首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
i(17q)是由于17号染色体的短臂缺失后,两条17号染色体长臂在中心粒对接而形成。i(17q)被认为是慢性粒细胞白血病(慢粒)急变期或慢粒慢性期将发展为急变期的一个重要标记染色体,但在慢粒慢性期也可以检出i(17q)。i(17q)不仅可以在慢粒中被检出,在其他疾病,例如急性非淋巴细胞白血病、急性淋巴细胞白血病、骨髓增生异常综合征、淋巴增殖性疾病、淋巴瘤和实体瘤等也可以被检出。i(17q)的功能意义尚不清楚,伴有i(17q)的慢粒容易由慢性期发展为急变期的原因也不清楚。我们报告12例伴17号等臂染色体的慢粒并进行探讨。  相似文献   

2.
本文对13例慢性粒细胞白血病急性变(简称慢粒急变)染色体研究。着重研究了:1、Ph染色体出现高达100%,并有2例出现22Ph染色体。2、观察了染色体特征性的变化。染色体异常涉及17条染色体,有8条染色体出现三体,并有结构异常。3、i(19q)出现病情进入终未期,另发现异常核型改变出现在骨髓恶性增殖之前。故在慢粒病程中连续进行染色体分析有助于诊断、治疗、预防。  相似文献   

3.
目的探讨本地区慢性粒细胞白血病(慢粒)中Ph染色体的有关特点及意义。方法染色体制备采用骨髓穿刺细胞短期方法,应用G显带技术对本地26例慢性粒细胞患者细胞遗传学进行分析。结果24例(9203%)为Ph(+)、2例(7.6%)为Ph(-),2例慢粒急变患者有额补的染色体畸变异常(8q+,10q+各1例)。结论染色体检查核型分析不但有助于慢粒的诊断和鉴别诊断,而且有助于预测急变、判断疗效和进行细胞遗传学分型。  相似文献   

4.
目的 报道 1例 t(15 ;17)的变异型插入易位 ins(17;15 ) (q2 1;q14 q2 2 )病例及其染色体涂染、逆转录 - PCR的研究结果。方法 骨髓细胞经直接法或 2 4 h培养和外周血单采白血病细胞培养 6天后制备染色体标本 ,以 R显带技术进行核型分析 ;以 15号和 17号整条染色体涂染探针进行染色体涂染 ;以逆转录 -PCR技术检测 PML - RARα和 RARα- PML融合基因的转录本。结果 该患者骨髓细胞和外周血白血病细胞染色体 R显带核型分析结果均提示 15 q-和 17q ;涂染研究证实 17号染色体长臂插入一段 15号染色体来源的染色体片段 ;逆转录 - PCR检出 PML- RARα融合基因短型转录本 ,未检出 RARα- PML 融合基因的转录本 ,符合 ins(17;15 )所致的遗传学改变。结论 染色体涂染和逆转录 - PCR技术是明确急性早幼粒细胞白血病患者涉及 15和 17号染色体插入易位的可靠手段。  相似文献   

5.
180例慢性粒细胞白血病骨髓染色体畸变及意义   总被引:3,自引:0,他引:3  
目的 研究骨髓染色体畸变与慢性粒细胞白血病 (慢粒 )不同病期的相关性及其临床意义。方法 采取新鲜骨髓 ,进行短期培养 (48小时或 12小时预加秋水仙素培养 )制备染色体标本 ,分析 180例慢粒患者慢性期、加速期、急变期骨髓染色体的变异情况。结果  180例慢粒患者 ,其中 16 4例Ph染色体阳性 (Ph ) ,占 91 1% ;16例Ph染色体阴性(Ph - ) ,占 8 9%。慢性期 133例Ph ,占总数的 73 9% ;加速期 9例Ph ,占总数 5 0 % ;急变期 2 2例Ph ,占总数12 2 %。 16 4例Ph 慢粒患者中 2 5例 (15 2 % )伴有额外染色体异常 ,其中慢性期占 4 2 7%、加速期占 2 4 %、急变期占8 5 3%。结果表明随着病情的进展 ,Ph 阳性率明显增高 ,其它染色体异常率也明显增高。结论 骨髓染色体畸变与慢粒白血病的病程进展、疾病预后有着十分重要的相关性 ,随着病情的演变 ,骨髓染色体畸变趋于复杂化。进行染色体分析对临床诊断及治疗慢粒具有十分重要的指导意义。  相似文献   

