首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
Treg cells can secrete latent TGF‐β1 (LTGF‐β1), but can also utilize an alternative pathway for transport and expression of LTGF‐β1 on the cell surface in which LTGF‐β1 is coupled to a distinct LTGF‐β binding protein termed glycoprotein A repetitions predominant (GARP)/LRRC32. The function of the GARP/LTGF‐β1 complex has remained elusive. Here, we examine in vivo the roles of GARP and TGF‐β1 in the induction of oral tolerance. When Foxp3? OT‐II T cells were transferred to wild‐type recipient mice followed by OVA feeding, the conversion of Foxp3? to Foxp3+ OT‐II cells was dependent on recipient Treg cells. Neutralization of IL‐2 in the recipient mice also abrogated this conversion. The GARP/LTGF‐β1 complex on recipient Treg cells, but not dendritic cell‐derived TGF‐β1, was required for efficient induction of Foxp3+ T cells and for the suppression of delayed hypersensitivity. Expression of the integrin αvβ8 by Treg cells (or T cells) in the recipients was dispensable for induction of Foxp3 expression. Transient depletion of the bacterial flora enhanced the development of oral tolerance by expanding Treg cells with enhanced expression of the GARP/LTGF‐β1 complex.  相似文献   

2.
The transfer of alloreactive regulatory T (aTreg) cells into transplant recipients represents an attractive treatment option to improve long‐term graft acceptance. We recently described a protocol for the generation of aTreg cells in mice using a nondepleting anti‐CD4 antibody (aCD4). Here, we investigated whether adding TGF‐β and retinoic acid (RA) or rapamycin (Rapa) can further improve aTreg‐cell generation and function. Murine CD4+ T cells were cultured with allogeneic B cells in the presence of aCD4 alone, aCD4+TGF‐β+RA or aCD4+Rapa. Addition of TGF‐β+RA or Rapa resulted in an increase of CD25+Foxp3+‐expressing T cells. Expression of CD40L and production of IFN‐γ and IL‐17 was abolished in aCD4+TGF‐β+RA aTreg cells. Additionally, aCD4+TGF‐β+RA aTreg cells showed the highest level of Helios and Neuropilin‐1 co‐expression. Although CD25+Foxp3+ cells from all culture conditions displayed complete demethylation of the Treg‐specific demethylated region, aCD4+TGF‐β+RA Treg cells showed the most stable Foxp3 expression upon restimulation. Consequently, aCD4+TGF‐β+RA aTreg cells suppressed effector T‐cell differentiation more effectively in comparison to aTreg cells harvested from all other cultures, and furthermore inhibited acute graft versus host disease and especially skin transplant rejection. Thus, addition of TGF‐β+RA seems to be superior over Rapa in stabilising the phenotype and functional capacity of aTreg cells.  相似文献   

3.
HCV is remarkable at disrupting human immunity to establish chronic infection. The accumulation of Treg cells at the site of infection and upregulation of inhibitory signaling pathways (such as T‐cell Ig and mucin domain protein‐3 (Tim‐3) and galectin‐9 (Gal‐9)) play pivotal roles in suppressing antiviral effector T (Teff) cells that are essential for viral clearance. While Tim‐3/Gal‐9 interactions have been shown to negatively regulate Teff cells, their role in regulating Treg cells is poorly understood. To explore how Tim‐3/Gal‐9 interactions regulate HCV‐mediated Treg‐cell development, here we provide pilot data showing that HCV‐infected human hepatocytes express higher levels of Gal‐9 and TGF‐β, and upregulate Tim‐3 expression and regulatory cytokines TGF‐β/IL‐10 in co‐cultured human CD4+ T cells, driving conventional CD4+ T cells into CD25+Foxp3+ Treg cells. Additionally, recombinant Gal‐9 protein can transform TCR‐activated CD4+ T cells into Foxp3+ Treg cells in a dose‐dependent manner. Importantly, blocking Tim‐3/Gal‐9 ligations abrogates HCV‐mediated Treg‐cell induction by HCV‐infected hepatocytes, suggesting that Tim‐3/Gal‐9 interactions may regulate human Foxp3+ Treg‐cell development and function during HCV infection.  相似文献   

