首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We investigated the effect of adenosine A1 receptors on the release of acetylcholine (ACh) and GABA, and on the intracellular calcium concentration ([Ca2+]i) response in cultured chick amacrine-like neurons, stimulated by KCl depolarization. The KCl-induced release of [3H]ACh, but not the release of [14C]GABA, was potentiated when adenosine A1 receptor activation was prevented by perfusing the cells with adenosine deaminase (ADA) or with 1,3-dipropyl-8-cycloentylxanthine (DPCPX). The changes in the [Ca2+]i induced by KCl depolarization, measured in neurite segments of single cultured cells, were also modulated by endogenous adenosine, acting on adenosine A1 receptors. Our results show that adenosine A1 receptors inhibit Ca2+ entry coupled to ACh release, but not to the release of GABA, suggesting that the synaptic vesicles containing each neurotransmitter are located in different zones of the neurites, containing different VSCC and/or different densities of adenosine A1 receptors.  相似文献   

2.
The Ca2+ indicator Fura-2 was used to measure changes of cytoplasmic free Ca2+ concentration ([Ca2+]in) in isolated neurons of the snail Helix pomatia occurring through prolonged plasma membrane depolarization. An amplitude of Ca2+ response did not practically depend on value of depolarization in the presence of 5 mmol/l of caffeine unlike normal solution, which permitted suggesting that caffeine activated calcium-dependent Ca2+ release from the intracellular stores, which was a main factor of [Ca2+]in increase during depolarization. The processes of [Ca2+]in relaxation to the rest levels were approximated monoexponentially and occurred 2 times more rapidly in caffeine than in normal solution. An increase of the [Ca2+]in relaxation rate was provided probably, by a rise in the efficiency of the intracellular Ca2+ pumps able to decrease the rest level of [Ca2+]in even lower than that one under normal extracellular solution conditions.  相似文献   

3.
[Ca2+]i was measured using fura-2-loaded isolated catfish horizontal cells in the presence of L-glutamate and the glutamate analogs kainate (KA), quisqualate (QA), and NMDA. Caffeine was used to release Ca2+ from intracellular stores. Cell membrane potential was controlled with a voltage clamp to prevent activation of voltage-dependent Ca2+ channels in the presence of agonist. All excitatory amino acid agonists produced a rapid and sustained rise in [Ca2+]i with the order of potency being QA greater than Glu greater than KA greater than NMDA. The agonist-induced [Ca2+]i increase was blocked in reduced [Ca2+]o and by 6-cyano-7-nitroquinoxaline-2,3-dione and 2-amino-5-phosphonopentanoate, which are specific blockers for QA/KA and NMDA receptors, respectively. The metabotropic receptor agonist trans-1-amino-1,3-cyclopentanedicarboxylic acid (ACPD; 10-200 microM) had no effect on [Ca2+]i. Hill coefficients from curves fitted to concentration-response data suggested an amplification of the Ca2+ signal that was interpreted as calcium-induced calcium release (CICR) from intracellular Ca2+ stores. Caffeine (10 mM) produced a rapid transient rise in [Ca2+]i, confirming the existence of a Ca(2+)-sensitive store. Following caffeine-induced depletion of Ca2+ from intracellular stores, agonists were still able to produce increases in [Ca2+]i, confirming Ca2+ influx through the agonist-gated channel. The agonist-induced increase in [Ca2+]i was decreased following caffeine-induced depletion, confirming a process of CICR. These results are consistent with the hypothesis that excitatory amino acids can produce direct modulation of [Ca2+]i by influx through the agonist-gated channel and by CICR from intracellular stores.  相似文献   

