首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 781 毫秒
1.
目的通过还原-氧化方法使作为前躯体的Fe3O4纳米颗粒具有Fe-Fe3O4核壳结构,以作为磁靶向药物载体.方法 在管式炉中以H2还原Fe3O4纳米颗粒后,利用压差作用下进入的少量空气缓慢氧化还原后物质,以制备符合预期要求的Fe-Fe3O4核壳结构纳米粒子,并分析产物的X射线衍射(X-ray diffraction,XRD)、透射电子显微镜(transmission electron microscopy,TEM)和振动样品磁强计(vibrating sample magnetometer,VSM)表征结果.结果通过还原-氧化法制备的Fe-Fe3O4核壳结构纳米粒子,形状近似球形,粒径主要分布在60~100 nm,比饱和磁化强度达108emu/g,比Fe3O4纳米颗粒高30emu/g,且稳定性良好.结论还原-氧化法制备的Fe-Fe3O4核壳结构纳米颗粒比前躯体磁性强,并具有较高的化学稳定性和生物相容性.  相似文献   

2.
目的制备一种新型的MRI/CT双模态Au/Fe3O4复合纳米团簇造影剂,并对其相关性能进行研究。方法利用高温有机热分解法制备粒径可控且分散性良好的Au、Fe3O4纳米颗粒并合成两亲性聚乙二醇-聚乳酸(mPEG-PLA)嵌段共聚物。通过组装的方法以mPEG-PLA为纽带,将Au和Fe3O4纳米颗粒组装为复合纳米团簇。并利用透射电子显微镜(TEM)、X射线能谱仪(EDS)和动态光散射(DLS)分别对所制备纳米团簇的形貌、组成、尺寸及稳定性进行表征。研究不同的组装条件对纳米颗粒的包覆效率(EE)、装载能力(LC)及相应的MRI和CT成像效果的影响。结果制备的Au、Fe3O4纳米颗粒呈球形,分散性、均一性良好,平均粒径分别为7.25nm、9.00nm。两亲性聚合物mPEG-PLA相对分子质量约为11000。为了优化复合纳米团簇的EE和LC及磁学特性,制备Au、Fe3O4纳米颗粒不同配比的纳米团簇。随着Au纳米颗粒比重的增加,mPEG-PLA对纳米颗粒的EE和LC呈现先增加后降低又增加的趋势。通过对其横向弛豫率测量证明,该造影剂缩短T2时间效果明显,并随着Fe3O4纳米颗粒比重的提高,横向弛豫率呈现升高趋势。MRI研究证明,MRI信号强度的改变随Fe3O4纳米颗粒比重的提高而增强。而micro-CT成像研究则表明,随Au纳米颗粒比重的提高,成像效果越明显。结论利用该方法制备出的造影剂粒径可控,稳定性良好,具备良好的MRI/CT造影性质,具有潜在的临床使用价值。  相似文献   

3.
目的 研究纳米四氧化三铁(Fe3O4)颗粒包裹不同外壳材料对宫颈癌细胞HeLa毒性的影响.方法 通过无溶剂热分解法制备磁性纳米Fe3O4颗粒并分别使用聚乳酸-羟基乙酸共聚物(PLGA)和胆酸(CA)修饰的PLGA(CA-PLGA)星型共聚物包裹,对其进行验证表征后,使用激光共聚焦显微镜观察HeLa细胞对纳米颗粒的摄取,并用噻唑蓝(MTT)法测定上述两种材料包裹的纳米Fe3O4颗粒对HeLa细胞的毒性作用.结果 制备的单个纳米Fe3O4颗粒粒径约7 nm,载Fe3O4的PLGA和CA-PLGA纳米颗粒均呈球状,粒径约200 nm,理论载药量为10%.当Fe3O4纳米颗粒的质量浓度相同(25 μg/ml)时,载Fe3O4的CA-PLGA纳米颗粒对HeLa细胞的毒性小于对应的PLGA纳米颗粒.结论 CA-PLGA星型共聚物可降低磁性纳米Fe3O4颗粒的细胞毒性,在生物体内具有广阔的应用前景.  相似文献   

