binding to both Kv and Cav channels.  相似文献   

10.
Preclinical developments in type 2 diabetes   总被引:5,自引:0,他引:5  
Type 2 diabetes is associated with insulin resistance in peripheral tissues, such as muscle and fat, impaired glucose-stimulated insulin secretion from pancreatic beta-cells and elevated hepatic gluconeogenesis. Current pharmacotherapy does not adequately address the metabolic defects underlying this disease. Thus, novel targets are being explored that enhance insulin action at target tissues, stimulate carbohydrate and fat catabolism, decrease endogenous glucose production and increase pancreatic beta-cell neogenesis and glucose-dependent insulin secretion. This article reviews recent developments in research on several of these targets, namely acetyl-CoA carboxylase 2 (ACC2), I kappa kinase (IKK) beta, dipeptidyl peptidase IV (DPP-IV) and glucagon-like peptide-1 receptor (GLP-1R).  相似文献   

11.

Aim:

To determine the presence of voltage-gated K+ (Kv) channels in bone marrow-derived human mesenchymal stem cells (hMSCs) and their impact on differentiation of hMSCs into adipocytes.

Methods:

For adipogenic differentiation, hMSCs were cultured in adipogenic medium for 22 d. The degrees of adipogenic differentiation were examined using Western blot, Oil Red O staining and Alamar assay. The expression levels of Kv channel subunits Kv1.1, Kv1.2, Kv1.3, Kv1.4, Kv2.1, Kv3.1, Kv3.3, Kv4.2, Kv4.3, and Kv9.3 in the cells were detected using RT-PCR and Western blot analysis.

Results:

The expression levels of Kv2.1 and Kv3.3 subunits were markedly increased on d 16 and 22. In contrast, the expression levels of other Kv channel subunits, including Kv1.1, Kv1.2, Kv1.3, Kv1.4, Kv4.2, Kv4.3, and Kv9.3, were decreased as undifferentiated hMSCs differentiated into adipocytes. Addition of the Kv channel blocker tetraethylammonium (TEA, 10 mmol/L) into the adipogenic medium for 6 or 12 d caused a significant decrease, although not complete, in lipid droplet formation and adipocyte fatty acid-binding protein 2 (aP2) expressions. Addition of the selective Kv2.1 channel blocker guangxitoxin (GxTX-1, 40 nmol/L) into the adipogenic medium for 21 d also suppressed adipogenic differentiation of the cells.

Conclusion:

The results demonstrate that subsets of Kv channels including Kv2.1 and Kv3.3 may play an important role in the differentiation of hMSCs into adipocytes.  相似文献   

12.
Yuan C  Liu Z  Hu W  Gao T  Liang S 《Toxicon》2012,59(2):265-271
Jingzhaotoxin-XIII (JZTX-XIII), a 35 residue polypeptide, with the ability to inhibit voltage-dependent potassium channels in the shab (Kv2) and shal (Kv4) subfamilies, was purified from the venom of the Chinese tarantula Chilobrachys jingzhao. Electrophysiological recordings carried out in Xenopus laevis oocytes showed that JZTX-XIII acted as gating modifier of voltage-dependent K+ channels which inhibited the Kv2.1 channel and Kv4.1 channel, with the IC50 value of 0.47 μM and 1.17 μM, respectively. JZTX-XIII shares high sequence similarity with gating modifier toxins inhibiting a wide variety of ion channels including Nav1.5 subtype, but it showed no Nav1.5 channel activity. Structure-function analysis indicates that the acidic residues of Glu10 and Glu17 in JZTX-XIII might be responsible for the loss of the Nav1.5 channel inhibitory potency for JZTX-XIII.  相似文献   