4.
5.
TGF‐β plays an important role in the induction of Treg and maintenance of immunologic tolerance, but whether other members of TGF‐β superfamily act together or independently to achieve this effect is poorly understood. Although others have reported that the bone morphogenetic proteins (BMP) and TGF‐β have similar effects on the development of thymocytes and T cells, in this study, we report that members of the BMP family, BMP‐2 and ‐4, are unable to induce non‐regulatory T cells to become Foxp3+ Treg. Neutralization studies with Noggin have revealed that BMP‐2/4 and the BMP receptor signaling pathway is not required for TGF‐β to induce naïve CD4+CD25? cells to express Foxp3; however, BMP‐2/4 and TGF‐β have a synergistic effect on the induction of Foxp3+ Treg. BMP‐2/4 affects non‐Smad signaling molecules including phosphorylated ERK and JNK, which could subsequently promote the differentiation of Foxp3+ Treg induced by TGF‐β. Data further advocate that TGF‐β is a key signaling factor for Foxp3+ Treg development. In addition, the synergistic effect of BMP‐2/4 and TGF‐β indicates that the simultaneous manipulation of TGF‐β and BMP signaling might have considerable effects in the clinical setting for the enhancement of Treg purity and yield.  相似文献   

6.
7.
CD4+CD25+Foxp3+ regulatory T (Treg) cells mediate immunological self‐tolerance and suppress immune responses. Retinoic acid (RA), a natural metabolite of vitamin A, has been reported to enhance the differentiation of Treg cells in the presence of TGF‐β. In this study, we show that the co‐culture of naive T cells from C57BL/6 mice with allogeneic antigen‐presenting cells (APCs) from BALB/c mice in the presence of TGF‐β, RA, and IL‐2 resulted in a striking enrichment of Foxp3+ T cells. These RA in vitro‐induced regulatory T (RA‐iTreg) cells did not secrete Th1‐, Th2‐, or Th17‐related cytokines, showed a nonbiased homing potential, and expressed several cell surface molecules related to Treg‐cell suppressive potential. Accordingly, these RA‐iTreg cells suppressed T‐cell proliferation and inhibited cytokine production by T cells in in vitro assays. Moreover, following adoptive transfer, RA‐iTreg cells maintained Foxp3 expression and their suppressive capacity. Finally, RA‐iTreg cells showed alloantigen‐specific immunosuppressive capacity in a skin allograft model in immunodeficient mice. Altogether, these data indicate that functional and stable allogeneic‐specific Treg cells may be generated using TGF‐β, RA, and IL‐2. Thus, RA‐iTreg cells may have a potential use in the development of more effective cellular therapies in clinical transplantation.  相似文献   

8.
Schistosoma mansoni soluble egg antigens (SEA) profoundly regulate the infected host's immune system. We previously showed that SEA prevents type 1 diabetes in NOD mice and that splenocytes from SEA‐treated mice have reduced ability to transfer diabetes to NOD.scid recipients. To further characterize the mechanism of diabetes prevention we examined the cell types involved and showed that CD25+ T‐cell depletion of splenocytes from SEA‐treated donors restored their ability to transfer diabetes. Furthermore, SEA treatment increased the number and proportional representation of Foxp3+ T cells in the pancreas of NOD mice. We have used in vitro systems to analyze the effect of SEA on the development of NOD Foxp3+ T cells. We find that SEA can induce Foxp3 expression in naïve T cells in a TGF‐β‐dependent manner. Foxp3 induction requires the presence of DC, which we also show are modified by SEA to upregulate C‐type lectins, IL‐10 and IL‐2. Our studies show that SEA can have a direct effect on CD4+ T cells increasing expression of TGF‐β, integrin β8 and galectins. These effects of SEA on DC and T cells may act in synergy to induce Foxp3+ Treg in the NOD mouse.  相似文献   