4.
背景:超顺磁四氧化三铁纳米粒子(Fe3O4NPs)被广泛应用于MRI成像,为防止其聚集和实现高精度肿瘤诊断,制备高度稳定性、生物相容性和肿瘤靶向性的超顺磁MRI对比剂至关重要。目的:合成具有基于叶酸受体靶向的肿瘤靶向性双亲性超顺磁复合粒子。方法:首先通过化学共沉淀法制备出Fe3O4NPs,再用N,N’-二环己基碳二亚胺作脱水剂,通过酯键将双亲性高分子Pluronic-F127(PF127)与叶酸(FA)分子连接,从而形成PF127-FA偶联物,最后用PF127-FA包裹Fe3O4纳米粒子,形成稳定的具有肿瘤靶向功能的双亲性超顺磁复合粒子。分别采用透射电镜、傅里叶红外光谱、紫外可见吸收光谱、热重分析、振动样品磁强计和T2加权成像对其进行表征,通过细胞毒性实验初步表征其细胞毒性。结果与结论:通过酯化反应制备了Pluronic-F127与FA偶联物,再用其包裹Fe3O4纳米粒子,成功制备出具有良好水溶性和生物相容性的超顺磁性复合粒子。该PF127-FA-Fe3O4复合粒子透射电镜观察到该复合粒子大部分粒径小于200 nm,Fe3O4核心大小为10-20 nm,傅里叶红外光谱和紫外可见吸收光谱结果证明了叶酸被成功修饰到超顺磁性复合粒子表面。热重分析结果表明PF127-FA占PF127-FA-Fe3O4复合粒子总量的27.2 wt%。磁性检测结果表明该复合粒子饱和磁强度Ms为47.35 emu/g,核磁共振仪成像测得其弛豫率为0.025×106 mol/s。细胞毒性实验表明显示了可以忽略的毒性。因此,实验成功制备了可用于肿瘤靶向性MRI对比剂的双亲性超顺磁复合物,实验所制备的PF127-FA-Fe3O4复合粒子有望用于肿瘤靶向性MRI对比剂。  相似文献   

5.
背景:超顺磁四氧化三铁纳米粒子(Fe3O4NPs)被广泛应用于MRI成像,为防止其聚集和实现高精度肿瘤诊断,制备高度稳定性、生物相容性和肿瘤靶向性的超顺磁MRI对比剂至关重要。目的:合成具有基于叶酸受体靶向的肿瘤靶向性双亲性超顺磁复合粒子。方法:首先通过化学共沉淀法制备出Fe3O4NPs,再用N,N’-二环己基碳二亚胺作脱水剂,通过酯键将双亲性高分子Pluronic-F127(PF127)与叶酸(FA)分子连接,从而形成PF127-FA偶联物,最后用PF127-FA包裹Fe3O4纳米粒子,形成稳定的具有肿瘤靶向功能的双亲性超顺磁复合粒子。分别采用透射电镜、傅里叶红外光谱、紫外可见吸收光谱、热重分析、振动样品磁强计和T2加权成像对其进行表征,通过细胞毒性实验初步表征其细胞毒性。结果与结论:通过酯化反应制备了Pluronic-F127与FA偶联物,再用其包裹Fe3O4纳米粒子,成功制备出具有良好水溶性和生物相容性的超顺磁性复合粒子。该PF127-FA-Fe3O4复合粒子透射电镜观察到该复合粒子大部分粒径小于200 nm,Fe3O4核心大小为10-20 nm,傅里叶红外光谱和紫外可见吸收光谱结果证明了叶酸被成功修饰到超顺磁性复合粒子表面。热重分析结果表明PF127-FA占PF127-FA-Fe3O4复合粒子总量的27.2 wt%。磁性检测结果表明该复合粒子饱和磁强度Ms为47.35 emu/g,核磁共振仪成像测得其弛豫率为0.025×106 mol/s。细胞毒性实验表明显示了可以忽略的毒性。因此,实验成功制备了可用于肿瘤靶向性MRI对比剂的双亲性超顺磁复合物,实验所制备的PF127-FA-Fe3O4复合粒子有望用于肿瘤靶向性MRI对比剂。  相似文献   

