首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 356 毫秒
1.
Substance use escalates between adolescence and young adulthood, and most experimentation occurs among peers. To understand underlying mechanisms, research has focused on neural response during relevant psychological processes. Functional magnetic resonance imaging (fMRI) research provides a wealth of information about brain activity when processing monetary rewards; however, most studies have used tasks devoid of social stimuli. Given that adolescent neurodevelopment is sculpted by the push-and-pull of peers and emotions, identifying neural substrates is important for intervention. We systematically reviewed 28 fMRI studies examining substance use and neural responses to stimuli including social reward, emotional faces, social influence, and social stressors. We found substance use was positively associated with social-reward activity (e.g., in the ventral striatum), and negatively with social-stress activity (e.g., in the amygdala). For emotion, findings were mixed with more use linked to heightened response (e.g., in amygdala), but also with decreased response (e.g., in insula). For social influence, evidence supported both positive (e.g., cannabis and nucleus accumbens during conformity) and negative (e.g., polydrug and ventromedial PFC during peers’ choices) relations between activity and use. Based on the literature, we offer recommendations for future research on the neural processing of social information to better identify risks for substance use.  相似文献   

2.
Risk taking is an integral part of learning and development, particularly during adolescence the prevalence of risky behaviors peak. It is hypothesized that the tendency to take risks is related to pubertal maturation, where there is interplay between gonadal hormones, the neural mechanisms that underlie affective (e.g., reward) processing, and risky behavior. To test this hypothesis, fifty healthy adolescents (aged 10–16 years; 33 girls, 17 boys) at different stages of puberty performed a gambling task while lying in the MRI scanner, and provided saliva samples for hormone assessment. Gonadal hormone levels were correlated with the neural response to receiving a monetary reward. Results showed that testosterone level correlated positively with activation in the striatum for both boys and girls, suggesting that individual differences in hormones at puberty are related to the way adolescents respond to reward, which can ultimately affect risk-taking behavior.  相似文献   

3.
BACKGROUND: Choosing between actions associated with uncertain rewards and punishments is mediated by neural circuitry encompassing the orbitofrontal cortex, anterior cingulate cortex (ACC), and striatum; however, the precise conditions under which these different components are activated during decision-making cognition remain uncertain. METHODS: Fourteen healthy volunteers completed an event-based functional magnetic resonance imaging protocol to investigate blood-oxygenation-level-dependent (BOLD) responses during independently modeled phases of choice cognition. In the "decision phase," participants decided which of two simultaneous visually presented gambles they wished to play for monetary reward. The gambles differed in their magnitude of gains, magnitude of losses, and the probabilities with which these outcomes were delivered. In the "outcome phase," the result of each choice was indicated on the visual display. RESULTS: In the decision phase, choices involving large gains were associated with increased BOLD responses in the pregenual ACC, paracingulate, and right posterior orbitolateral cortex compared with choices involving small gains. In the outcome phase, good outcomes were associated with increased BOLD responses in the posterior orbitomedial cortex, subcallosal ACC, and ventral striatum compared with negative outcomes. There was only limited overlap between reward-related activity in ACC and orbitofrontal cortex during the decision and outcome phases. CONCLUSIONS: Neural activity within the medial and lateral orbitofrontal cortex, pregenual ACC, and striatum mediate distinct representations of reward-related information that are deployed at different stages during a decision-making episode.  相似文献   

4.
Emotion regulation strategies can alter behavioral and physiological responses to emotional stimuli and the neural correlates of those responses in regions such as the amygdala or striatum. The current study investigates the brain systems engaged when using an emotion regulation technique during financial decisions. In decision making, regulating emotion with reappraisal-focused strategies that encourage taking a different perspective has been shown to reduce loss aversion as observed both in choices and in the relative arousal responses to actual loss and gain outcomes. In the current study, we find using fMRI that behavioral loss aversion correlates with amygdala activity in response to losses relative to gains. Success in regulating loss aversion also correlates with the reduction in amygdala responses to losses but not to gains. Furthermore, across both decisions and outcomes, we find the reappraisal strategy increases baseline activity in dorsolateral and ventromedial prefrontal cortex and the striatum. The similarity of the neural circuitry observed to that seen in emotion regulation, despite divergent tasks, serves as further evidence for a role of emotion in decision making, and for the power of reappraisal to change assessments of value and thereby choices.  相似文献   

