首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The highly directional maternal-to-fetal transfer of essential fatty acids (EFAs) across the placenta plays a critical role in guiding proper fetal development. Exposure to xenobiotics that may alter the fetal supply of EFAs/lipids could lead to fetal toxicity. Since the placenta is the first fetal arising organ that regulates fetal fatty acid homeostasis, the fatty acid/lipid composition in the placenta may serve as an indicator of fetal composition. In this study, we investigated the effects of the peroxisome proliferator chemical di-(2-ethylhexyl)-phthalate (DEHP), a widely used plasticizer and ubiquitous environmental contaminant, and its selective metabolites, mono-(2-ethylhexyl)-phthalate (MEHP) and 2-ethylhexanoic acid (EHA) on the lipid metabolome in a rat HRP-1 trophoblast model. The concentrations of ten lipid classes (cholesterol esters, diacylglycerol, triacylglycerides, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, lysophosphatidylcholine, cardiolipin, and sphingomyelin) were determined, as well as the individual fatty acid compositions, especially the ω-3 and ω-6 family of EFAs. The level of each lipid class was significantly increased upon exposure to the agents, with MEHP and EHA generally showing higher increases than DEHP. The same trends were observed in comparing the fatty acid compositions. For example, the ω-3/ω-6 fatty acids ratio did not change, although the levels of ω-3 and ω-6 fatty acids were significantly elevated upon exposure. These results suggest that DEHP and its metabolites can alter lipid metabolome in a rat placental cell line, implying that these compounds may contribute to aberrant placental EFA/lipid homeostasis caused by peroxisome proliferation, and potentially result in abnormal fetal development.  相似文献   

2.
The phthalates di(2-ethylhexyl)phthalate (DEHP) and di-n-butyl phthalate (DBP) are environmental contaminants with significant human exposures. Both compounds are known reproductive toxins in rodents and DEHP also induces rodent hepatocarcinogenesis in a process believed to be mediated via the peroxisome proliferator-activated receptor alpha (PPARalpha). DEHP and DBP are metabolised to their respective monoesters, mono-(2-ethylhexyl)phthalate (MEHP) and mono-n-butyl phthalate (MBP), which are the active metabolites. MEHP also activates another member of the PPAR subfamily, PPARgamma. The effects of PPARalpha and PPARgamma activation in human breast cells appears to be opposing; PPARalpha activators in breast cells cause an increase in proliferation, while PPARgamma activation in breast cells is associated with differentiation and an inhibition of cell proliferation. Further to this the activation of the PPARs is cell and ligand specific, suggesting the importance of examining the effect of MEHP and MBP on the activation of PPARalpha, PPARbeta and PPARgamma in human breast. We used the common model of human breast cancer MCF-7 and examined the ability of MEHP and MBP to activate human PPARs in this system. The ability of MBP and MEHP to block PPAR responses was also assessed. We found that both human PPARalpha and PPARgamma were activated by MEHP whereas MEHP could not activate PPARbeta. MBP was unable to activate any PPAR isoforms in this breast model, despite being a weak peroxisome proliferator in liver, although MBP was an antagonist for both PPARgamma and PPARbeta. Our results suggest that the toxicological consequences of MEHP in the breast could be complex given the opposing effects of PPARalpha and PPARgamma in human breast cells.  相似文献   

3.
Di(2-ethylhexyl)-phthalate (DEHP) is the most abundantly used phthalate derivative, inevitable environmental exposure of which is suspected to contribute to the increasing incidence of testicular dysgenesis syndrome in humans. Oxidative stress and mitochondrial dysfunction in germ cells are suggested to contribute to phthalate-induced disruption of spermatogenesis in rodents, and Leydig cells are one of the main targets of phthalates’ testicular toxicity. Selenium is known to be involved in the modulation of intracellular redox equilibrium, and plays a critical role in testis, sperm, and reproduction. This study was aimed to investigate the oxidative stress potential of DEHP and its consequences in testicular cells, and examine the possible protective effects of selenium using the MA-10 mouse Leydig tumor cell line as a model. In the presence and absence of selenium compounds [30 nM sodium selenite (SS), and 10 μM selenomethionine (SM)], the effects of exposure to DEHP and its main metabolite mono(2-ethylhexyl)-phthalate (MEHP) on the cell viability, enzymatic and non-enzymatic antioxidant status, ROS production, p53 expression, and DNA damage by alkaline Comet assay were investigated. The overall results of this study demonstrated the cytotoxicity and genotoxicity potential of DEHP, where MEHP was found to be more potent than the parent compound. SS and SM produced almost the same level of protection against antioxidant status modifying effects, ROS and p53 inducing potentials, and DNA damaging effects of the two phthalate derivatives. It was thus shown that DEHP produced oxidative stress in MA-10 cells, and selenium supplementation appeared to be an effective redox regulator in the experimental conditions used in this study, emphasizing the critical importance of the appropriate selenium status.  相似文献   