9.
Helicobacter pylori (H. pylori), one of the most common infections, is associated with various clinical outcomes. In addition to inducing inflammation, immunological clearance of the pathogen is often incomplete. Regulatory T cells (Treg cells) have been recently demonstrated to play an important role in H. pylori infection and the final clinical outcome. The aim of this study was to investigate the number and localization of CD4+Foxp3+ Treg cells in stomachs and spleens of H. pylori‐infected mice. The expression levels of Foxp3 as well as anti‐ and pro‐inflammatory cytokines before and after H. pylori triple eradication therapy were examined. We found that the percentages of CD4+Foxp3+ Treg cells out of the lamina propria lymphocytes (LPLs) and spleen lymphocytes in the infection group were higher than the PBS negative control group and the treatment group. H. pylori antigen stimulation was associated with an increased number of Treg cells in vitro. Furthermore, compared with the PBS and treatment groups, a higher mRNA expression level of Foxp3 in the gastric tissue was detected in the infection group. IL‐10 and TGF‐β1 contents were increased significantly in the culture supernatant of spleen lymphocyte stimulated with H. pylori antigen. A marked elevation in serum IFN‐γ level was observed in H. pylori‐infected mice. In addition, gastric tissues of the infection group contained more Foxp3+ cells. These results indicate that the percentage of CD4+Foxp3+ Treg cells are increased in H. pylori‐infected mice, suggesting a role of Treg cells in H. pylori‐induced pathologies, even at the early stages of chronic gastritis and gastric tumorigenesis.  相似文献   

10.
We have previously demonstrated that exosomes from dendritic cells (DCs) secreting TGF‐β1 (sTGF‐β1‐EXOs) delay the development of murine inflammatory bowel disease (IBD). In this study, we isolated exosomes from DCs expressing membrane‐associated TGF‐β1 (mTGF‐β1‐EXOs) and found mTGF‐β1‐EXOs had more potent immunosuppressive activity than sTGF‐β1‐EXOs in vitro. Treatment of mice with mTGF‐β1‐EXOs inhibited the development and progression of myelin oligodendrocyte glycoprotein (MOG) peptide‐induced EAE even after disease onset. Treatment of mice with mTGF‐β1‐EXOs also impaired Ag‐specific Th1 and IL‐17 responses, but promoted IL‐10 responses ex vivo. Treatment with mTGF‐β1‐EXOs decreased the frequency of Th17 cells in EAE mice, which might be associated with the down‐regulation of the p38, ERK, Stat3, and NF‐κB activation and IL‐6 expression in DCs. Treatment with mTGF‐β1‐EXOs maintained the regulatory capacity of Treg cells, and adoptive transfer of CD4+Foxp3+ Treg cells from mTGF‐β1‐EXO‐treated EAE mice dramatically prevented the development of EAE in the recipients. Moreover, treatment with mTGF‐β1‐EXOs from C57BL/6 mice effectively prevented and inhibited proteolipid protein (PLP) peptide‐induced EAE in BALB/c mice. These results indicate that mTGF‐β1‐EXOs possess powerful immunosuppressive ability and can effectively inhibit the development and progression of EAE in different strains of mice.  相似文献   