4.
We used optical recording with a Ca(2+)-sensitive dye, fura2, in living slice preparations from the newt retina at different stages of regeneration. ACh produced the most pronounced [Ca2+]i rise in progenitor cells and premature ganglion cells of the earlier stage of retinal regeneration, but less pronounced Ca2+ response in ganglion cells just before, or at the beginning of, synaptogenesis. The [Ca2+]i rise to ACh was mediated by mAChRs. This was shown by inhibition of the ACh-induced Ca2+ response with a preincubation of the mAChR antagonist atropine as well as with direct stimulation of the [Ca2+]i rise by the mAChR agonist muscarine. This muscarine-induced [Ca2+]i rise was more greatly suppressed by the M1 and/or M3 preferring mAChR antagonists than by the M2 preferring mAChR antagonist. The [Ca2+]i rise due to muscarine was not suppressed in the absence of extracellular Ca2+, but suppressed in part in the presence of the L-type voltage-gated Ca2+ channel blockers, verapamil or nicardipine. Furthermore, thapsigargin (TG), a Ca-ATPase inhibitor, abolished the muscarine-induced [Ca2+]i rise in the absence of extracellular Ca2+. These results suggest that the mAChR-mediated [Ca2+]i rise is mainly a result of a release of Ca2+ from intracellular stores. TG produced a slow rise in the resting level of [Ca2+]i. This [Ca2+]i raise was suppressed as extracellular Ca2+ was omitted, whereas a rapid rise in [Ca2+]i occurred when extracellular Ca2+ was reintroduced, suggesting the occurrence of the capacitative Ca2+ influx in the progenitor cells and premature ganglion cells of the regenerating newt retina.  相似文献   

5.
Cholinergic activation of entorhinal cortex (EC) layer V neurons plays a crucial role in the medial temporal lobe memory system and in the pathophysiology of temporal lobe epilepsy. Here, we demonstrate that muscarinic activation by focal application of carbachol depolarizes EC layer V neurons and induces epileptiform activity in rat brain slices. These seizure-like bursts are associated with a somatic [Ca2+]i increase of 293 +/- 82 nm and are blocked by the glutamate receptor antagonists CNQX and APV. Muscarinic activation did not directly evoke a [Ca2+]i increase, but subthreshold and suprathreshold depolarization did. Functional axon mapping revealed local axon branching as well as axon collaterals ascending to layers II and III. During blockade of ionotropic glutamatergic AMPA and NMDA receptors, carbachol depolarized layer V neurons by +7.5 +/- 3.4 mV. This direct muscarinic depolarization was associated with a conductance increase of 35 +/- 10.3% (+4.3 +/- 1.25 nS). Intracellular buffering of [Ca2+]i changes did not block this depolarization, but prolonged action potential duration and reduced adaptation of action potential firing. The muscarinic depolarization was neither blocked by combining intracellular Ca2+-buffering (EGTA or BAPTA) with non-specific Ca2+-channel inhibition by Ni+ (1 mm), nor by Ba2+ (1 mm) nor during inhibition of the h-current by 2 mm Cs+. In whole-cell patch-clamp recording, reversal of the muscarinic current occurred at about -45 mV and -5 mV with complete substitution of intrapipette K+ with Cs+. Thus, muscarinic depolarization of EC layer V neurons appears to be primarily mediated by Ca2+-independent activation of non-specific cation channels that conduct K+ about three times as well as Na+.  相似文献   

6.
The HIV envelope glycoprotein, GP120, increases intracellular Ca2+ concentration and induces degeneration of human and animal neurons in culture. Using patch-clamp recordings and Ca2+ imaging techniques, we have now examined the contribution of intracellular stores of calcium in the effects of GP120. We report that in rat hippocampal neuronal cultures, GP120 induces a dramatic and persistent increase in [Ca2+]i which is prevented by drugs that either deplete (caffeine, carbachol, thapsigargin) or block (dantrolene) Ca2+ release from intracellular stores. In contrast, N-methyl-d-aspartate (NMDA) receptors or voltage-dependent calcium channels do not participate in these effects, as: (i) the increase in [Ca2+]i was not affected by NMDA receptor antagonists or calcium channel blockers; and (ii) and GP120 did not generate any current in whole-cell recording. Dantrolene, a ryanodine stores inhibitor, also prevented neuronal death induced by GP120. Our results show that the GP120-induced rise in [Ca2+]i originates from intracellular calcium stores, and suggest that intracellular stores of calcium may play a determinant role in the pathological actions of GP120.  相似文献   