6.
纳米磁性阿霉素人血白蛋白微球的制备与表征   总被引:1,自引:0,他引:1  
目的:制备用于肿瘤靶向治疗的纳米Fe3O4磁性粒子和磁性阿霉素靶向抗癌微球。方法:采用液相共沉淀法制备纳米Fe3O4颗粒,采用XRD、HRTEM等测试手段埘该纳米粉进行表征;随后制备磁性阿霉素白蛋白微球,利用HRTEM对其包裹性能进行表征,同时采用荧光光谱法对其载药量进行测试。结果:纳米Fe,O。磁性粒子的平均粒径为16.3nm,分布宽度为5.8nm;磁性阿霉素微球的有效载药量为2.65%、表观载药量为3.Ol%。结论:该研究为肿瘤的药物化疗提供了一种新型的方法和材料,即磁件靶向微球定向治疗肿瘤的方法。  相似文献   

7.
背景:醛基化海藻酸钠具有良好的水溶性和组织相容性,利用其改性Fe3O4磁性纳米颗粒可增加表面活性和稳定性,叶酸的修饰可赋予载体分子靶向性。 目的:制备具有叶酸受体靶向及磁靶向的载顺铂磁性纳米药物(CDDP-FA-ASA-MNPs)。 方法:采用高碘酸钠氧化法制备醛基化海藻酸钠,叶酸的羧基经二环己基碳二亚胺和N-羟基琥珀酰亚胺活化后合成FA与双端氨基聚乙二醇的耦连产物FA-PEG,化学共沉淀法制备Fe3O4,海藻酸钠侧链含有大量羧基,85 ℃下与Fe3O4纳米颗粒表面的羟基形成化学键结合,然后通过雪夫氏碱将FA-PEG与醛基化海藻酸钠相连接,最后根据配位络合的原理,顺铂分子中的-Cl被海藻酸钠的羧基取代,形成稳定的叶酸和醛基化海藻酸钠改性载顺铂磁性纳米复合物。 结果与结论:所制备的磁性纳米药物呈颗粒状,稳定分散于水溶液中,Fe3O4磁核平均粒径为(8.116±0.24) nm,流体力学直径为(110.9±1.7) nm,zeta电位为(-26.45±1.26) mV,最大饱和磁化强度为56.2 emu/g,顺铂包封率为(49.05±1.58)%,载药量为(14.31±0.49)%。体外实验证实,叶酸分子靶向载顺铂磁性纳米药物能被叶酸受体表达阳性的鼻咽癌细胞HNE-1和喉癌细胞Hep-2选择性摄取,而叶酸受体表达阴性的鼻咽癌细胞CNE-2则不摄取。提示所制备的CDDP-FA-ASA-MNPs具有良好的水溶性和稳定性,能被叶酸受体表达阳性的鼻咽癌和喉癌细胞摄取。  相似文献   

8.
背景:在基因治疗中选择合适、低毒、对人体和环境无害的载体,使基因高效地转移至靶向部位并有效表达相关产物尤为关键。目的:制备超顺磁性Fe3O4/SiO2-聚乙酰亚胺复合微球。方法:通过乳化溶剂挥发法制备Fe3O4纳米粒子聚集体,再利用stober法合成超顺磁性Fe3O4/SiO2核壳型微球,进一步在该微球表面修饰聚乙酰亚胺,得到超顺磁性Fe3O4/SiO2-聚乙酰亚胺复合微球,并对其进行透射电镜、Zeta电位和磁性等结构性能表征。将Fe3O4/SiO2-聚乙酰亚胺复合微球与Plasmid DNA按照不同的质量比(29∶1,39∶1,49∶1,59∶1,68∶1,78∶1,88∶1)混合,通过凝胶电泳测定该复合微球与绿色荧光蛋白基因的结合能力。将Plasmid DNA分别与Fe3O4/SiO2-聚乙酰亚胺、聚乙酰亚胺混合,通过共聚焦荧光显微镜观测其在HeLa细胞中转染绿色荧光蛋白基因的情况。结果与结论:成功合成了Fe3O4/SiO2-聚乙酰亚胺复合微球,分散性良好,粒径分布均匀,约为100 nm,表面电荷为21.07 mV,饱和磁化强度为28.05 emu/g,为超顺磁性。随着复合微球与Plasmid DNA质量比的不断增加,越来越多的Plasmid DNA质粒被吸附在Fe3O4/SiO2-聚乙酰亚胺复合微球上,此时Plasmid DNA质粒过量,当质量比达到59∶1时,所有的pDNA质粒都被吸附在复合微球上;质量比大于59∶1时,复合微球过量,因此质量比为59∶1时二者均无过量,结果较好,用于HeLa细胞转染。与聚乙酰亚胺相比,Fe3O4/SiO2-聚乙酰亚胺复合微球可显著提高Plasmid DNA的转染效率。  相似文献   