5.
Choice selection and reward anticipation: an fMRI study   总被引:9,自引:0,他引:9  
We examined neural activations during decision-making using fMRI paired with the wheel of fortune task, a newly developed two-choice decision-making task with probabilistic monetary gains. In particular, we assessed the impact of high-reward/risk events relative to low-reward/risk events on neural activations during choice selection and during reward anticipation. Seventeen healthy adults completed the study. We found, in line with predictions, that (i) the selection phase predominantly recruited regions involved in visuo-spatial attention (occipito-parietal pathway), conflict (anterior cingulate), manipulation of quantities (parietal cortex), and preparation for action (premotor area), whereas the anticipation phase prominently recruited regions engaged in reward processes (ventral striatum); and (ii) high-reward/risk conditions relative to low-reward/risk conditions were associated with a greater neural response in ventral striatum during selection, though not during anticipation. Following an a priori ROI analysis focused on orbitofrontal cortex, we observed orbitofrontal cortex activation (BA 11 and 47) during selection (particularly to high-risk/reward options), and to a more limited degree, during anticipation. These findings support the notion that (1) distinct, although overlapping, pathways subserve the processes of selection and anticipation in a two-choice task of probabilistic monetary reward; (2) taking a risk and awaiting the consequence of a risky decision seem to affect neural activity differently in selection and anticipation; and thus (3) common structures, including the ventral striatum, are modulated differently by risk/reward during selection and anticipation.  相似文献   

6.

Objectives

Retrospective studies suggest a link between PTSD and difficulty regulating negative emotions. This study investigated the relationship between PTSD symptoms and the ability to regulate negative emotions in real-time using a computerised task to assess emotion regulation.

Method

Trauma-exposed ambulance workers (N = 45) completed self-report measures of trauma exposure, PTSD symptoms and depression. Participants then completed a computer task requiring them to enhance, decrease or maintain their negative emotions in response to unpleasant images. Skin conductance responses (SCR) were recorded and participants also made ratings of emotion intensity. Immediately after the computer task, participants were asked to describe the strategies they had used to regulate their negative emotions during the task and recorded spontaneous intrusions for the unpleasant images they had seen throughout the following week.

Results

PTSD symptoms were associated with difficulty regulating (specifically, enhancing) negative emotions, greater use of response modulation (i.e., suppression) and less use of cognitive change (i.e., reappraisal) strategies to down-regulate their negative emotions during the task. More intrusions developed in participants who had greater reductions in physiological arousal whilst decreasing their negative emotions.

Limitations

PTSD was measured by self-report rather than by a clinician administered interview. The results suggest a relationship between emotion regulation ability and PTSD symptoms rather than emotion regulation and PTSD.

Conclusions

Difficulty regulating negative emotions may be a feature of trauma-exposed individuals with PTSD symptoms, which may be linked to the types of strategies they employ to regulate negative emotions.  相似文献   

7.
Decision-making is a complex process that requires the orchestration of multiple neural systems. For example, decision-making is believed to involve areas of the brain involved in emotion (e.g., amygdala, ventromedial prefrontal cortex) and memory (e.g., hippocampus, dorsolateral prefrontal cortex). In this article, we will present findings related to the amygdala's role in decision-making, and differentiate the contributions of the amygdala from those of other structurally and functionally connected neural regions. Decades of research have shown that the amygdala is involved in associating a stimulus with its emotional value. This tradition has been extended in newer work, which has shown that the amygdala is especially important for decision-making, by triggering autonomic responses to emotional stimuli, including monetary reward and punishment. Patients with amygdala damage lack these autonomic responses to reward and punishment, and consequently, cannot utilize “somatic marker” type cues to guide future decision-making. Studies using laboratory decision-making tests have found deficient decision-making in patients with bilateral amygdala damage, which resembles their real-world difficulties with decision-making. Additionally, we have found evidence for an interaction between sex and laterality of amygdala functioning, such that unilateral damage to the right amygdala results in greater deficits in decision-making and social behavior in men, while left amygdala damage seems to be more detrimental for women. We have posited that the amygdala is part of an “impulsive,” habit type system that triggers emotional responses to immediate outcomes.  相似文献   