7.
Striatal large aspiny interneurons were recorded from a slice preparation using a combined electrophysiologic and microfluorometric approach. The role of intracellular Ca2+ stores was analyzed during combined oxygen/glucose deprivation (OGD). Before addressing the role of the stores during energy deprivation, the authors investigated their function under physiologic conditions. Trains of depolarizing current pulses caused bursts of action potentials coupled to transient increases in intracellular calcium concentration ([Ca2+]i). In the presence of cyclopiazonic acid (30 micromol/L), a selective inhibitor of the sarcoendoplasmic reticulum Ca2+ pumps, or when ryanodine receptors were directly blocked with ryanodine (20 [micromol/L), the [Ca2+]i transients were progressively smaller in amplitude, suggesting that [Ca2+]i released from intracellular stores helps to maintain a critical level of [Ca2+]i during physiologic firing activity. As the authors have recently reported, brief exposure to combined OGD induced a membrane hyperpolarization coupled to an increase in [Ca2+]i. In the presence of cyclopiazonic acid or ryanodine, the hyperpolarization and the rise in [Ca2+]i induced by OGD were consistently reduced. These data support the hypothesis that Ca2+ release from ryanodine-sensitive Ca2+ pools is involved not only in the potentiation of the Ca2+ signals resulting from cell depolarization, but also in the amplification of the [Ca2+]i rise and of the concurrent membrane hyperpolarization observed in course of OGD in striatal large aspiny interneurons.  相似文献   

8.
Intracellular recordings from CA1 hippocampal pyramidal neurons were obtained using the in vitro hippocampal slice preparation. Responses to ACh were monitored in the presence of blockers of voltage-dependent conductances including Mn2+, TTX and Ba2+. When Mn2+ was used to block voltage-dependent Ca conductance and possible indirect presynaptic cholinergic actions, ACh still induced a significant voltage-sensitive increase in apparent input resistance (Ra) (29%), but only an insignificant depolarization of membrane potential (Vm). When both voltage-dependent Ca and Na conductances were blocked by application of Mn2+ and TTX, respectively, ACh produced voltage-dependent increases in Ra (31%) without significant depolarization. In solutions containing TTX alone, ACh produced voltage-sensitive increases in Ra (32%) as well as a significant depolarization (6.2 +/- 3.1 mV (S.D.)). ACh transiently blocked the conductance increase which followed presumed Ca spikes, suggesting an action on the Ca-activated K-dependent conductance. The effects of Ba2+ application (100-200 microM) on Ra mimicked those of ACh. When ACh was applied to neurons in the presence of Ba2+, Ra remained unchanged, although Vm depolarization of 5-15 mV was still seen. The data indicate that ACh decreases both a voltage-dependent K conductance (distinct from that of the delayed rectifier) and a Ca-activated K conductance. Muscarinic cholinergic depolarization occurs as a result of blockade of K conductance, and is mediated by voltage-dependent Ca and Na conductances, and perhaps by presynaptic actions.  相似文献   

9.
Inorganic lead (Pb2+) activates calmodulin, which in turn may stimulate many other cellular processes. The plasma membrane Ca2+ ATPase is a calmodulin-stimulated enzyme that plays the major role in regulating the "resting" intracellular free Ca2+ ion concentration, [Ca2+]i. We hypothesized that exposing neurons to low levels of Pb2+ would cause Pb2+ to enter the cytoplasm, and that intracellular Pb2+, by activating calmodulin, would stimulate plasma membrane Ca2+ ATPase activity, thereby increasing Ca2+ extrusion and reducing [Ca2+]i. We used the ratiometric Ca2+ indicator fura-2 to estimate changes in [Ca2+]i. In vitro calibrations of fura-2 with solutions of defined free Ca2+ and free Pb2+ concentrations showed that, at free Ca2+ concentrations from 10 nM to 1000 nM, adding Pb2+ caused either no significant change in the F340/F380 ratio (free Pb2+ concentrations from 100 fM to 1 pM) or increased the F340/F380 ratio (free Pb2+ concentrations from 5 to 50 pM). Therefore, fura-2 should be suitable for estimating Pb2+-induced decreases in [Ca2+]i, but not increases in [Ca2+]i. We exposed cultured embryonic rat hippocampal neurons to 100 nM Pb2+ for periods from 1 hour to 2 days and measured the F340/F380 ratio; the ratio decreased significantly by 9 to 16% at all time points, indicating that Pb2+ exposure decreased [Ca2+]i. In neurons loaded with 45Ca, Pb2+ exposure increased Ca2+ efflux for at least two hours; by 24 hours, Ca2+ efflux returned to control levels. Influx of 45Ca was not altered by Pb2+ exposure. Low concentrations (250 nM) of the calmodulin inhibitor calmidazolium had no effect on either 45Ca efflux or on the F340/F380 ratio in fura-loaded control neurons, but completely eliminated the increase in 45Ca efflux and decrease in F340/F380 ratio in Pb2+-exposed neurons. Zaldoride, another calmodulin inhibitor, also eliminated the decrease in F340/F380 ratio in Pb2+-exposed neurons. We conclude that Pb2+ exposure decreases [Ca2+]i and increases Ca2+ efflux in cultured hippocampal neurons by a calmodulin-dependent mechanism, probably by stimulating Ca2+ extrusion by the plasma membrane Ca2+ ATPase.  相似文献   