4.
Chen T  Yang W  Li Y  Chen X  Xu S 《Toxicology letters》2011,201(1):34-41
Di-(2-ethylhexyl)-phthalate (DEHP) is the most widely used plasticizers in daily-life products. In this study we evaluated the influence of mono-(2-ethylhexyl) phthalate (MEHP), the active metabolite of DEHP, on the neurodevelopment in vitro. After neuronotypic PC12 cells were exposed to MEHP (0.25, 2.5, 25, and 250 μM), the effects of which on cell proliferation and differentiation were investigated. In undifferentiated PC12 cells, MEHP inhibited cell proliferation in a dose-dependent manner. After 24 h of MEHP treatment, there was a dose-dependent G2/M cell cycle arrest as well as a sharp drop of DNA synthesis. During the process of NGF-induced differentiation of the cell line, 4 days of MEHP exposure (2.5-250 μM) increased membrane and cytoskeletal protein contents, enhanced NGF-induced neurite outgrowth, up-regulated the choline acetyl transferase (ChAT) mRNA and down-regulated tyrosine hydroxylase (TH) mRNA levels, which suggested the promoted differentiation towards the acetylcholine (ACh) phenotype at the expense of the dopamine (DA) phenotype. Take together, our results indicate that MEHP has a potential to disturb neurodevelopment by suppressing cell proliferation and promote cell differentiation in neurocytes.  相似文献   

5.
The toxicokinetic relationship between di(2-ethylhexyl) phthalate (DEHP) and mono(2-ethylhexyl) phthalate (MEHP), a major metabolite of DEHP, was investigated in Sprague-Dawley rats orally treated with a single dose of 14C-DEHP. Urinary excretion of total 14C-DEHP and of its metabolites was followed by liquid scintillation counting (LSC). Concentrations of DEHP and MEHP were determined 6, 24, and 48 h after treatment in rat serum and 6, 12, 24, and 48 h after treatment in urine by high-performance liquid chromatography (HPLC). After 24 h, peak concentrations of MEHP in both urine and serum were observed in animals treated with 40, 200, or 1000 mg DEHP/kg. HPLC showed that general toxicokinetic parameters, such as Tmax (h), Cmax (microg/ml), Ke (1/h), and AUC (microg-h/ml/) were greater for MEHP than DEHP in both urine and serum. In contrast, the half-lives (t1/2 [h]) of DEHP were greater than those of MEHP. The AUC ratios between DEHP and MEHP were relatively smaller in serum than in urine, suggesting the important role of urinary DEHP data for exposure assessment of DEHP. The toxicokinetic relationship between DEHP and MEHP in rats suggests that DEHP exposure assessment should be based on DEHP and MEHP in urine and serum for risk assessment applications.  相似文献   

6.
The effects of the hepatic peroxisome proliferators (HPPs) clofibrate, di-(2-ethylhexyl)-phthalate (DEHP), mono-(2-ethylhexyl)phthalate (MEHP) and 2,4-dichlorophenoxy acetic acid (2,4-D) on the activities of some peroxisome-associated enzymes and marker enzymes for other organelles, have been studied in primary Syrian hamster embryo (SHE) cells and Wistar rat embryo (WRE) cells. The majority of the cells are fibroblast-like. 12-O-Tetradecanoyl phorbol-13-acetate (TPA) was included as it has been suggested that it may act as a peroxisome proliferator. The specific activities of catalase, fatty acyl-CoA oxidase (FAO) and peroxisomal beta-oxidation were approximately 100-fold lower in the embryonic cells than in rat hepatocytes. Other peroxisome-associated oxidases were not detected. The dihydroxyacetone-phosphate acyltransferase (DHAPAT) activity was comparable to that in rat liver. Marker enzymes for other organelles had specific activities comparable to rat hepatocytes. Catalase was shown by digitonin titration to be contained in a peroxisome-like compartment in both SHE and WRE cells. Clofibrate, DEHP and MEHP increased the catalase activity, which might suggest peroxisome proliferation. However, the findings that FAO and peroxisomal beta-oxidation did not increase or only very slightly, argue against peroxisome proliferation. 2,4-D and TPA induced no or only a very slight increase in the catalase activity.  相似文献   