8.
BackgroundScreen media activities (SMAs; e.g., watching videos, playing videogames) have become increasingly prevalent among youth as ways to alleviate or escape from negative emotional states. However, neural mechanisms underlying these processes in youth are incompletely understood.MethodSeventy-nine youth aged 11–15 years completed a monetary incentive delay task during fMRI scanning. Neural correlates of reward/loss processing and their associations with SMAs were explored. Next, brain activations during reward/loss processing in regions implicated in the processing of emotions were examined as potential mediating factors between difficulties in emotion regulation (DER) and engagement in SMAs. Finally, a moderated mediation model tested the effects of depressive symptoms in such relationships.ResultThe emotional components associated with SMAs in reward/loss processing included activations in the left anterior insula (AI) and right dorsolateral prefrontal cortex (DLPFC) during anticipation of working to avoid losses. Activations in both the AI and DLPFC mediated the relationship between DER and SMAs. Moreover, depressive symptoms moderated the relationship between AI activation in response to loss anticipation and SMAs.ConclusionThe current findings suggest that DER link to SMAs through loss-related brain activations implicated in the processing of emotions and motivational avoidance, particularly in youth with greater levels of depressive symptoms. The findings suggest the importance of enhancing emotion-regulation tendencies/abilities in youth and, in particular, their regulatory responses to negative emotional situations in order to guide moderate engagement in SMAs.  相似文献   

9.
BACKGROUND: Successful control of affect partly depends on the capacity to modulate negative emotional responses through the use of cognitive strategies. Although the capacity to regulate emotions is critical to mental well-being, its neural substrates remain unclear. METHODS: We used functional magnetic resonance imaging to ascertain brain regions involved in the voluntary regulation of emotion and whether dynamic changes in negative emotional experience can modulate their activation. Fourteen healthy subjects were scanned while they either maintained the negative affect evoked by highly arousing and aversive pictures (e.g., experience naturally) or suppressed their affect using cognitive reappraisal. In addition to a condition-based analysis, online subjective ratings of intensity of negative affect were used as covariates of brain activity. RESULTS: Inhibition of negative affect was associated with activation of dorsal anterior cingulate, dorsal medial prefrontal, and lateral prefrontal cortices, and attenuation of brain activity within limbic regions (e.g., nucleus accumbens/extended amygdala). Furthermore, activity within dorsal anterior cingulate was inversely related to intensity of negative affect, whereas activation of the amygdala was positively covaried with increasing negative affect. CONCLUSIONS: These findings highlight a functional dissociation of corticolimbic brain responses, involving enhanced activation of prefrontal cortex and attenuation of limbic areas, during volitional suppression of negative emotion.  相似文献   

10.
《Social neuroscience》2013,8(1):43-51
Love of money (LOM) is concerned with the attitude toward money, which can be measured by the LOM scale through affective, behavioral, and cognitive dimensions. Research has observed that monetary attitude was tightly related to reward processing and could affect economic behavior. This study examined how monetary attitude modulated risky behavior and the underlying neural mechanisms of reward processing using event-related potential (ERP) technique. We compared both the risk level and brain responses of a high-level LOM (HLOM) group to a low-level LOM (LLOM) group using a simple gambling task. The behavioral results showed that the HLOM group was more risky than the LLOM group, particularly after loss. The feedback-related negativity (FRN) was measured as the difference wave (gain-related ERP was subtracted from loss-related ERP). The FRN difference wave was larger in the HLOM group than that in the LLOM group. The P3 in the HLOM group was more positive than that in the LLOM group. These results suggest that monetary attitude can modulate both the underlying neural mechanisms and behavioral performance in a reward-related task. The HLOM participants are more sensitive to gain/loss than the LLOM participants.  相似文献   