10.
Kilb W  Schlue WR 《Brain research》1999,824(2):326-182
We examined the effect of the glutamatergic agonist kainate on the membrane potential, the intracellular Na+ concentration ([Na+]i), the intracellular-free Ca2+ concentration, and on the intracellular pH of Retzius neurons of the medicinal leech, Hirudo medicinalis, in order to investigate the mechanism responsible for the intracellular acidification caused by glutamatergic stimulation. The recordings were made with Na+- and pH-sensitive microelectrodes and iontophoretically injected Fura-2. Bath application of kainate evoked a marked membrane depolarization, a [Na+]i increase, and an intracellular acidification. The intracellular acidification was unaffected by reversal of the electromotive force for H+, suggesting that an influx of H+ from the interstitial space does not contribute to the acidification. While the Ca2+ channel blockers La3+ and Co2+ had no effect on the kainate-induced intracellular acidification, suggesting that a Ca2+ influx via voltage-dependent Ca2+ channels was not relevant, the acidification was reduced in Ca2+-free saline solution. In Na+-free saline solution the kainate-induced intracellular acidification was absent, suggesting the involvement of Na+ influx in generating the acidification. When injected iontophoretically Na+ induced an intracellular acidification but Li+, K+, Rb+ or Cs+ did not. Furthermore, a [Na+]i increase induced by blocking the Na+/K+ pump also led to an intracellular acidification. We conclude that the [Na+]i increase is the crucial event underlying the kainate-induced intracellular acidification. Possible mechanisms linking the [Na+]i increase to the intracellular acidification are discussed.  相似文献   

11.
Alpha2-adrenoceptors inhibit Ca2+ influx through voltage-gated Ca2+ channels throughout the nervous system and Ca2+ channel function is modulated following activation of some G-protein coupled receptors. We studied the specific Ca2+ channel inhibited following alpha2-adrenoceptor activation in guinea-pig small intestinal myenteric neurons. Ca2+ currents (I(Ca2+)) were studied using whole-cell patch-clamp techniques. Changes in intracellular Ca2+ (delta[Ca2+]i) in nerve cell bodies and varicosities were studied using digital imaging where Ca2+ influx was evoked by KCl (60 mmol L(-1)) depolarization. The alpha2-adrenoceptor agonist, UK 14 304 (0.01-1 micromol L(-1)) inhibited I(Ca2+) and delta[Ca2+]i; maximum inhibition of I(Ca2+) was 40%. UK 14 304 did not affect I(Ca2+) in the presence of SNX-482 or NiCl2 (R-type Ca2+ channel antagonists). UK 14 304 inhibited I(Ca2+) in the presence of nifedipine, omega-agatoxin IVA or omega-conotoxin, inhibitors of L-, P/Q- and N-type Ca2+ channels. UK 14 304 induced inhibition of I(Ca2+) was blocked by pertussis toxin pretreatment (1 microg mL(-1) for 2 h). Alpha2-adrenoceptors couple to inhibition of R-type Ca2+ channels via a pertussis toxin-sensitive pathway in myenteric neurons. R-type channels may be a target for the inhibitory actions of noradrenaline released from sympathetic nerves on to myenteric neurons.  相似文献   

