首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hemoglobin (Hb) released from extravasated erythrocytes may have a critical role in the process of blood–brain barrier (BBB) disruption and subsequent edema formation after intracerebral hemorrhage (ICH). Excessive nitric oxide (NO) production synthesized by nitric oxide synthase (NOS) has been well documented to contribute to BBB disruption. However, considerably less attention has been focused on the role of NO in Hb-induced BBB disruption. This study was designed to examine the hypothesis that Hb-induced NOS overexpression and excessive NO production may contribute to the changes of tight junction (TJ) proteins and subsequent BBB dysfunction. Hemoglobin was infused with stereotactic guidance into the right caudate nucleus of male Sprague Dawley rats. Then, we investigated the effect of Hb on the BBB permeability, changes of TJ proteins (claudin-5, occludin, zonula occludens-1 (ZO-1), and junctional adhesion molecule-1 (JAM-1)), iron deposition, expression of inducible NOS (iNOS) and endothelial NOS (eNOS), as well as NO production. Hb injection caused a significant increase in BBB permeability. Significant reduction of claudin-5, ZO-1, and JAM-1 was observed after Hb injection as evidenced by PCR and immunofluorescence. After a decrease at early stage, occludin showed a fivefold increase in mRNA level at 7 days. Significant iron deposition was detectable from 48 h to 7 days in a time-dependent manner. The iNOS and eNOS levels dramatically increased after Hb injection concomitantly with large quantities of NO released. Furthermore, enhanced iNOS or eNOS immunoreactivity was co-localized with diffused or diminished claudin-5 staining. We concluded that overexpressed NOS and excessive NO production induced by Hb may contribute to BBB disruption, which may provide an important potential therapeutic target in the treatment of ICH.  相似文献   

2.
Changes in the production system of nitric oxide (NO), a multifunctional biological messenger known to participate in blood-flow regulation, neuromodulation, and neuroprotection or neurotoxicity, were investigated in the caudate putamen of adult rats submitted to hypobaric hypoxia. Employing immunohistochemistry, Western blotting, enzymatic assay, and NADPH-diaphorase staining, we demonstrate that neuronal nitric oxide synthase (nNOS) expression and constitutive nitric oxide synthase (cNOS) activity were transiently activated by 7 h of exposure to a simulated altitude of 8325 m (27,000 ft). In addition, endothelial nitric oxide synthase (eNOS) immunoreactivity and blood vessel NADPH-diaphorase staining peaked immediately after the hypoxic stimulus, whereas inducible nitric oxide synthase (iNOS) expression and activity remained unaltered. Nitrotyrosine formation, a marker of protein nitration, was evaluated by immunohistochemistry and Western blotting, and was found to increase parallel to nitric oxide synthesis. We conclude that the nitric oxide system undergoes significant transient alterations in the caudate putamen of adult rats submitted to acute hypobaric hypoxia.  相似文献   

3.
In the central nervous system, nitric oxide (NO) has a variety of biological functions including vasorelaxation and neurotransmission. The synthesis of NO is catalyzed by NO synthases (NOS) existing in 3 isoforms, neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS). NO synthase has implications in the pathophysiology of primary glial brain tumors with enhanced expression of nNOS and eNOS in high-grade astrocytic tumors, WHO grades III and IV. Only minor groups of pure oligodendrogliomas have been investigated. The aim of the investigation was to study the expression of the 3 NOS isoforms in this genetically divergent group of primary gliomas and to correlate the findings with tumor grade and expression pattern for the major group of gliomas--the astrocytomas. We examined the NOS expression in 35 oligodendrogliomas, WHO grade II, and 7 anaplastic oligodendrogliomas, WHO grade III, by immunohistochemical methods using formalin-fixed paraffin-embedded material. We observed only a minor expression of nNOS and sparse expression of eNOS in the tumor cells, but a vivid expression of eNOS in the vascular endothelial cells in both the tumor and the surrounding tissue. The rich expression of eNOS in oligodendroglioma vessels independent of tumor grade may suggest that blood flow and angiogenesis in these richly vascularized tumors are modified by NO. Interestingly, enhanced expression of inducible NOS was observed in the oligodendroglial tumor cells in 19 of 35 oligodendrogliomas (54%) and in 2 of 7 anaplastic oligodendrogliomas (29%). This is diverging for iNOS expression in astroglial tumors and the data could be indicative of iNOS exerting anti-tumor activity which may protract the progression from low-grade oligodendrogliomas to more anaplastic types.  相似文献   