11.
《Social neuroscience》2013,8(5):473-493
Adult attachment style (AAS) refers to individual differences in the way people experience and regulate their social relationships and corresponding emotions. Based on developmental and psychological research, it has been hypothesized that avoidant attachment style (AV) entails deactivating strategies in social contexts, whereas anxious attachment style (AX) involves hyper vigilance and up-regulation mechanisms. However, the neural substrates of differences in social emotion regulation associated with AAS have not been systematically investigated. Here we used fMRI in 19 healthy adults to investigate the effect of AAS on the processing of pleasant or unpleasant social and nonsocial scenes. Participants were asked either to naturally attend (NAT), cognitively reappraise (REAP), or behaviorally suppress (ESUP) their emotional responses. Avoidantly attached participants showed increased prefrontal and anterior cingulate activation to social negative scenes when making spontaneous emotion judgments. They also exhibited persistent increases in dorsolateral prefrontal cortex and left amygdala activity for the same stimuli during reappraisal, as well as additional activation in supplementary motor area and ventral caudate during the suppression of social positive emotions. These results suggest that AV may imply less efficient reappraisal strategies to regulate social negative emotions, and lead to higher conflict or effortful control when suppression cannot be employed. In contrast, anxiously attached participants showed differential increases in the right amygdala and left parahippocampal cortex for social negative and positive stimuli, respectively, but only when making spontaneous emotion judgments. No effect of AX was found during down-regulation conditions. This suggests heightened arousal to negative information without difficulty in down-regulating emotions through cognitive re-evaluation or suppression. Taken together, these findings reveal for the first time the neural underpinnings of attachment-related differences in social emotion regulation.  相似文献   

12.
How do we decide to keep interacting (e.g., stay) with a social partner or to switch (e.g., leave) to another? This paper investigated the neural mechanisms of stay/leave decision-making. We hypothesized that these decisions fit within a framework of value-based decision-making, and explored four potential mechanisms underlying a hypothesized bias to stay. Twenty-six participants underwent functional Magnetic Resonance Imaging (fMRI) while completing social and nonsocial versions of a stay/leave decision-making task. On each trial, participants chose between four alternative options, after which they received a monetary reward. Crucially, in the social condition, reward magnitude was ostensibly determined by the generosity of social partners, whereas in the nonsocial condition, reward amounts were ostensibly determined in a pre-programmed manner. Results demonstrated that participants were more likely to stay with options of relatively high expected value, with these values updated through Reinforcement Learning mechanisms and represented neurally within ventromedial prefrontal cortex. Moreover, we demonstrated that greater brain activity in ventromedial prefrontal cortex, caudate nucleus, and septo-hypothalamic regions for social versus nonsocial decisions to stay may underlie a bias towards staying with social partners in particular. These findings complement existing social psychological theories by investigating the neural mechanisms of actual stay/leave decisions.  相似文献   

13.
Adult attachment style (AAS) refers to individual differences in the way people experience and regulate their social relationships and corresponding emotions. Based on developmental and psychological research, it has been hypothesized that avoidant attachment style (AV) entails deactivating strategies in social contexts, whereas anxious attachment style (AX) involves hyper vigilance and up-regulation mechanisms. However, the neural substrates of differences in social emotion regulation associated with AAS have not been systematically investigated. Here we used fMRI in 19 healthy adults to investigate the effect of AAS on the processing of pleasant or unpleasant social and nonsocial scenes. Participants were asked either to naturally attend (NAT), cognitively reappraise (REAP), or behaviorally suppress (ESUP) their emotional responses. Avoidantly attached participants showed increased prefrontal and anterior cingulate activation to social negative scenes when making spontaneous emotion judgments. They also exhibited persistent increases in dorsolateral prefrontal cortex and left amygdala activity for the same stimuli during reappraisal, as well as additional activation in supplementary motor area and ventral caudate during the suppression of social positive emotions. These results suggest that AV may imply less efficient reappraisal strategies to regulate social negative emotions, and lead to higher conflict or effortful control when suppression cannot be employed. In contrast, anxiously attached participants showed differential increases in the right amygdala and left parahippocampal cortex for social negative and positive stimuli, respectively, but only when making spontaneous emotion judgments. No effect of AX was found during down-regulation conditions. This suggests heightened arousal to negative information without difficulty in down-regulating emotions through cognitive re-evaluation or suppression. Taken together, these findings reveal for the first time the neural underpinnings of attachment-related differences in social emotion regulation.  相似文献   