13.
Voltage-gated potassium (Kv) channels regulate many physiological functions and represent important therapeutic targets in the treatment of several clinical disorders. Although some of these channels have been well-characterized, the study of others, such as Kv3 channels, has been hindered because of limited pharmacological tools. The current study was initiated to identify potent blockers of the Kv3.2 channel. Chinese hamster ovary (CHO)-K1 cells stably expressing human Kv3.2b (CHO-K1.hKv3.2b) were established and characterized. Stichodactyla helianthus peptide (ShK), isolated from S. helianthus venom and a known high-affinity blocker of Kv1.1 and Kv1.3 channels, was found to potently inhibit 86Rb+ efflux from CHO-K1.hKv3.2b (IC50 approximately 0.6 nM). In electrophysiological recordings of Kv3.2b channels expressed in Xenopus laevis oocytes or in planar patch-clamp studies, ShK inhibited hKv3.2b channels with IC50 values of approximately 0.3 and 6 nM, respectively. Despite the presence of Kv3.2 protein in human pancreatic beta cells, ShK has no effect on the Kv current of these cells, suggesting that it is unlikely that homotetrameric Kv3.2 channels contribute significantly to the delayed rectifier current of insulin-secreting cells. In mouse cortical GABAergic fast-spiking interneurons, however, application of ShK produced effects consistent with the blockade of Kv3 channels (i.e., an increase in action potential half-width, a decrease in the amplitude of the action potential after hyperpolarization, and a decrease in maximal firing frequency in response to depolarizing current injections). Taken together, these results indicate that ShK is a potent inhibitor of Kv3.2 channels and may serve as a useful pharmacological probe for studying these channels in native preparations.  相似文献   

14.
Using the whole-cell voltage clamp technique, we investigated the effects of thiopental on membrane currents in H9c2 cells, a cell line derived from embryonic rat heart. Thiopental blocked a rapidly activating, very slowly-inactivating ultra-rapid type I(Kur)-like outward K(+) current in a concentration-dependent manner. The half-maximal concentration (IC(50)) of thiopental was 97 microM with a Hill coefficient of 1.2. The thiopental-sensitive current was also blocked by high concentrations of nifedipine (IC(50) = 9.1 microM) and 100 microM chromanol 293B, a blocker of slowly activating delayed rectifier K+ current (I(Ks)), but was insensitive to E-4031, an inhibitor of rapidly activating delayed rectifier K(+) current (I(Kr)). TEA (tetraethylammonium) at 5 mM and 4-AP (4-aminopiridine) at 1 mM reduced the K(+) current to 30.8 +/- 12.2% and 20.5 +/- 6.5% of the control, respectively. Using RT-PCR, we detected mRNAs of Kv2.1, Kv3.4, Kv4.1, and Kv4.3 in H9c2 cells. Among those, Kv2.1 and Kv3.4 have I(Kur)-type kinetics and are therefore candidates for thiopental-sensitive K(+) channels in H9c2 cells. This is the first report showing that thiopental inhibits I(Kur). This effect of thiopental may be involved in its reported prolongation of cardiac action potentials.  相似文献   

15.
Voltage-dependent potassium channel Kv2.1 is widely expressed in mammalian neurons and was suggested responsible for mediating the delayed rectifier (I(K)) currents. Further investigation of the central role of this channel requires the development of specific pharmacology, for instance, the utilization of spider venom toxins. Most of these toxins belong to the same structural family with a short peptide reticulated by disulfide bridges and share a similar mode of action. Hanatoxin 1 (HaTx1) from a Chilean tarantula was one of the earliest discussed tools regarding this and has been intensively applied to characterize the channel blocking not through the pore domain. Recently, more related novel toxins from African tarantulas such as heteroscordratoxins (HmTx) and stromatoxin 1 (ScTx1) were isolated and shown to act as gating modifiers such as HaTx on Kv2.1 channels with electrophysiological recordings. However, further interaction details are unavailable due to the lack of high-resolution structures of voltage-sensing domains in such mammalian Kv channels. Therefore, in the present study, we explored structural observation via molecular docking simulation between toxins and Kv2.1 channels based upon the solution structures of HaTx1 and a theoretical basis of an individual S3(C) helical channel fragment in combination with homology modeling for other novel toxins. Our results provide precise chemical details for the interactions between these tarantula toxins and channel, reasonably correlating the previously reported pharmacological properties to the three-dimensional structural interpretation. In addition, it is suggested that certain subtle structural variations on the interaction surface of toxins may discriminate between the related toxins with different affinities for Kv channels. Evolutionary links between spider peptide toxins and a "voltage sensor paddles" mechanism most recently found in the crystal structure of an archaebacterial K(+) channel, KvAP, are also delineated in this paper.  相似文献   