4.
The changes of nitric oxide synthase (NOS) activity and expression in experimental diabetic neuropathy have not been examined. Increases in ganglia NOS might be similar to those that follow axotomy, whereas declines in endothelial NOS (eNOS) and immunological NOS (iNOS) might explain dysfunction of microvessels or macrophages. In this work, we studied NOS activity in lumbar dorsal root ganglia (DRG) of rats with both short- and long-term experimental streptozotocin-induced diabetes and correlated it with expression of each of the 3 NOS isoforms. NOS enzymatic activity in DRG increased after 12 months of diabetes. This increase, however, was not accompanied by an increase in neuronal NOS immunohistochemistry or mRNA. Immunohistochemical and RT-PCR studies did not identify changes of eNOS expression in 12-month sciatic nerves or DRG from diabetics. Two-month diabetic DRG had increased eNOS mRNA and there was novel eNOS labeling of capsular DRG and perineurial cells. iNOS mRNA levels were lower in diabetics at both time points in peripheral nerves but were unchanged in DRG. Diabetic ganglia showed an increase in NOS activity not explained by novel NOS isoform synthesis. The increases may compensate for NO "quenching" by endproducts of glycosylation. Declines in iNOS may indicate impaired macrophage function.  相似文献   

5.
We used post-mortem magnetic resonance imaging (MRI) guidance to obtain paired biopsies from the brains of four patients with clinical definite multiple sclerosis (MS). Samples were analyzed for the immunoreactivity (IR) of the three nitric oxide (NO) synthase isoforms [inducible, neuronal and endothelial nitric oxide synthase (NOS)], and enzymatic NO synthase activity. MRI guided biopsies documented more active plaques than macroscopic examination, and histological examination revealed further lesions. Inducible NOS (iNOS) was the dominant IR isoform, while reactive astrocytes were the dominant iNOS expressing cells in active lesions. NOS IR expressing cells were widely distributed in plaques, in white and gray matter that appeared normal macroscopically, and on MR. Endothelial NOS (eNOS) was highly expressed in intraparenchymal vascular endothelial cells of MS patients. A control group matched for age and sex showed no such changes. Our data support the hypothesis that NO is a pathogenic factor in MS, and that NOS IR is strongly expressed in brain regions appearing normal by MRI.  相似文献   

6.
Lüth HJ  Münch G  Arendt T 《Brain research》2002,953(1-2):135-143
Various isoforms of the nitric oxide (NO) producing enzyme nitric oxide synthase (NOS) are elevated in Alzheimer's disease (AD) indicating a critical role for NO in the pathomechanism. NO can react with superoxide to generate peroxynitrite, a process referred to as oxidative stress, which is likely to play a role in AD. Peroxynitrite in turn, nitrates tyrosine residues to form nitrotyrosine which can be identified immunohistochemically. To study the potential structural link between the increased synthesis of NO and the deposition of nitrotyrosine in AD, we analyzed the expression of neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS) in AD and control brain, and compared the localization with the distribution of nitrotyrosine. Nitrotyrosine was detected in neurons, astrocytes and blood vessels in AD cases. Aberrant expression of nNOS in cortical pyramidal cells was highly co-localized with nitrotyrosine. Furthermore, iNOS and eNOS were highly expressed in astrocytes in AD. In addition, double immunolabeling studies revealed that in these glial cells iNOS and eNOS are co-localized with nitrotyrosine. Therefore, it is suggested that increased expression of all NOS isoforms in astrocytes and neurons contributes to the synthesis of peroxynitrite which leads to generation of nitrotyrosine. In view of the wide range of isoform-specific NOS inhibitors, the determination of the most responsible isoform of NOS for the formation of peroxynitrite in AD could be of therapeutic importance in the treatment of Alzheimer's disease.  相似文献   