7.
This study investigated the in vivo metabolism of di(2-ethylhexyl) phthalate (DEHP) and mono(2-ethylhexyl) phthalate (MEHP) in rats after multiple dosing, the metabolism of MEHP in primary rat hepatocyte cultures for periods of up to 3 days, and the biotransformation of some major metabolites of MEHP. Rats were orally administered [14C]DEHP or [14C]MEHP at doses of 50 and 500 mg/kg body wt for three consecutive days. Urine was collected at 24-hr intervals, and metabolite profiles were determined. After a single dose of either compound, urinary metabolite profiles were similar to those previously reported. However, after multiple administration of both DEHP and MEHP at 500 mg/kg, increases in omega-/beta-oxidation products [metabolites I and V, mono(3-carboxy-2-ethylpropyl) phthalate and mono(5-carboxy-2-ethylpentyl) phthalate, respectively] and decreases in omega - 1-oxidation products [metabolites VI and IX, mono(2-ethyl-5-oxohexyl) phthalate and mono(2-ethyl-5-hydroxyhexyl) phthalate, respectively] were seen. At the low dose of 50 mg/kg little or no alteration in urinary metabolite profiles was observed. At 500 mg/kg of MEHP a 4-fold stimulation of CN- -insensitive palmitoyl-CoA oxidation (a peroxisomal beta-oxidation marker) was seen after three consecutive daily doses. At the low dose of 50 mg/kg only a 1.8-fold increase was noted. Similar observations were made with rat hepatocyte cultures. MEHP at concentrations of 50 and 500 microM was extensively metabolized in the rat hepatocyte cultures. Similar metabolic profiles to those seen after in vivo administration of MEHP were observed. At the high (500 microM) concentration of MEHP, changes in the relative proportions of omega- and omega- 1-oxidized metabolites were seen. Over the 3-day experimental period, omega-/beta-oxidation products increased in a time-dependent manner at the expense of omega - 1-oxidation products. At a concentration of 500 microM MEHP, a 12-fold increase of CN- -insensitive palmitoyl CoA oxidation (a peroxisomal beta-oxidation marker) was observed. At the low concentration of MEHP (50 microM) only a 3-fold increase in CN- -insensitive palmitoyl-CoA oxidation was noted and little alteration in the metabolite profile of MEHP was observed with time. Biotransformation studies of the metabolites of MEHP confirmed the postulated metabolic pathways. Metabolites I and VI appeared to be endpoints of metabolism, while metabolite V was converted to metabolite I, and metabolite IX to metabolite VI. It was also possible to reduce the transformation of metabolite X [mono(2-ethyl-6-hydroxyhexyl) phthalate] to metabolite V.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
9.
Phthalate esters belong to a large class of compounds known as peroxisome proliferators (PP). PP include chemicals that activate different subtypes of the peroxisome proliferator-activated receptor (PPAR) family. The ability of phthalate esters and their metabolites to activate responses through different PPAR subtypes is not fully characterized. We investigated the ability of two phthalate esters di-(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) and selected metabolites to activate PPAR (alpha, beta/delta, gamma) using a transient transfection assay. The monoester of DEHP, mono-(2-ethylhexyl) phthalate (MEHP) activated all three subtypes of PPAR, but preferentially activated PPARalpha. A second metabolite of DEHP, 2-ethylhexanoic acid (2-EHXA) was a weaker activator of all three subtypes. DBP, but not the primary metabolite mono-n-butyl phthalate weakly activated all three PPAR subtypes. MEHP and DBP but not DEHP and MBP interacted directly with human PPARalpha and PPARgamma as determined by scintillation proximity assays. Both DEHP and DBP activated expression of PP-inducible gene products in wild-type but not PPARalpha-null mice suggesting that both of these phthalates exert their effects by activation of PPARalpha in vivo. The preferential activation of PPARalpha by phthalate ester metabolites suggests that these phthalates mediate their toxic effects in rodent liver in a manner indistinguishable from other PP.  相似文献   