14.
Although neural signals of reward anticipation have been studied extensively, the functional relationship between reward and attention has remained unclear: Neural signals implicated in reward processing could either reflect attentional biases towards motivationally salient stimuli, or proceed independently of attentional processes. Here, we sought to disentangle reward and attention‐related neural processes by independently modulating reward value and attentional task demands in a functional magnetic resonance imaging study in healthy human participants. During presentation of a visual reward cue that indicated whether monetary reward could be obtained in a subsequent reaction time task, participants either attended to the reward cue or performed an unrelated attention‐demanding task at two different levels of difficulty. In ventral striatum and ventral tegmental area, neural responses were modulated by reward anticipation irrespective of attentional demands, thus indicating attention‐independent processing of reward cues. By contrast, additive effects of reward and attention were observed in visual cortex. Critically, reward‐related activations in right anterior insula strongly depended on attention to the reward cue. Dynamic causal modelling revealed that the attentional modulation of reward processing in insular cortex was mediated by enhanced effective connectivity from ventral striatum to anterior insula. Our results provide evidence for distinct functional roles of the brain regions involved in the processing of reward‐indicating information: While subcortical structures signal the motivational salience of reward cues even when attention is fully engaged elsewhere, reward‐related responses in anterior insula depend on available attentional resources, likely reflecting the conscious evaluation of sensory information with respect to motivational value. Hum Brain Mapp 35:3036–3051, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Emotion regulation comprises all extrinsic and intrinsic control processes whereby people monitor, evaluate and modify the occurrence, intensity and duration of emotional reactions. Here we sought to quantitatively summarize the existing neuroimaging literature to investigate a) whether different emotion regulation strategies are based on different or the same neural networks; b) which brain regions in particular support the up- and down-regulation of emotions, respectively; and c) to which degree the neural networks realising emotion regulation depend on the stimulus material used to elicit emotions. The left ventrolateral prefrontal cortex (VLPFC), the anterior insula and the supplementary motor area were consistently activated independent of the regulation strategy. VLPFC and posterior cingulate cortex were the main regions consistently found to be recruited during the up-regulation as well as the down-regulation of emotion. The down-regulation compared to the up-regulation of emotions was associated with more right-lateralized activity while up-regulating emotions more strongly modulated activity in the ventral striatum. Finally, the process of emotion regulation appeared to be unaffected by stimulus material.  相似文献   

16.
Efficient implicit emotion regulation processes, which run without awareness, are important for human well-being. In this study, to investigate the influence of implicit emotion regulation on psychological and electrophysiological responses to gains and losses, participants were required to select between two Chinese four-character idioms to match the meaning of the third one before they performed a monetary gambling task. According to whether their meanings were related to emotion regulation, the idioms fell into two categories. Event-related potentials and self-rating emotional experiences to outcome feedback were recorded during the task. Priming emotion regulation reduced subjective emotional experience to both gains and losses and the amplitudes of the feedback-related negativity, while the P3 component was not influenced. According to these results, we suggest that the application of implicit emotion regulation effectively modulated the subjective emotional experience and the motivational salience of current outcomes without the cost of cognitive resources. This study implicates the potential significance of implicit emotion regulation in decision-making processes.  相似文献   

17.
The ability of human subjects to choose between disparate kinds of rewards suggests that the neural circuits for valuing different reward types must converge. Economic theory suggests that these convergence points represent the subjective values (SVs) of different reward types on a common scale for comparison. To examine these hypotheses and to map the neural circuits for reward valuation we had food and water-deprived subjects make risky choices for money, food, and water both in and out of a brain scanner. We found that risk preferences across reward types were highly correlated; the level of risk aversion an individual showed when choosing among monetary lotteries predicted their risk aversion toward food and water. We also found that partially distinct neural networks represent the SVs of monetary and food rewards and that these distinct networks showed specific convergence points. The hypothalamic region mainly represented the SV for food, and the posterior cingulate cortex mainly represented the SV for money. In both the ventromedial prefrontal cortex (vmPFC) and striatum there was a common area representing the SV of both reward types, but only the vmPFC significantly represented the SVs of money and food on a common scale appropriate for choice in our data set. A correlation analysis demonstrated interactions across money and food valuation areas and the common areas in the vmPFC and striatum. This may suggest that partially distinct valuation networks for different reward types converge on a unified valuation network, which enables a direct comparison between different reward types and hence guides valuation and choice.  相似文献   