12.
The development of oligodendrocytes from their precursor cells can be studied in vitro by using a culture system in which cells can be identified at different developmental stages. We used this culture system to compare the effect of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) on intracellular Ca2+ concentration ([Ca2+]i) using fura-2 fluorescence systems. Application of GABA evoked transient [Ca2+]i increases in precursor cells. In contrast, [Ca2+]i levels were not affected in oligodendrocytes, which were identified by their positive labelling with the antibody O1. The precursor cells, identified by a lack of O1 staining, responded to GABA in the concentration range between 10-6 and 10-4 M. Since muscimol mimicked and bicuculline as well as picrotoxin blocked the GABA response, we conclude that the response is mediated by activation of GABAA receptors. The involvement of Ca2+ channels is inferred from the observation that the [Ca2+]i changes could be blocked by nifedipine or by omitting Ca2+ from the bath solution. Both GABAA receptors and Ca2+ channels have been previously identified on these precursor cells with the aid of the patch-clamp technique. We thus propose the following mechanism to explain our observations: the Cl- efflux via the GABA receptor depolarizes precursor cells, and this depolarization leads to activation of Ca2+ channels, resulting in an influx of Ca2+ and the observed rise in cytosolic [Ca2+]. Although its physiological importance is speculative, this event could serve as a signal from GABAergic neurons to glial precursor cells.  相似文献   

13.
Glutamate-induced changes in intracellular free Ca2+ concentration ([Ca2+]i) were recorded in single rat hippocampal neurons grown in primary culture by employing the Ca2+ indicator indo-1 and a dual-emission microfluorimeter. The [Ca2+]i was monitored in neurons exposed to 100 microM glutamate for 5 min and for an ensuing 3 hr period. Ninety-two percent (n = 64) of these neurons buffered the glutamate-induced Ca2+ load back to basal levels after removal of the agonist; thus, the majority of cells had not lost the ability to regulate [Ca2+]i at this time. However, following a variable delay, in 44% (n = 26) of the neurons that buffered glutamate-induced Ca2+ loads to basal levels, [Ca2+]i rose again to a sustained plateau and failed to recover. The changes in [Ca2+]i that occur during glutamate-induced delayed neuronal death can be divided into three phases: (1) a triggering phase during which the neuron is exposed to glutamate and the [Ca2+]i increases to micromolar levels, followed by (2) a latent phase during which the [Ca2+]i recovers to a basal level, and (3) a final phase that begins with a gradual rise in the [Ca2+]i that reaches a sustained plateau from which the neuron does not recover. This delayed Ca2+ overload phase correlated significantly with cell death. The same sequence of events was also observed in recordings from neuronal processes. The delayed Ca2+ increase and subsequent death were dependent upon the presence of extracellular Ca2+ during glutamate exposure. Calcium influx during the triggering phase resulted from the activation of both NMDA and non-NMDA receptors as indicated by studies using receptor antagonists and ion substitution. Treatment with TTX (1 microM) or removal of extracellular Ca2+ for a 30 min window following agonist exposure failed to prevent the delayed Ca2+ overload. The delayed [Ca2+]i increase could be reversed by removing extracellular Ca2+, indicating that it resulted from Ca2+ influx. The three phases defined by changes in the [Ca2+]i during glutamate-induced neuronal toxicity suggest three distinct targets to which neuroprotective agents may be directed.  相似文献   

14.
K Abe  H Saito 《Brain research》1992,595(1):128-132
The short-term effect of bFGF on intracellular Ca2+ concentration ([Ca2+]i) of hippocampal neurons was investigated using dissociated cell cultures. Changes in [Ca2+]i were measured by microfluorometrically monitoring the fluorescence intensities from individual neurons loaded with fura-2. Perfusion of bFGF (20 ng/ml) alone did not affect the basal level of [Ca2+]i in hippocampal neurons, but clearly enhanced the [Ca2+]i increase induced by NMDA. Quisqualate or KCl-induced [Ca2+]i increase was not influenced by bFGF. These results suggest that bFGF selectively enhances the NMDA receptor-mediated response in hippocampal neurons.  相似文献   