16.
1. Amino acid sequences encoding K+ channels belong to several subfamilies of the voltage-gated ion channel superfamily which includes Na2+-, Ca2+-, and cyclic nucleotide gated channels. The Kv family is the largest group, and encodes delayed rectifier, A-type, and large conductance Ca2+ activated K+ channels. 2. The α-subunits of Kv channels form as tetramers of four independent subunits. Each subunit has six membrane spanning regions and a pore forming ‘P’ region. Subunits belong to subfamilies (Kv1–4, BK, Eag) comprising multiple members, each of which has distinct properties resembling each of the major types of native Kv channel when expressed as homomultimers in heterologous systems. 3. Enormous diversity of Kv channel function arises from the multiplicity of subunits, the formation of heteromultimers within subfamilies and from association with intracellular β-subunit proteins. 4. In the absence of direct structural information, mutational analyses have provided considerable insights into the structure of the voltage-sensor, pore-forming region and the sites of action of drugs, toxins and associated proteins. 5. Another subfamily, the inwardly rectifying, or KIR, family, appears to have arisen from a deletion of the first four membrane spanning regions of ancient Kv channels, changing gating properties from outward to inward rectification. These include the G-protein gated inward rectifiers and Katp channels.  相似文献   

17.
Novel therapeutic strategies for type 2 diabetes are needed, since the current treatment options neither address all pathophysiological mechanisms nor achieve the glycemic target goals. A general islet-cell dysfunction including insulin- and glucagon-secretion defects contributes to the pathophysiology of type 2 diabetes. Improving islet function by incretin hormone action is a novel therapeutic approach. Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) are important incretin hormones contributing to 50-70% of the stimulation of insulin secretion after a meal. Dipeptidyl-peptidase IV (DPP-4) inhibitors inhibit the degradation of GLP-1 and GIP as well as that of other regulatory peptides. Sitagliptin, a DPP-4 inhibitor, is orally active and has been shown to be efficacious and safe in clinical studies. Sitagliptin has received approval in Mexico, the United States and other countries. Like other DPP-4 inhibitors, sitagliptin reduces hemoglobin A1c (HbA1c), fasting and postprandial glucose by glucose-dependent stimulation of insulin secretion and inhibition of glucagon secretion. Sitagliptin is weight neutral. Indirect measures show a possible improvement of beta-cell function. Sitagliptin does not cause a higher rate of hypoglycemia in comparison to metformin or placebo. This article gives an overview of the mechanisms of action, pharmacology and clinical trial results of sitagliptin.  相似文献   

18.
Tarantula Chilobrachys jingzhao is one of the most venomous species distributed in China. In this study, we have isolated and characterized a novel neurotoxin named Jingzhaotoxin-IX (JZTX-IX) from the venom of the tarantula. JZTX-IX is a C-terminally amidated peptide composed of 35 amino acid residues. The toxin shows 74% sequence identity with CcoTx3 from southeastern Africa tarantula Ceratogyrus cornuatus. JZTX-IX was found to interact with multiple types of ion channels including voltage-gated sodium channels (both tetrodotoxin-resistant and tetrodotoxin-sensitive isoforms) and Kv2.1 channel. The toxin had no effect on delayed rectifier potassium channel Kv1.1, 1.2 and 1.3. JZTX-IX shifted the voltage dependence of channel activation to more positive voltages, but binding of toxin to ion channels was not reversible by extreme depolarization. In addition, JZTX-IX could bias the activities of ion channels towards closed state because the time constant for decay (channel deactivation) of tail currents became faster in the presence of toxin. Taken together with the finding that 10 μM JZTX-IX completely blocked ion channels at resting potential without pulsing, we propose that JZTX-IX is a gating modifier showing low selectivity for ion channel types and trapping voltage sensor at closed state.  相似文献   