18.
Whether an agent receives positive task feedback or a monetary reward, neural activity in their striatum increases. In the latter case striatal activity reflects extrinsic reward processing, while in the former, striatal activity reflects the intrinsically rewarding effects of performing well. There can be a "hidden cost of reward", which is a detrimental effect of extrinsic on intrinsic reward value. This raises the question how these two types of reward interact. To address this, we applied a monetary incentive delay task: in all trials participants received feedback depending on their performance. In half of the trials they could additionally receive monetary reward if they performed well. This resulted in high performance trials, which were monetarily rewarded and high performance trials that were not. This made it possible to dissociate the neural correlates of performance feedback from the neural correlates of monetary reward that comes with high performance. Performance feedback alone elicits activation increases in the ventral striatum. This activation increases due to additional monetary reward. Neural response in the dorsal striatum on the other hand is only significantly increased by feedback when a monetary incentive is present. The quality of performance does not significantly influence dorsal striatum activity. In conclusion, our results indicate that the dorsal striatum is primarily sensitive to optional or actually received external rewards, whereas the ventral striatum may be coding intrinsic reward due to positive performance feedback. Thus the ventral striatum is suggested to be involved in the processing of intrinsically motivated behavior.  相似文献   

19.
Theoretical accounts of emotion regulation (ER) discriminate various cognitive strategies to voluntarily modify emotional states. Amongst these, attentional deployment (i.e. distraction) and cognitive change (i.e. reappraisal), have been shown to successfully down-regulate emotions. Neuroimaging studies found that both strategies differentially engage neural structures associated with selective attention, working memory and cognitive control. The aim of this study was to further delineate similarities and differences between the ER strategies reappraisal and distraction by investigating their temporal brain dynamics using event-related potentials (ERPs) and their patterns of facial expressive behavior. Twenty-one participants completed an ER experiment in which they had to either passively view positive, neutral and negative pictures, reinterpret them to down-regulate affective responses (reappraisal), or solve a concurrently presented mathematical equation (distraction). Results demonstrate the efficacy of both strategies in the subjective control of emotion, accompanied by reductions of facial expressive activity (Corrugator supercilii and Zygomaticus major). ERP results indicated that distraction, compared with reappraisal, yielded a stronger and earlier attenuation of the late positive potential (LPP) magnitude for negative pictures. For positive pictures, only distraction but not reappraisal had significant effect on LPP attenuation. The results support the process model of ER, separating subtypes of cognitive strategies based on their specific time course.  相似文献   

20.
Preliminary prospective research suggests emotion dysregulation may confer vulnerability to poor stress responses. The present prospective study extends this research by examining both specific emotion regulation strategies and global emotion regulation difficulties in the context of acute stress following onset of the COVID-19 global pandemic in 119 young adults. As part of a larger study, emotion regulation was assessed prior to pandemic onset (January 2019 – February 2020) using two standard measures (Emotion Regulation Questionnaire, ERQ, Gross & John, 2003; Difficulties in Emotion Regulation Scale, DERS, Gratz & Roemer, 2004). A self-report assessment of acute stress was conducted 2−3½ weeks after the COVID-19 pandemic declaration. Results demonstrated cognitive reappraisal and expressive suppression (i.e., ERQ) were not individually predictive of acute stress; however, there was a significant interaction of suppression by reappraisal. Simple effects indicated suppression was negatively associated with acute stress only when reappraisal levels were high. Greater global emotion regulation difficulties (i.e., DERS), particularly nonacceptance of emotions and limited access to emotion regulation strategies, significantly predicted greater acute stress. These results provide further evidence of the temporal relationship between emotion dysregulation and stress reactions, and also suggest the expected effects of emotion regulation strategies may differ across contexts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号