7.
Since NO is believed to be involved in cochlear physiology, presence of the constitutive isoforms of nitric oxide synthase (NOS), and the target enzyme of NO, soluble guanylyl cyclase (sGC) in structures of the mammalian cochlea have been demonstrated. To date, no reports have been published regarding the detection of the inducible isoform (NOS II) in the cochlea. In order to show the capability of iNOS expression in cochlear tissue, a mixture of proinflammatory bacterial lipopolysaccharides (LPS) and tumor necrosis factor alpha (TNF-alpha) was injected into the tympanic cavity of guinea pigs, vs. saline-solution as control. Paraffin sections of LPS/TNF-alpha treated and saline-treated cochleae (6 h) were examined immunohistochemically with specific antibodies to neuronal, endothelial and inducible NOS and to sGC. Initiated expression of iNOS in the cochlea was observed in the wall of blood vessels of the spiral ligament (SL) and the modiolus, in supporting cells of the organ of Corti, in the limbus, in nerve fibers and in a part of the perikarya of the spiral ganglion after LPS/TNFalpha-treatment. iNOS was not detected in saline-treated control tissue. Expression of both constitutive NOS-isoforms (endothelial and neuronal NOS) and of sGC showed no significant differences in both experimental groups. Endothelial eNOS and neuronal bNOS were detected co-localized in ganglion cells, in nerve fibers, in cells of the SL and in supporting cells of the organ of Corti, but not in sensory cells. Strong labeling for bNOS became evident in the endosteum of the cochlea, while in the endothelium of blood vessels and in the epithelium of the limbus only eNOS could be labeled. sGC could be detected in SL, in supporting and sensory cells of the organ of Corti, in nerve fibers, ganglion cells, in the wall of blood vessels and in the limbus-epithelium. While small amounts of NO, generated by bNOS and eNOS, seem to support the cochlear blood flow and auditory function as well as neurotransmission, high amounts of iNOS-generated NO could have dysregulative and neurotoxic effects on the inner ear during bacterial and viral infections of the middle and inner ear.  相似文献   

8.
Excitotoxicity and oxidative stress are mechanisms involved in the neuronal cell death induced by the intrastriatal injection of quinolinic acid (QUIN) as a model of Huntington's disease. Production of nitric oxide by nitric oxide synthase (NOS) has been proposed to participate in QUIN-induced neurotoxicity; however, the precise role of NOS in QUIN-induced toxicity still remains controversial. In order to provide further information on the role of NOS isoforms in QUIN toxicity, we performed real time RT-PCR and immunohistochemistry of inducible NOS (iNOS), endothelial NOS (eNOS) and neuronal NOS (nNOS) and determined Ca(2+)-dependent and Ca(2+)-independent NOS activity in a temporal course (3-48h), after an intrastriatal injection of QUIN to rats. NOS isoforms exhibited a transitory expression of mRNA and protein after QUIN infusion: eNOS increased between 3 and 24h, iNOS between 12 and 24h, while nNOS at 35 and 48h. Ca(2+)-independent activity (iNOS) did not show any change, while Ca(2+)-dependent activity (constitutive NOS: eNOS/nNOS) exhibited increased levels at 3h. Our results support the participation of Ca(2+)-dependent NOS isoforms during the toxic events produced at early times after QUIN injection.  相似文献   