10.
A primary rat hepatocyte culture system was utilized to determine the proximate peroxisome proliferator(s) derived from di(2-ethylhexyl) phthalate (DEHP). DEHP was administered to rats and the urinary metabolites were identified and isolated. The major metabolites were those resulting from initial omega- or omega - 1-carbon oxidation of the mono(2-ethylhexyl) phthalate (MEHP) moiety. These metabolites, together with MEHP and 2-ethylhexanol, were added to primary rat hepatocyte cultures and the effect on peroxisomal enzyme activity was determined. The omega-carbon oxidation products [mono(3-carboxy-2-ethylpropyl) phthalate (I) and mono(5-carboxy-2-ethylpentyl) phthalate (V)] and 2-ethylhexanol produced little or no effect on CN- -insensitive palmitoyl-CoA oxidation (a peroxisomal marker). MEHP and the omega - 1-carbon oxidation products [mono-(2-ethyl-5-oxohexyl) phthalate (VI) and mono(2-ethyl-5-hydroxyhexyl) phthalate (IX)] produced a large (7- to 11-fold) induction of peroxisomal enzyme activity. Similar structure-activity relationships were observed for the induction of cytochrome P-450-mediated lauric acid hydroxylase and increase in cellular coenzyme A content. This identification of the proximate proliferators will aid in the elucidation of the mechanism by which DEHP causes proliferation of peroxisomes in the rodent liver. Oral administration of MEHP (150 or 250 mg/kg) to male guinea pigs did not produce hepatic peroxisome proliferation. Addition of MEHP (0 to 0.5 mM) or one of the "active" proliferators in the rat (metabolite IX, 0 to 0.5 mM) to primary guinea pig hepatocyte cultures also failed to produce an induction of peroxisomal beta-oxidation. Possible reasons for this species difference are discussed.  相似文献   

11.
Phthalate esters (PEs), a group of environmental chemicals, affect biological systems via endocrine and lipid metabolism modulations. These effects are believed to be mediated in part by peroxisome proliferator-activated receptors (PPARs). Evaluations of PE activities as ligands toward PPARs have been investigated in many studies on their primary metabolites, monoesters. However, the activities of various other metabolites, including oxidized derivatives, remain to be determined. Here, we have evaluated the PPAR ligand activities of these PE derivatives by in vitro coactivator recruiting assay. Mono(2-ethyl-5-hydroxyhexyl)phthalate, the most abundant metabolite of di-(2-ethylhexyl)phthalate (DEHP), was less active than mono(2-ethylhexyl)phthalate (MEHP) as a PPAR ligand. Other derivatives oxidized at the alkyl group and benzene ring of DEHP, MEHP, dibutyl phthalate and its monoester were also investigated and some affected PPAR activities. Unexpectedly, MEHP as well as its further oxidized metabolite did not show clear activity for PPARalpha, although MEHP is believed to interact with PPARalpha. This might imply indirect PPAR-mediated mechanisms that lead to observed biological effects such as peroxisome proliferation.  相似文献   

12.
13.
The risk assessment of di(2-ethylhexyl)phthalate (DEHP) migrating from polyvinyl chloride (PVC) medical devices is an important issue. Many studies have been conducted to determine the level of DEHP migration. A recent report has indicated that DEHP in blood bags is hydrolyzed by esterase into mono(2-ethylhexyl)phthalate (MEHP). However, MEHP is thought to be even more toxic than the parent compound. Therefore, a method for the simultaneous determination of DEHP and MEHP was developed. The limits of quantification (LOQs) of DEHP and MEHP were 2.5 and 0.75 ng/ml, respectively. In this study, the effect of sterilization process on the levels of DEHP and MEHP migration was investigated. The level of migration of DEHP from gamma(gamma)-ray sterilized PVC sheet was low compared with that of the unsterilized control. By contrast, the level of MEHP migration from the gamma-ray sterilized PVC sheet was high compared with that of the unsterilized control. In addition, a high content of MEHP was found in the gamma-ray sterilized PVC sheet.  相似文献   