15.
Clinical evidence and animal models indicate greater brain damage in newborn males following injury. In adults, glutamate is the primary source of excitotoxic cell death and the steroid, estradiol, is neuroprotective. In neonatal brain, membrane depolarization following activation of GABAA receptors is the major source of excitation. Consequent influx of calcium via L-type channels is normally trophic, but becomes excitotoxic during periods of excessive activation of GABAA receptors, such as hypoxia-ischemia, alcohol exposure and seizures. The use of sex-specific hippocampal cultures revealed greater cell death induced by the GABAA agonist, muscimol, in male- versus female-derived cultures. Pretreatment with the androgen, dihydrotestosterone (DHT) increased muscimol-induced death in both sexes. Exploration of calcium dynamics indicated that, counter to expectation, female neurons achieved higher [Ca2+]i than male, but the calcium transient duration was shorter due to faster rise and decay. However, a second exposure to muscimol within minutes of the first, caused significant attenuation of [Ca2+]i in female neurons. In contrast, while male neurons exposed to muscimol for the first time exhibited lower maximal [Ca2+]i, when exposed to muscimol again there was no attenuation in [Ca2+]i. The latter effect was induced in females by DHT, and inversely correlated with the amount of gamma2 subunit of the GABAA receptor. This novel effect of androgen on GABA-mediated excitotoxicty suggests a unique opportunity for a sex-specific therapeutic approach involving antagonism of the androgen receptor in neonatal males at risk for brain injury.  相似文献   

16.
Multiple distinct K+-selective channels may contribute to action potential repolarization and afterpotential generation in chick ciliary neurons. The channel types are difficult to distinguish by traditional voltage-clamp methods, primarily because of coactivation during depolarization. I have used the extracellular patch-clamp technique to resolve single-channel K+ currents in cultured chick ciliary ganglion (CG) neurons. Three unit currents selective for K+ ions were observed. The channels varied with respect to unit conductance, sensitivity to Ca2+ ions and voltage, and steady-state gating parameters. The first channel, GK1, was characterized by a unit conductance of 14 pico-Siemens (pS) under physiological recording conditions, gating that was relatively independent of membrane potential and intracellular Ca2+ ions, and single-component open-time distributions with time constants of approximately 9 msec. The second channel, GK2, was characterized by a unit conductance of 64 pS under physiological recording conditions and gating that was affected by membrane potential but was not dependent on the activity of intracellular Ca2+ ions. Open-time distributions indicated 2 open states, with open-time constants of 0.09 (61%) and 0.35 (39%) msec, at +40 mV membrane potential. The third channel, GKCa2+, was identified in isolated patch recordings in which the concentration of internal Ca2+ was 10(-7) M or greater, which was an absolute prerequisite for channel opening. GKCa2+ was characterized by a unit conductance of 193 pS in symmetrical 0.15 M KCl solutions, an open-state probability that was a function not only of [Ca2+]i, but also of membrane potential, and single-component open-time distribution with a time constant of 1.11 msec at -10 mV patch potential. These results suggest the presence of at least 3 distinct K+ channel populations in the membrane of cultured chick CG neurons.  相似文献   

17.
We investigated the effects of l-menthol on cultured dorsal root ganglion (DRG) cells, instead of free nerve endings of sensory fibers. Using Fura-2 microfluorimetry, we identified a few DRG neurons that showed an increase in intracellular free Ca2+ concentration ([Ca2+]i) in response to l-menthol. They made up only 10% of the neurons activated by a high K+ solution. l-Menthol induced the [Ca2+]i increase in a dose-dependent manner, with an EC50 of 37.9 microM and a Hill coefficient of 0.97. A related compound, cyclohexanol, had no effect. When extracellular Ca2+ was removed, l-menthol did not induce the [Ca2+]i increase. Whole-cell current-clamp recordings revealed that l-menthol induced depolarization (13.2 mV, receptor potential) leading to impulses. We conclude that l-menthol induced the impulses through activation of menthol receptors in a small subset of the cultured sensory neurons.  相似文献   

18.
Mode of action of taurine as a neuroprotector   总被引:6,自引:0,他引:6  
Wu H  Jin Y  Wei J  Jin H  Sha D  Wu JY 《Brain research》2005,1038(2):123-131
Previously, it has been shown that taurine exerts its protective function against glutamate-induced neuronal excitotoxicity through its action in reducing glutamate-induced elevation of intracellular free calcium, [Ca2+]i. Here, we report the mechanism underlying the effect of taurine in reducing [Ca2+]i. We found that taurine inhibited glutamate-induced calcium influx through L-, P/Q-, N-type voltage-gated calcium channels (VGCCs) and NMDA receptor calcium channel. Surprisingly, taurine had no effect on calcium influx through NMDA receptor calcium channel when cultured neurons were treated with NMDA in Mg2+-free medium. Since taurine was found to prevent glutamate-induced membrane depolarization, we propose that taurine protects neurons against glutamate excitotoxicity by preventing glutamate-induced membrane depolarization, probably through its effect in opening of chloride channels and, therefore, preventing the glutamate-induced increase in calcium influx and other downstream events.  相似文献   