9.
Intermittent hypoxia (IH) during sleep induces significant neurobehavioral deficits in the rat. Since nitric oxide (NO) has been implicated in ischemia-reperfusion-related pathophysiological consequences, the temporal effects of IH (alternating 21% and 10% O(2) every 90 s) and sustained hypoxia (SH; 10% O(2)) during sleep for up to 14 days on the induction of nitric oxide synthase (NOS) isoforms in the brain were examined in the cortex of Sprague-Dawley rats. No significant changes of endothelial NOS (eNOS) and neuronal NOS (nNOS) occurred over time with either IH or SH. Similarly, inducible NOS (iNOS) was not affected by SH. However, increased expression and activity of iNOS were observed on days 1 and 3 of IH (P < 0.01 vs. control; n = 12/group) and were followed by a return to basal levels on days 7 and 14. Furthermore, IH-mediated neurobehavioral deficits in the water maze were significantly attenuated in iNOS knockout mice. We conclude that IH is associated with a time-dependent induction of iNOS and that the increased expression of iNOS may play a critical role in the early pathophysiological events leading to IH-mediated neurobehavioral deficits.  相似文献   

10.
BACKGROUND AND PURPOSE: Production of nitric oxide is thought to play an important role in neuroinflammation. Previously, we have shown that combined inhibition of neuronal nitric oxide synthase (nNOS) and inducible NOS (iNOS) can reduce hypoxia-ischemia-induced brain injury in 12-day-old rats. The aim of this study was to analyze changes in expression of nNOS, iNOS and endothelial NOS (eNOS), and nitrotyrosine (NT) formation in proteins in neonatal rats up to 48 h after cerebral hypoxia-ischemia. METHODS: Twelve-day-old rats were subjected to unilateral carotid artery occlusion and hypoxia, resulting in unilateral cerebral damage. NOS and nitrotyrosine expression were determined by immunohistochemistry and Western blot analysis at 30 min-48 h after hypoxia-ischemia. RESULTS: nNOS was increased in both hemispheres from 30 min to 3 h after hypoxia-ischemia. In the contralateral hemisphere, eNOS was decreased 1-3 h after hypoxia-ischemia. In the ipsilateral hemisphere, eNOS was decreased at 0.5 h after hypoxia-ischemia, normalized at 1-3 h and was increased 6-12 h after hypoxia-ischemia. At 24 and 48 h after hypoxia-ischemia, eNOS levels normalized. Surprisingly, iNOS expression did not change from 30 min up to 48 h after hypoxia-ischemia in the ipsi- or contralateral hemisphere. In addition, the regional expression of iNOS in the brain as determined by immunohistochemistry did not change after hypoxia-ischemia. Expression of nitrotyrosine was slightly increased in both hemispheres only at 30 min after hypoxia-ischemia. CONCLUSION: In 12-day-old rat pups, cerebral hypoxia-ischemia induced a transient increase in nNOS, eNOS, and nitrotyrosine in proteins, but no change in iNOS expression up to 48 h after the insult.  相似文献   

11.
Role of Nitric Oxide in the Epileptogenesis of EL Mice   总被引:10,自引:1,他引:9  
Summary: Purpose : To understand the role of nitric oxide (NO) in the regulation of seizures, we measured the extracellular levels of the NO metabolites nitrite and nitrate as indices of NO generation in the parietal cortex, hippocampus, and temporal cortex of EL mice. Furthermore, alterations of neuronal, endothelial, and inducible nitric oxide synthetase (nNOS, eNOS, and iNOS, respectively) were observed to correlate them with epileptogenesis.
Methods : EL mice of 20 weeks and 30 weeks of age (before and after the establishment of epileptogenesis, respectively) were used. Nitrite was quantified using the specific absorbancy of diazo dye. NOS isoenzymes (nNOS, iNOS, and eNOS) were also investigated in the hippocampus during development until mice were 30 weeks old. Samples (total protein, 8·33 to 8·43 μg) were separated by sodium dodecyl sulfate—polyacrylamide gel electrophoresis and identified by immunoblotting.
Results : EL mice that experienced repetitive seizures showed a remarkable increase in nitrite in the hippocampus at 30 weeks of age compared with EL mice that had no experience of seizures. nNOS and iNOS were major and minor components, respectively, and both increased in parallel with the development of epileptogenesis. eNOS was not detectable.
Conclusions : Excess iNOS (and subsequent increase in harmful NO) and deficient eNOS (and subsequent decrease in NO identified as an endothelium-derived relaxing factor) may work together to form a focus complex.  相似文献   