9.
目的:研制一种新型医用口服磁共振胃肠造影剂,其磁性及造影效果均强于用纳米磁性材料制成的超顺磁性造影剂。方法:根据磁学理论讨论造影剂中磁粒的悬浮稳定性,指出磁粒的尺寸是决定其稳定性的主要因素。用微米级Fe3O4微粒作为磁性粒子、羧甲基纤维素钠作表面活性剂、去离子水作基液,在制备过程中加入少量的非磁性纳米α—Fe3O4微粒。研究了加入不同量的α-Fe3O4微粒对造影剂稳定性的影响。并且对该造影剂进行了稳定性测试,以及活体磁共振加权像实验。结果:加入1mg/1000mL的纳米α—Fe3O4,造影剂可达到稳定。该造影剂可清晰勾画胃肠道,对胃肠道病变的诊断有较高的临床价值。结论:本制备方法可增强造影剂的稳定性,且工艺简单;同时微米磁粒的磁性大于纳米磁粒,造影效果明显提高。该制备方法对其它混悬液体系同样适用。  相似文献   

10.
背景:将化疗药物联接在磁性纳米载体上,在外加磁场的引导下使所载药物定向集中于靶向治疗部位,在增强疗效同时还可降低毒性不良反应。 目的:制备海藻酸钠改性的磁性纳米粒子及其负载顺铂药物,分析产物的磁学性质。 方法:通过Fe2+在乙醇胺水溶液中一步合成磁性纳米粒子,用海藻酸钠作偶联剂使磁性纳米粒子与顺铂相连,制备磁性纳米粒子药物。 结果与结论:X射线衍射花样证明产物为γ-Fe2O3纯相,透射电子显微镜表明磁性纳米粒子直径平均约10 nm,载顺铂后药物包覆于纳米粒子周围,磁化曲线显示纳米粒子为超顺磁性,核磁共振得到纳米粒子的弛豫率为0.116 02 mmol/ms。表明所制备磁性纳米粒子及其载顺铂超顺磁性纳米粒子药物性质稳定,具有作为磁性纳米粒子药物的特性。 关键词:磁性纳米粒子药物;顺铂;超顺磁性;Fe2O3;生物材料与药物控释 doi:10.3969/j.issn.1673-8225.2012.12.011  相似文献   

11.
Xia A  Gao Y  Zhou J  Li C  Yang T  Wu D  Wu L  Li F 《Biomaterials》2011,32(29):7200-7208
New core-shell structured NaYF(4):Yb(3+),Tm(3+)@Fe(x)O(y) nanocrystals, with 20 nm Yb(3+),Tm(3+)-co-doped NaYF(4) nanocrystals as a core and 5 nm Fe(x)O(y) nanocrystals as a shell, have been synthesized and characterized by TEM and XRD analysis. These core-shell nanocrystals exhibit excellent near-infrared upconversion luminescence (UCL) emission at 800 nm under excitation by a continuous-wave 980 nm laser and superparamagnetic properties with a saturation magnetization (Ms) of ~12 emu/g. Water-soluble nanocrystals were obtained by surface ligand exchange of oleic acid-coated precursor nanocrystals, and their internalization within living cells has been investigated by laser scanning UCL microscopy. Furthermore, the obtained core-shell nanocrystals have been applied in dual-modality T(2)-enhanced magnetic resonance (MR) and UCL imaging in vivo of the lymphatic system. Moreover, the toxicity of NaYF(4):Yb(3+),Tm(3+)@Fe(x)O(y) nanocrystals has also been evaluated by MTT assay, IC50 values, and histological analysis of lymphatic node sections.  相似文献   