19.
1. Hypercholesterolaemia often occurs in patients with type 2 diabetes, who therefore encounter administration of HMG-CoA reductase inhibitors. Alteration of pancreatic beta-cell function leading to an impaired insulin secretory response to glucose plays a crucial role in the pathogenesis of type 2 diabetes. Therefore, it is important to examine the effects of HMG-CoA reductase inhibitors on beta-cell function. 2. Cytosolic Ca2+ concentration ([Ca2+]i) plays a central role in the regulation of beta-cell function. The present study examined the effects of HMG-CoA reductase inhibitors on the glucose-induced [Ca2+]i signalling and insulin secretion in rat islet beta-cells. 3. Simvastatin, a lipophilic HMG-CoA reductase inhibitor, at 0.1-3 microg ml(-1) concentration-dependently inhibited the first phase increase and oscillation of [Ca2+]i induced by 8.3 mM glucose in single beta-cells. The less lipophilic inhibitor, simvastatin-acid, inhibited the first phase [Ca2+]i increase but was two orders of magnitude less potent. The hydrophilic inhibitor, pravastatin (100 microg ml(-1), was without effect on [Ca2+]i. 4. Simvastatin (0.3 microg ml(-1)), more potently than simvastatin-acid (30 microg ml(-1)), inhibited glucose-induced insulin secretion from islets, whereas pravastatin (100 microg ml(-1)) had no effect. 5. Whole-cell patch clamp recordings demonstrated a reversible inhibition of the beta-cell L-type Ca2+ channels by simvastatin, but not by pravastatin. Simvastatin also inhibited the [Ca2+]i increases by L-arginine and KCl, agents that act via opening of L-type Ca2+ channels. 6. In conclusion, lipophilic HMG-CoA reductase inhibitors can inhibit glucose-induced [Ca2+]i signalling and insulin secretion by blocking L-type Ca2+ channels in beta-cells, and their inhibitory potencies parallel their lipophilicities. Precaution should be paid to these findings when HMG-CoA reductase inhibitors are used clinically, particularly in patients with type 2 diabetes.  相似文献   

20.
Novel therapeutic strategies for type 2 diabetes are needed, since the current treatment options neither address all pathophysiological mechanisms nor achieve the glycemic target goals. A general islet-cell dysfunction including insulin- and glucagon-secretion defects contributes to the pathophysiology of type 2 diabetes. Improving islet function by incretin hormone action is a novel therapeutic approach. Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) are important incretin hormones contributing to 50-70% of the stimulation of insulin secretion after a meal. Dipeptidyl-peptidase IV (DPP-4) inhibitors inhibit the degradation of GLP-1 and GIP as well as that of other regulatory peptides. Sitagliptin, a DPP-4 inhibitor, is orally active and has been shown to be efficacious and safe in clinical studies. Sitagliptin has received approval in Mexico, the United States and other countries. Like other DPP-4 inhibitors, sitagliptin reduces hemoglobin A1c (HbA1c), fasting and postprandial glucose by glucose-dependent stimulation of insulin secretion and inhibition of glucagon secretion. Sitagliptin is weight neutral. Indirect measures show a possible improvement of beta-cell function. Sitagliptin does not cause a higher rate of hypoglycemia in comparison to metformin or placebo. This article gives an overview of the mechanisms of action, pharmacology and clinical trial results of sitagliptin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号