6.
目的 探讨4例合并继发性der(9)t(9;22)(q34;q11)inv(9)(p22q34)异常的Ph阳性白血病的临床及分子遗传学特征.方法 应用骨髓细胞直接法或短期培养法制备染色体,经R显带进行核型分析.应用BCR/ABL双色双融合探针和9号染色体短臂及长臂涂染探针分别对4例伴有inv(9)(p22q34)的Ph阳性患者标本进行荧光原位杂交(fluorescence in situ hybridization,FISH)和染色体涂染分析.用逆转录PCR检测BCR/ABL融合基因转录本.结果 1例急性髓细胞白血病患者核型中有3种克隆,分别为正常细胞、t(9;22)(q34;q11)异常细胞、同时合并der(9)t(9;22)衍生克隆和Ph以及其它异常,即t(8;12)(q12;p11),der(9) t(9;22)inv(9) (p22q34),der(22)t(9;22)细胞.其余3例慢性粒细胞白血病患者均同时合并Ph和der(9)t(9;22)(q34;q11)inv(9)(p22q34).FISH结果显示,3例有1红1绿两个融合信号、2红2绿1个融合信号、且在中期分裂相中发现1红1绿荧光信号分别位于9号染色体的两端;另1例67.5%的细胞有2红1绿1融合信号,有1绿色信号的缺失即表明BCR基因的缺失.染色体涂抹检测发现4例患者均有9号染色体的倒位.逆转录PCR检测均为b3a2转录本.该继发异常既可发生于Ph阳性CML慢性期或急变期,也可发生于原发性Ph阳性AML.该异常核型可能与预后不良相关.结论 合并继发性der(9)t(9;22)(q34;q11)inv(9)(p22q34)异常的Ph阳性白血病是一种少见但可再现的Ph继发性异常,具有独特的临床和分子遗传学特点.  相似文献   

7.
本文报道了9例恶性血液病所观察到的i(7q)、i(11q)、i(17q)和i(21q)等臂染色体。作者认为等臂染色体的存在,在恶性变中可能起一定作用。本研究取9例白血病患者的骨髓、淋巴结和胸水细胞为材料,以直接法或短期培养法进行常规和G显带染色体制备,根据ISCN鉴别染色体并进行病例分类;白血病和异常粒细胞综合征按FAB标准;非何杰金氏淋巴瘤按专业方案;何杰金氏病按Lukes-Rye分类;恶性淋巴肿瘤的临床分期按Ann-Arbor分类。结果:例1、2、5和6均有i(7q)染色体标记。例1诊断为获得性特发性铁粒幼细胞性贫血(AISA),例2为急性粒细胞  相似文献   

8.
135例慢性粒细胞性白血病细胞遗传学分析   总被引:3,自引:1,他引:2  
目的探讨慢性粒细胞性白血病(CML)的细胞遗传学特点及意义.方法采用24h短期培养法制备骨髓染色体.G显带技术进行染色体核型分析并照相.结果本研究135例患者中有108例Ph( )(占80%),27例ph(-)(占20%);108例Ph( )病例中,具有典型易位即t(9;22)(q34.1;q11.21)100例,变异易位和涉及其他染色体异常的有8例.47,XX, 8,t(9;22)/46,XY 1例;49,XY 8、 9、 20,双Ph( )1例;46,XX,t(9;22)-17 i(17q)1例(慢粒急变).2例单纯变异Ph易位t(17;22)和t(21;22),3例复杂变异易位为46,XX,t(5;9;22)和46,XX,t(7;9;22),46,XX,t(9;12;22).结论白血病进行细胞遗传学研究对疾病的诊断和预后判断具有重要的价值.  相似文献   