12.
Hu FX  Neoh KG  Kang ET 《Biomaterials》2006,27(33):5725-5733
The present study deals with the synthesis and characterization of tamoxifen-loaded magnetite/poly(l-lactic acid) composite nanoparticles (TMCN), and their in vitro anti-cancer activity against MCF-7 breast cancer cells. The composite nanoparticles with an average size of approximately 200 nm, were synthesized via a solvent evaporation/extraction technique in an oil/water emulsion. The superparamagnetic property (saturation magnetization value of approximately 7 emu/g) of the TMCN is provided by Fe(3)O(4) nanoparticles of approximately 6 nm encapsulated in the poly(l-lactic acid) matrix. The encapsulation efficiency of the Fe(3)O(4) and tamoxifen as a function of the concentration in the organic phase was investigated. The uptake of TMCN and tamoxifen by MCF-7 was estimated from the intracellular iron concentration. After 4h incubation of MCF-7 with TMCN, significant changes in the cell morphology were discernible from phase contrast microscopy. Cytotoxicity assay shows that while the Fe(3)O(4)-loaded poly(l-lactic acid) composite nanoparticles exhibit no significant cytotoxicity against MCF-7, approximately 80% of the these cells were killed after incubation for 4 days with TMCN.  相似文献   

13.
Ferrimagnetic microspheres 20-30 microm in diameter are useful as thermoseeds for inducing hyperthermia in cancers, especially for tumors located deep inside the body. The microspheres are entrapped in the capillary bed of the tumors when they are implanted through blood vessels and heat cancers locally by their hysteresis loss when placed under an alternating magnetic field. In the present study, preparation of magnetite (Fe(3)O(4)) microspheres 20-30 microm in diameter was attempted by melting powders in high-frequency induction thermal plasma, and by precipitation from aqueous solution. The microspheres prepared by melting powders in high-frequency induction thermal plasma were composed of a large amount of Fe(3)O(4) and a small amount of wustite (FeO), and those subsequently heat treated at 600 degrees C for 1 h under 5.1 x 10(3) Pa were fully composed of Fe(3)O(4) 1 microm in size. The saturation magnetization and coercive force of the heat-treated microspheres were 92 emu g(-1) and 50 Oe, respectively. The heat generation of the heat-treated microspheres was estimated to be 10 Wg(-1), under 300 Oe and 100 kHz. The microspheres prepared by precipitation from aqueous solution consisted of beta-FeOOH, and those subsequently heat treated at 400 degrees C for 1 h in a 70% CO(2) + 30% H(2) atmosphere consisted of Fe(3)O(4) crystals 50 nm in size. The saturation magnetization and coercive force of the heat-treated microspheres were 53 emu g(-1) and 156 Oe, respectively. The heat generation of the heat-treated microspheres was estimated to be 41 Wg(-1), under 300 Oe and 100 kHz. The latter microspheres are believed to be promising thermoseeds for hyperthermic treatment of cancer.  相似文献   

14.
目的:制备包裹三氧化二砷的磁性微球,分别测量磁性微球中三氧化二砷和四氧化三铁的含量,并分析其磁性能。讨论包裹三氧化二砷的磁性微球的磁靶向性效果和临床应用的可能性。 方法:采用化学共沉淀法制备四氧化三铁纳米铁磁粒子,采用w/o/w复乳法将纳米铁磁粒子和三氧化二砷包裹于聚D,L乳酸-羟基乙酸共聚物(PLGA)高分子材料中制备成磁性微球,利用全谱直读等离子体原子发射光谱仪测量磁性微球的载药量,分别测量纳米铁磁粒子和磁性微球的磁滞回线,并检验磁性微球的磁分离效果。 结果:纳米铁磁粒子和磁性微球的矫顽力和剩余磁化强度均接近零,但磁性微球的饱和磁化强度大大低于纳米铁磁粒子的饱和磁化强度。磁性微球的磁分离效果明显。 结论:合成的磁性微球外壳由PLGA高分子材料组成,纳米级四氧化三铁分散于PLGA中,壳内是三氧化二砷水溶液。磁性微球具有超顺磁性和磁靶向性。  相似文献   