12.
This study examined the expression of constitutive endothelial nitric oxide synthase (eNOS) and inducible NOS (iNOS) in the sciatic nerve of Lewis rats with experimental autoimmune neuritis (EAN). Western blot analysis showed that both eNOS and iNOS expressions in the sciatic nerves of rats increased significantly during the peak stage of EAN, but declined thereafter. Only minimal amounts of these enzymes were identified in normal rat sciatic nerves. Immunohistochemical studies showed that eNOS was increased in vascular endothelial cells and Schwann cells, but not in inflammatory cells, during the peak stage of EAN. However, iNOS was found mainly in inflammatory macrophages in sciatic nerve EAN lesions.These findings suggest that, depending on the stage of peripheral nervous system autoimmune disease, the increased expressions of both eNOS and iNOS might be involved in either the production of detrimental effects during the induction stage of EAN or in the recovery from EAN paralysis.  相似文献   

13.
Nitric oxide (NO) production in the sensory neurons of the rad nodose ganglion was studied by examining the distribuiotn of NO synthase (NOS) by use of NADPH diaphorase (NADPHD) histochemistry and immunohistochemistry ofr the presence of isoformes of NOS: neuronal (nNOS), endothelial (eNOS) and the inducible isoform (iNOS). Distribution and changes in NO production during acute hypoxia were studied in vital vibratome sections with the fluorescent marker for NO, diaminotriazolofluorescein (DAF-2T). Furthermore, changes in reactive oxygen species (ROS) in vibratome slices were examined utilizing 2',7'-dichlorofluorescein (DCF). By use of these histochemical methods, a positive NADPH reaction and positive immunoreactivity for eNOS were noted in all neurons observed. While for nNOS immunoreactivity, both strongly positive cells but also many negative cells are seen., no iNOS immunoreactive cells were observed. In vital vibratome slices, a dot-like distribution of fluorescence for DAF-2T, indicating production of NO, was observed in the nodose ganglion cells. Neurons exposed to hypoxia showed stronger DAF-2T fluorescence than cells exposed to normoxia, indicating an increased production of NO during hypoxia. When Ca(2+) was removed from the incubation buffer, the intensity of fluorescence for DAF-2T decreased but did not disappear completely. Using a photoconversion technique, DAF-2T was localized in the inner membrane of mitochondria in the ganglion cells by electron microscopy. The level of DCF signals for detection of ROS was higher in neurons incubated in the normoxic medium than those incubated under conditions of hypoxia. Nerve cells exposed to hypoxia followed by reoxygenation (3 min in normoxic conditions) showed higher fluorescence for DCF than those exposed to normoxia. The results of the present study demonstrate clearly that the basal production of NO in viscerosensory neurons is increased during hypoxia and is due to the isoform eNOS rather than nNOS, moreover, that ROS is augmented by reoxygenation but not during hypoxia.  相似文献   

14.
The activity and expression of nitric oxide synthase (NOS) isoforms and protein nitrotyrosine (NT) residues were investigated in whole encephalic mass (WEM) homogenates during the development of experimental allergic encephalomyelitis (EAE) in Lewis rats. EAE stages (0-III) were daily defined by clinical evaluation, and in the end of each stage, WEMs were removed for analysis of NOS activity, protein NT residues and mRNA for the different NOS isoforms. In the presence of NADPH, WEMs from EAE-III rats showed lower Ca2+-dependent NOS activity than those from control group. These differences disappeared in the presence of exogenous calmodulin, flavin adenine dinucleotide (FAD), tetrahydrobiopterin (BH4) and NADPH. Of all the cofactors, just the omission of FAD caused comparable decrease of Ca2+-dependent NOS activity from both groups. Ca2+-independent NOS activity from EAE-III animals was insensitive to the omission of any of the cofactors, while in control animals this activity was significantly inhibited by the omission of either FAD or BH4. Increased levels of both iNOS mRNA and protein NT expression were observed in animals with EAE, which also showed lower levels of a thermolabile NOS inhibitor in WEM homogenates and sera than controls. In conclusion, during late EAE stages, constitutive Ca2+-dependent NOS activity decreases concomitantly with iNOS upregulation, which could be responsible for the high protein NT levels. The differential dependence of iNOS activity on cofactors and the absence of an endogenous thermolabile NOS inhibitor in animals with EAE could reflect additional control mechanisms of NOS activity in this model of multiple sclerosis.  相似文献   