9.
在白血病中,原发的染色体变化常伴继发的改变。现了解,慢性粒细胞自血病(CML)急变期常出现染色体改变。本文报道一例前所未有、非寻常的发现,即CML急性复发期出现急性非淋巴细胞白血病(ANLL)M_2为特征的(8;21)(q22;q22)易位。患者男性,24岁,经临床、血象和骨髓象检查确诊为CML。其细胞遗传学研究分别于治疗前,诊断后二年和急变定期进行染色体分析。第一阶段研究(1986年2月~治  相似文献   

10.
慢性粒细胞白血病(CML)是一种粒细胞增殖性疾患,临床可分三期。起始期的细胞遗传学特征为,具有9q34与22q13相互易位形成的Ph染色体。c-abl和bcr基因分别位于9号和22号染色体长臂的断裂点附近。基本上具有t(9;22)的CML患者都存在这两个基因的相互易位。当CML发展至急变期(CML-BP)时,就出现另一些细胞遗传学畸变。其中最为常见的是Ph染色体复制和  相似文献   

11.
Nonrandom chromosome changes have been identified in a number of malignant human tumors. The leukemias are among the best studied malignant cells and they provide the largest body of relevant cytogenetic data. In chronic myeloid leukemia, a reasonably consistent translocation [t(9;22) (q34;q11)] is observed in 93 percent of all Ph1 positive patients. In the other patients, translocations are either two-way, involving No. 22 with some other chromosome or complex translocations involving Nos. 9 and 22 and another chromosome. In acute nonlymphocytic leukemia, two translocations are each specifically associated with leukemic cells arrested at two different stages of maturation. One of these, t(8;21)(q22;q22), is found mainly in patients with acute myeloblastic leukemia with maturation (AML-M2). The other, t(15;17)(q22?;q21?), is seen only in patients with acute promyelocytic leukemia (APL-M3). Various translocations have been observed in B-cell acute lymphoblastic leukemia or in Burkitt lymphoma. The most common is t(8;14)(q24;q32), but variants of this, namely t(2;8)(p13?;q24) and t(8;22)(q24;q11), have also been observed; in all of these, the consistent change involves 8q24. The various immunoglobulin loci are located on chromosomes 2, 14, and 22 in the same chromosome band affected by the translocations in B-cell leukemia. These translocations may occur randomly. If a specific translocation provides a particular cell type with a growth advantage, then selection could act to cause the proliferation of this aneuploid cell line vis-a-vis cells with a normal karyotype. In this view, the chromosome change could be the fundamental event leading to the leukemic transformation of an otherwise normal cell. The challenge for the future is to define the genes located at the sites of consistent translocations in myeloid leukemias and to determine the alterations in gene function that are associated with the translocation.  相似文献   

12.
13.
We report cytogenetic, fluorescence in situ hybridization (FISH), and molecular analyses in the first reported case of an acute leukemia with two BCR-positive clones: one cell Ph-positive and all others Ph-negative. A BCR/ABL fusion gene on 9q34 was detected only with a BCR/ABL dual color translocation probe. These FISH interphase signals must be confirmed on a metaphase to avoid an erroneous interpretation. This observation appears to indicate a 2-step mechanism for this aberrant fusion gene localization: first, a classical t(9;22), and then the transfer of the fusion gene formed on chromosome 22 to chromosome 9 by a second translocation between the long arms of the derivative chromosomes 9q+ and 22q-, masking the first chromosome exchange.  相似文献   