14.
Mono-2-ethylhexyl pthalate (MEHP) is oxidized to omega-, omega-1-, and omega-2-hydroxylation products as well as (very slightly) to a dicarboxylic acid by washed microsomes from rat liver and kidney, and rabbit but not rat lung. The reactions involve molecular oxygen, are strongly inhibited by carbon monoxide and oxidized cytochrome c, and NADPH is preferred over NADH. Piperonyl butoxide inhibits hydroxylation of MEHP, but clofibrate does not. The differential effects of inducers (phenobarbital and clofibrate) and inhibitors (sodium laurate, n-decane, metyrapone) on terminal and subterminal hydroxylation as well as differences in apparent Km for the two suggest that rat liver contains at least two different MEHP hydroxylases. Comparisons of tissue distribution, susceptibility to inhibitors, and induction properties suggest that the hydroxylation of MEHP is more likely to be mediated by the P-450 isozymes associated with omega- and (omega-1)-hydroxylation of fatty acids than with those that utilize hydrocarbons as substrates.  相似文献   

15.
Di(2-ethylhexyl) phthalate (DEHP), a commercially important plasticizer, induces testicular toxicity in laboratory animals at high doses. After oral exposure, most of the DEHP is rapidly metabolized in the gut to mono(2-ethylhexyl) phthalate (MEHP), which is the active metabolite for induction of testicular toxicity. To quantify the testes dose of MEHP with various routes of exposure and dose levels, we developed a physiologically based pharmacokinetic (PBPK) model for DEHP and MEHP in rats. Tissue:blood partition coefficients for DEHP were estimated from the n-octanol: water partition coefficient, while partition coefficients for MEHP were determined experimentally using a vial equilibration technique. All other parameters were either found in the literature or estimated from blood or tissue levels following oral or intravenous exposure to DEHP or MEHP. A flow-limited model failed to adequately simulate the available data. Alternative plausible mechanisms were explored, including diffusion-limited membrane transport, enterohepatic circulation, and MEHP ionization (pH-trapping model). In the pH-trapping model, only nonionized MEHP is free to become partitioned into the tissues, where it is equilibrated and trapped as ionized MEHP until it is deionized and released. All three alternative models significantly improved predictions of DEHP and MEHP blood concentrations over the flow-limited model predictions. The pH-trapping model gave the best predictions with the largest value of the log likelihood function. Predicted MEHP blood and testes concentrations were compared to measured concentrations in juvenile rats to validate the pH-trapping model. Thus, MEHP ionization may be an important mechanism of MEHP blood and testes disposition in rats.  相似文献   

16.
We measured the background levels of di(2-ethylhexyl) phthalate (DEHP) and its hydrolytic metabolite mono(2-ethylhexyl) phthalate (MEHP) in blood from naive female Sprague-Dawley rats and in de-ionized charcoal-purified water using an analytical procedure that is based on sample treatment with acetonitrile, n-hexane extraction and analysis by gas chromatography. In blood, blank values of 91.3 +/- 34.7 micrograms DEHP/l (n = 31) and 30.1 +/- 13.1 micrograms MEHP/l (n = 20) were obtained, and in water, values of 91.6 +/- 44.2 micrograms DEHP/l (n = 26) and 26.7 +/- 10.4 micrograms MEHP/l (n = 15) were found. Since there is no difference between the background valves obtained from blood of naive rats and water, we conclude that DEHP and MEHP result from contamination during the analytical procedure.  相似文献   

17.
The risk assessment of di(2-ethylhexyl) phthalate (DEHP) that migrated from polyvinyl chloride (PVC) medical devices is an important issue for hospitalized patients. Many studies have been conducted to determine the level of DEHP migration. A recent report has indicated that DEHP in blood bags was hydrolyzed by esterase to mono(2-ethylhexyl) phthalate (MEHP). Therefore, a method for the simultaneous determination of DEHP and MEHP was developed. The migration of DEHP and MEHP from PVC tubing to drugs was examined. Although we detected MEHP in the drugs, we found no enzymatic activity involved in the migration process. Some reports have indicated that hydrolysis may have occurred during sterilization by autoclaving. However, we did not perform any heat treatment. It is speculated that the MEHP migrated directly from the PVC tubing. The simultaneous determination of DEHP and MEHP is required for risk assessment, as MEHP may be even more toxic than the parent compound.  相似文献   