19.
Evoked intracellular Ca2+ elevations in HT4 neuroblastoma cells   总被引:1,自引:0,他引:1  
Han JZ  Lin W  Chen YZ 《Neuroreport》2002,13(8):1089-1094
In this study, membrane depolarization and multiple neurotransmitters (5-HT, acetylcholine, histamine, norepinephrine, epinephrine, glutamate, and ATP) were tested for the ability to elevate the intracellular free Ca2+ concentration ([Ca2+]i) in mouse HT4 neuroblastoma cells. Apart from ATP, none of the treatments gave rise to a detectable Ca2+ response, no matter whether the cells were subjected to temperature-induced neuronal differentiation. Our results provide pharmacological evidence for the co-existence in HT4 cells of both P2X and P2Y receptors, the activation of which by ATP led to Ca2+ influx and Ca2+ release, respectively. The P2Y receptor was found to couple to more than one type of G protein in the signaling pathway, causing the activation of phospholipase C (PLC) and Ca2+ mobilization from intracellular stores. cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) attenuated ATP-evoked [Ca2+]i elevations in different ways. However, no correlation was identified between neuronal differentiation and the ATP-evoked Ca2+ responses in HT4 cells. This work indicates that HT4 cells can serve as a good model to study P2 purinoceptor-associated signaling pathways.  相似文献   

20.
M Okada  A Urae  K Iwasaki  K Mine  M Fujiwara 《Brain research》1992,583(1-2):227-236
The effects of non-competitive NMDA antagonists, MK-801 and dextrorphan in relation to the rise in intracellular Ca2+ concentrations ([Ca2+]i) after stimulation with 15 mM K+ in whole brain synaptosomes from young (3 months old) and aged (24 months old) Fisher344 rats were examined. A fluorescent chelating agent, Rhod-2, was employed to monitor any alterations of K(+)-evoked [Ca2+]i. In young rats, the rise in [Ca2+]i following depolarization was affected by neither dextrorphan (1, 10, 100 microM) nor MK-801 (0.1, 1, 10 microM), while in aged rats, 1 microM dextrorphan and 0.1 microM MK-801 brought about a significant increase in [Ca2+]i following depolarization. In low Mg2+ medium, 10 microM MK-801 and 100 microM dextrorphan significantly inhibited the rise in [Ca2+]i after stimulation with 15 mM K+ in young rats, while neither dextrorphan nor MK-801 could affect the rise in [Ca2+]i significantly in aged rats. When 100 microM NMDA was applied in a medium containing 1.2 mM Mg2+, the rise in [Ca2+]i following depolarization was slightly inhibited by 1 microM MK-801 in young rats, but it was not inhibited significantly by dextrorphan. In aged rats, both 100 microM dextrorphan and 10 microM MK-801 strongly inhibited the rise in [Ca2+]i following depolarization in the presence of 100 microM NMDA. Instead of NMDA, when 100 microM alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), a non-NMDA receptor agonist, was applied, dextrorphan did not inhibit the rise in [Ca2+]i. In low Mg2+ medium, 100 microM NMDA potentiated the inhibitory effect of 10 microM dextrorphan in young rats, while 100 microM dextrorphan or MK-801 did not show any further inhibition by adding 100 microM NMDA. The addition of 100 microM AMPA did not affect the effect of dextrorphan in a low Mg2+ medium in young rats. These results suggest that NMDA antagonist-mediated [Ca2+]i homeostatic system may alter through aging. In addition, the findings that NMDA potentiated the inhibitory effect of NMDA antagonist, which being further potentiated by aging or lowered extrasynaptosomal Mg2+, indicate the possibility that the Mg2+ block to NMDA receptors might be attenuated through aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号