15.
一氧化氮合酶抑制剂对脊髓损伤后运动功能的影响   总被引:3,自引:1,他引:2  
目的观察诱导型和神经型一氧化氮合酶(iNOS,nNOS)抑制剂对大鼠脊髓损伤(SCI)后运动功能的影响和机理。方法大鼠脊髓压迫伤后分别给予iNOS和nNOS抑制剂—氨基胍(AG)和7-硝基吲唑(7-NI)进行治疗,24h后用分光光度法测定组织中一氧化氮(NO)含量和一氧化氮合酶(NOS)活性,72h后用流式细胞仪检测神经细胞凋亡情况,4周后用电生理和动物行为学等指标评价运动功能的恢复情况。结果AG和7-NI均可以抑制组织中的NO含量,并使NOS活性下降,同时降低神经细胞的凋亡比率,对运动功能的恢复前者优于后者。结论脊髓损伤后应用NOS抑制剂可以使伤后运动功能得到改善,AG的作用似乎更明显,提示iNOS活性变化可能对脊髓损伤的恢复更具决定作用。  相似文献   

16.
17.
The aim of the present study was to identify the distribution of two isoforms of the nitric oxide synthase (NOS), the neuronal (nNOS) and the endothelial (eNOS) form, in rat visual cortex. Immunohistochemical localisation of each NOS isoform was studied with three tissue-processing protocols. In the first one, immunohistochemical reactions were made on 30-microm-thick sections with membrane detergents, Triton or Saponin, used to increase the permeability of the tissue for the antibodies. In the second protocol, we excluded these detergents from all solutions to avoid a destruction of the cellular membrane. In the third protocol, we used thin paraffin sections (5 microm thick) to assure delivery of the antibodies to intracellular structures. Our data demonstrate, that both neuronal and endothelial isoforms of the NOS are present in the visual cortex. Among the neurones labelled by the antibodies against eNOS or nNOS, some excitatory cells were definitely present. nNOS immunopositive were neurones and a dense network of fibres, presumably axons. Some of the neurones were heavily labelled in a Golgi-like manner, while others showed only weak labelling. eNOS immunopositivity was found in the blood vessels and in neurones. eNOS positive neurones were much more numerous than nNOS-containing cells, and represent about 60% of the cortical cells. However, with antibodies against eNOS, we never observed neurone-specific cell features. The NOS-containing cells found in our present study represent a possible morphological substrate for production of nitric oxide (NO).  相似文献   

18.
OBJECTIVES: The purpose of the present study was to examine human pituitary adenomas for nitric oxide synthase (NOS) activity by immunohistochemical and enzymatic methods. MATERIALS AND METHODS: Adenomatous tissue from 16 patients were obtained during operation and stained immunohistochemically for hormone production and for the three NOS isoenzymes. Cell types that expressed NOS immunoreactivity (IR) were identified, and the NOS isoform was noted. NOS activity was measured enzymatically by the conversion of L-arginine to L-citrulline in tissue samples. RESULTS: Endothelial cells of pituitary adenomas showed increase of eNOS IR compared with control tissue. The nNOS and iNOS IR were the same in adenomas and controls. There was no correlation between NOS IR and NOS activity measured enzymatically and the endocrine activity of the tumour or other clinical variables. CONCLUSION: The observation of increased eNOS IR in endothelial cells of adenomas may suggest that NO plays a role in the regulation of blood flow in pituitary adenomas.  相似文献   