18.
A comparison of the dose-dependent blood burden of di(2-ethylhexyl) phthalate (DEHP) and mono(2-ethylhexyl) phthalate (MEHP) in pregnant and nonpregnant rats and marmosets is presented. Sprague-Dawley rats and marmosets were treated orally with 30 or 500 mg DEHP/kg per day, nonpregnant animals on 7 (rats) and 29 (marmosets) consecutive days, pregnant animals on gestation days 14-19 (rats) and 96-124 (marmosets). In addition, rats received a single dose of 1000 mg DEHP/kg. Blood was collected up to 48 h after dosing. Concentrations of DEHP and MEHP in blood were determined by GC/MS. In rats, normalized areas under the concentration-time curves (AUCs) of DEHP were two orders of magnitude smaller than the normalized AUCs of the first metabolite MEHP. Metabolism of MEHP was saturable. Repeated DEHP treatment and pregnancy had only little influence on the normalized AUC of MEHP. In marmosets, most of MEHP concentration-time courses oscillated. Normalized AUCs of DEHP were at least one order of magnitude smaller than those of MEHP. In pregnant marmosets, normalized AUCs of MEHP were similar to those in nonpregnant animals with the exception that at 500 mg DEHP/kg per day, the normalized AUCs determined on gestation days 103, 117, and 124 were distinctly smaller. The maximum concentrations of MEHP in blood of marmosets were up to 7.5 times and the normalized AUCs up to 16 times lower than in rats receiving the same daily oral DEHP dose per kilogram of body weight. From this toxicokinetic comparison, DEHP can be expected to be several times less effective in the offspring of marmosets than in that of rats if the blood burden by MEHP in dams can be regarded as a dose surrogate for the MEHP burden in their fetuses.  相似文献   

19.
Acute testicular atrophy results when appropriate dosages of di-(2-ethylhexyl) phthalate (DEHP) or its hydrolysis product mono-2-ethylhexyl phthalate (MEHP) are given to male rats. Events thought to be involved in this pathological effect also occur in cultures of testicular cells in vitro, but require MEHP rather than DEHP. Primary cultures of hepatocytes, Sertoli cells, and Leydig cells were incubated with 14C-labeled MEHP [8 microM] for up to 24 hr. No significant reduction in viability was produced under these conditions. In contrast to the hepatocytes, which extensively metabolized MEHP to a variety of products in 1 hr, the testicular cell cultures were apparently unable to metabolize MEHP (beyond a slight hydrolysis to phthalic acid by Sertoli cells) in 18-24 hr. MEHP was efficiently taken up by hepatocytes, but much less so by testicular cells. These results, combined with related observations from the literature, support the hypothesis that MEHP itself is the metabolite of DEHP responsible for testicular atrophy in rats.  相似文献   

20.
《Inhalation toxicology》2013,25(2):140-150
Airway inflammation is important in asthma pathogenesis. Recent epidemiological data have indicated an association between asthma symptoms in children and exposure to di(2-ethylhexyl) phthalate (DEHP). Thus, we have studied inflammatory responses in primary rat alveolar macrophages (AMs) after exposure to mono(2-ethylhexyl) phthalate (MEHP), the major primary metabolite of DEHP. First, we show that MEHP induces a dose-dependent release of the pro-inflammatory tumour necrosis factor-α (TNF-α) in AMs, giving a maximal (5-fold) increase at 0.7?mM. This concentration also induced some cell death. MEHP also induced phosphorylation of MAPK p38, while the p38 inhibitor SB 202190 reduced MEHP-induced TNF-α, suggesting a p38-dependent cytokine production. Next, we elucidated possible effects of MEHP on the 5-lipoxygenase (5-LO) pathway and found that MEHP caused increased leukotriene (LTB4) release. Further, we found that the 5-LO inhibitor nordihydrogualaretic acid (NDGA) significantly reduced both MEHP-induced TNF-α release and MEHP-induced formation of reactive oxygen species (ROS), supporting an involvement of the 5-LO pathway in MEHP induced inflammatory reactions. Last, we found that MK-886, a known inhibitor of peroxisome proliferator-activated receptor α (PPARα), increased the MEHP-induced TNF-α response. This indicates that MEPH-PPARα binding mediates an anti-inflammatory signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号