14.
Abnormalities of chromosome band 13q14 occur in hematologic malignancies of all lineages and at all stages of differentiation. Unlike other chromosomal translocations, which are usually specific for a given lineage, the chromosomal translocation t(12;13)(p12;q14) has been observed in both B-cell and T-cell precursor acute lymphoblastic leukemia (BCP-, TCP-ALL), in differentiated and undifferentiated acute myeloblastic leukemia (AML), and in chronic myeloid leukemia (CML) at progression to blast crisis. The nature of these translocations and their pathologic consequences remain unknown. To begin to define the gene(s) involved on chromosome 13, we have performed fluorescence in situ hybridization (FISH) using a panel of YACs from the region, on a series of 10 cases of acute leukemia with t(12;13)(p12;q14) and 1 case each with "variant" translocations including t(12;13)(q21;q14), t(10;13)(q24;q14) and t(9;13)(p21;q14). In 8/13 cases/cell lines, the 13q14 break fell within a single 1.4 Mb CEPH MegaYAC. This YAC fell immediately telomeric of the forkhead (FKHR) gene, which is disrupted in the t(2;13)(q35;q14) seen in pediatric alveolar rhabdomyosarcoma. Seven of the 8 cases with breaks in this YAC were AML. In 4/13 cases, the 13q14 break fell within a 1.7-Mb YAC located about 3 Mb telomeric of the retinoblastoma (RB1) gene: all 4 cases were ALL. One case of myelodysplastic syndrome exhibited a break within 13q12, adjacent to the BRCA2 gene. These data indicate the presence of myeloid- and lymphoid-specific breakpoint cluster regions within chromosome band 13q14 in acute leukemia.  相似文献   

15.
Chromatid gaps and breaks clustering to band 3q21, 11p11, or 11q13 were observed prior to chemotherapy in short-term cultured bone marrow cells from two patients with hematologic disorders, one with acute monoblastic leukemia having +8 as the sole karyotypic abnormality and the other with pernicious anemia having no chromosome abnormality. The mitogen-stimulated peripheral blood lymphocytes of both patients, however, yielded a negligible frequency of chromosome aberrations. Because of no notable history of clastogen exposure in these patients, the observed chromosome fragility is most probably spontaneous, which might be correlated with the patients' physiologic condition at examination, i.e., an unusually low level of folic acid or vitamin B12, both being involved in DNA synthesis. Although band 11q13 is known to contain a common fragile site, chromosome fragility in bands 3q21 and 11p11 has not yet been reported in either normal or neoplastic cells. The present findings appear to favor the in vivo expression of chromosome fragility.  相似文献   

16.
17.
Five patients with acute nonlymphocytic leukemia and inv(16)(p13q22), all with additional chromosome changes, are reported. Three were diagnosed as having acute myelomonocytic leukemia (FAB-M4), and the other two as having acute monocytic leukemia (FAB-M5b). All five patients had abnormal eosinophils in the bone marrow at diagnosis. Two had a deletion of the long arm of chromosome #7, del(7)(q31), and a trisomy of chromosome #22. These changes have been reported frequently in acute nonlymphocytic leukemia with inv(16), but are extremely rare in leukemias with other specific rearrangements including t(9;22), t(8;21), and t(15;17). Our findings and review of the literature indicate that inv(16) is observed not only in acute myelomonocytic leukemia but also in acute monocytic leukemia, and that del(7q) and +22 are nonrandomly associated with inv(16) as additional abnormalities. No significant differences in the clinical features seem to exist between the patients with only inv(16) and those with inv(16) and additional chromosome changes, except for the lower white blood cell count in the latter group.  相似文献   

18.
Three T-cell malignancies with del(6q) were analyzed for karyotypes and alteration of the oncogene c-myb that is assigned to 6q22-q24. Patients were diagnosed as having non-Hodgkin T-cell lymphoblastic lymphoma, adult T-cell leukemia, and acute T-cell lymphoblastic leukemia, and the deletions of chromosome 6 were del(6)(q21q25), del(6)(q21q23), and del(6)(q21) or del(6)(q21q27), respectively. Tumor cell DNAs were obtained from cultured pleural fluid or from fresh peripheral blood and marrow samples and were analyzed by Southern blot hybridization, using c-myb oncogene probes. Rearrangements, deletions, or amplifications were absent in these tumor DNAs, thereby indicating that the del(6q) breakpoint in these T-cell malignancies was located outside of the c-myb gene. Northern blot analysis revealed the elevated expression of c-myb in the non-Hodgkin lymphoma patient, in accord with lineage characteristics.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号