19.
Nitric oxide (NO) is synthesized by NO synthases (NOS), existing in 3 isoforms. NO influences a great variety of vital functions including vascular tone and neurotransmission. Under conditions of excessive formation, NO emerges as an important mediator of neurotoxicity in a variety of disorders of the central nervous system (CNS). Inhibitors of NOS are available that may modify the activity of all isoforms, which may be of clinical relevance. The expression of the 3 NOS isoforms nNOS, iNOS and eNOS and NOS enzymatic activity was examined in 40 patients with primary CNS tumors (gliomas WHO grades I - IV and meningeomas WHO grades I - III) and in 13 patients with metastases from adenocarcinomas or malignant melanomas. A polyclonal antibody directed against nNOS and monoclonal antibodies directed against iNOS and eNOS were used for immunohistochemical staining. NOS enzymatic activity, measured by labeled arginine to citrulline conversion, was assessed in tissue specimens obtained from the same tumors. NOS data were compared with clinical variables and the degree of edema as judged from MR scanning. nNOS expression was increased in tumor cells of glial neoplasms and most pronounced in high-grade tumors, WHO grades III and IV, and in the carcinoma and melanoma metastases. Low-grade gliomas, WHO grades I and II and meningeomas expressed no or only little nNOS. iNOS was only expressed in a few tumors. eNOS was expressed sporadically in the tumor cells while the expression was increased in vascular endothelial cells in both the tumor itself and the peritumoral area of glial neoplasms, and in metastases. eNOS expression was sporadic in endothelial cells of meningeomas. NOS enzymatic activities were heterogeneous among tumor types (0 - 13.8 pmol/min/mg of protein) without correlation to the NOS expression found by immunohistochemical techniques. Likewise, NOS activity and expression was not correlated to the clinical scores or brain edema. In conclusion, nNOS expression may be a putative useful indicator of brain tumor differentiation and malignancy. The enhanced expression of eNOS in vascular endothelial cells of glial neoplasms and metastases raises the possibility that NO production in tumor endothelial cells may contribute to tumor blood flow regulation and possibly brain edema.  相似文献   

20.
Using serial magnetic resonance imaging we have evaluated the effectiveness of aminoguanidine (AG) as a neuroprotective agent in a rat model of transient middle cerebral artery occlusion (MCAO). Because aminoguanidine's neuroprotective properties have primarily been ascribed to its action as iNOS inhibitor, we also performed a biochemical analysis of nitric oxide metabolites and NOS isoforms in our model of ischaemia. Daily injections of AG (100 mg/kg) or saline, were started at 6 h after the occlusion and the effects of this treatment on lesion progression monitored by T(2)-weighted MRI at 6 (pre-treatment scan), 24 and 72 h. Measurements of lesion volumes showed that between 6 and 72 h post-MCAO, lesion growth was slower in AG-treated rats than in control rats. This difference was most pronounced between 24 and 72 h post-MCAO when AG halted the lesion volume expansion observed in control rats. Measurements of plasma NOx (nitrite plus nitrate) at 0, 24, 48 and 72 h after MCAO, showed that NO levels did not differ significantly between the AG- and saline-treated groups at any time-point. Moreover, NOS activity assays revealed that no iNOS activity was present in any of the brains tested and that constitutive neuronal NOS activity was similar across the two hemispheres between both groups. The absence of iNOS protein in the ischaemic and contralateral hemispheres at 48 and 72 h after MCAO (control group only) was confirmed by Western blot analysis. These results suggest that AG treatment reduces the rate of growth of ischaemic lesions, perhaps preserving the functioning of perifocal neurons. Our observations contradict suggestions that high levels of NO generated by iNOS are partially responsible for exacerbating the neuronal damage in the postischaemic phase of MCAO. Although this does not rule out a role for AG as a neuroprotective agent via its ability to inhibit iNOS, these findings indicate that neuroprotective actions of AG may also be mediated via other cellular targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号