15.
Magnetic nanoparticles (MNPs) are considered highly useful in therapeutic and diagnostic applications. However, MNPs require surface modification to promote dispersibility in aqueous solutions and thus biocompatibility. In this article, the authors modified MNPs with inorganic silica layer to create silica-coated magnetite nanoparticles (MNP@Si) via sol-gel process. Synthesis involves hydrolysis and condensation steps using tetraethylorthosilicate (TEOS) in methanol/ polyethylene glycol (PEG) solution and ammonia catalyst. Nanoparticles were characterized in terms of morphology, particle size, crystalline phase, chemical-bond structure, surface charge and magnetic properties: in particular, the MNP@Si size was easily tunable through alteration of the Fe(3) O(4) -to-TEOS ratio. As this ratio increased, the MNP@Si size decreased from 270 to 15 nm whilst maintaining core 12-nm MNP particle size, indicating decrease in thickness of the silica coating. All MNP@Si, in direct contrast to uncoated MNPs, showed excellent stability in aqueous solution. The particles' physicochemical and magnetic properties systematically varied with size (coating thickness), and the zeta potential diminished toward negative values, while magnetization increased as the coating thickness decreased. 15-nm MNP@Si showed excellent magnetization (about 64.1 emu/g), almost comparable to that of uncoated MNPs (70.8 emu/g). Preliminary in vitro assays confirmed that the silica layer significantly reduced cellular toxicity as assessed by increase in cell viability and reduction in reactive oxygen species production during 48 h of culture. Newly-developed MNP@Si, with a high capacity for magnetization, water-dispersibility, and diminished cell toxicity, may be potentially useful in diverse biomedical applications, including delivery of therapeutic and diagnostic biomolecules.  相似文献   

16.
Zhu X  Zhou J  Chen M  Shi M  Feng W  Li F 《Biomaterials》2012,33(18):4618-4627
Core-shell Fe(3)O(4)@NaLuF(4):Yb,Er/Tm nanostructure (MUCNP) with multifunctional properties has been developed using a step-wise synthetic method. The successful fabrication of MUCNP has been confirmed by transmission electron microscopy, powder X-ray diffraction, energy-dispersive X-ray analysis and X-ray photoelectron spectroscopy. The MUCNP exhibits superparamagnetic property with saturation magnetization of 15 emu g(-1), and T(2)-enhanced magnetic resonance (MR) effect with an r(2) value of 21.63 s(-1) mM(-1) at 0.5 T, resulting from the Fe(3)O(4) cores. Moreover, the NaLuF(4)-based MUCNP provides excellent X-ray attenuation and upconversion luminescence (UCL) emission under excitation at 980 nm. In vivo MR, computed tomography (CT) and UCL images of tumor-bearing mice show that the MUCNP can be successfully used in multimodal imaging. In vitro tests reveal that the MUCNP is non-cytotoxic. These results suggest that the developed MUCNP could be served as an MR, CT and UCL probe for tri-modality imaging.  相似文献   

17.
Objective:To evaluate the in vitro and in vivo toxicity of self-prepared nanosized Fe2O3, which has the potential implication in tumor hyperthermia. Methods: Fe2O3 nanoparticles were prepared by improving co-precipitation, which characterization was detected by TEM, XRD, CMIAS, EDS. MTT assay was used to evaluate the in vitro cytotoxicity test; hemolytic test was carried out to estimate whether it has blood toxicity; Fe2O3 suspended in sterile 0.9% NaCl was intraperitoneally injected into Kumning mouse to calculate the LD50 ; micronucleus (MN) were reckoned to identify whether it is genotoxic. Results:The nanoparticles are brown spherical particles with diameter ranging from 8 to 15 nm, which have good decentralization and stability. The experiments also showed that the toxicity of the material on mouse fibroblast (L-929) cell lines was 0 - 1 degree ; it has no hemolysis activity; LD50 arrived at 5.45 g/kg^-1 after intraperitoneal injection of 1 ml suspension; micronucleus test showed that it has no genotoxic effects either. Conclusion: The results showed that the Fe2O3 nanoparticles are prepared successfully, the self-prepared nanosized Fe2O3 is a kind of high biocompatibility materials and perhaps it is suitable for further application in tumor hyperthermia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号