11.
Problem: Spontaneous abortions in DBA/2‐mated CBA/J mice can be prevented by an immune response to BALB/c, and CD4+25+ Treg cells as well as CD8+ T cells have been proposed to confer protection. Recently a 2 ng dose of intravaginal TGF‐β3 at the time of exposure to DBA/2 semen was shown to be effective. TGF‐β is known to facilitate development of Treg cells. Is there evidence for local Treg induction? Methods: The phenotype of cellular recruitment to the vaginal wall and uterus was established by immunostaining tissue sections from CBA/J females following intravaginal TGF‐β treatment. The phenotype of cells in vaginal washings 48 hr after TGF‐β was determined by flow cytometry. Results: Increased numbers of CD3+, CD25+, and CD11c+ cells were found in vaginal mucosa with increasing doses of TGF‐β. A 2 ng TGF‐β3 treatment at the time of estrus recruited Foxp3+ cells to the vaginal lumen, and the majority of these were CD8+; CD4+ cells were also present, but expressed only low levels of CD25 and CTLA4. A 20 ng dose recruited predominantly CD4+8+ Foxp3+ cells. Conclusion: Induction of Tregs to semen‐associated DBA/2 antigens may prevent pregnancy loss in the CBAxDBA/2 model without the need for BALB/c as an immunogen. The Treg phenotype in the genital tract is compatible with additional members of the Treg family that recognize Class I MHC and associated paternal peptides and prevent abortions.  相似文献   

12.
Recently, we demonstrated elevated numbers of CD4+ Foxp3+ regulatory T (Treg) cells in Plasmodium yoelii‐infected mice contributing to the regulation of anti‐malarial immune response. However, it remains unclear whether this increase in Treg cells is due to thymus‐derived Treg cell expansion or induction of Treg cells in the periphery. Here, we show that the frequency of Foxp3+ Treg cells expressing neuropilin‐1 (Nrp‐1) decreased at early time‐points during P. yoelii infection, whereas percentages of Helios+ Foxp3+ Treg cells remained unchanged. Both Foxp3+ Nrp‐1+ and Foxp3+ Nrp‐1? Treg cells from P. yoelii‐infected mice exhibited a similar T‐cell receptor Vβ chain usage and methylation pattern in the Treg‐specific demethylation region within the foxp3 locus. Strikingly, we did not observe induction of Foxp3 expression in Foxp3? T cells adoptively transferred to P. yoelii‐infected mice. Hence, our results suggest that P. yoelii infection triggered expansion of naturally occurring Treg cells rather than de novo induction of Foxp3+ Treg cells.  相似文献   

13.
Tolerogenic DC and suppressive Foxp3+ Treg play important roles in preventing autoimmunity and allograft rejection. We report that (adenovirus mediated) ectopic expression of Foxp3 in human DC (i.e. DC.Foxp3) yields an APC that severely limits T‐cell proliferation and type‐1 immune responses from the naïve, but not memory, pool of responder T cells in vitro. In marked contrast, the frequencies of type‐2 and Treg responses were dramatically increased after stimulation of naïve T cells with DC.Foxp3 versus control DC. DC.Foxp3‐induced CD4+CD25+ Treg cells potently suppressed the proliferation of, and IFN‐γ production from, CD4+ and CD8+ responder T cells. Notably, the immunosuppressive biology of DC.Foxp3 was effectively normalized by addition of 1‐methyl‐tryptophan or neutralizing anti‐TGF‐β1 Ab during the period of T‐cell priming. These data suggest the potential utility of regulatory DC.Foxp3 and/or DC.Foxp3‐induced CD4+CD25+ Treg as translational agents for the amelioration or prevention of pathology in the setting of allograft transplantation and/or autoimmunity.  相似文献   

14.
15.
Under physiological conditions, studies on the biology of naturally induced Foxp3+ Treg cells of intra‐ and extrathymic origin have been hampered by the lack of unambiguous markers to discriminate the mature progeny of such developmental Treg‐cell sublineages. Here, we report on experiments in double‐transgenic mice, in which red fluorescent protein (RFP) is expressed in all Foxp3+ Treg cells, whereas Foxp3‐dependent GFP expression is exclusively confined to intrathymically induced Foxp3+ Treg cells. This novel molecular genetic tool enabled us to faithfully track and characterize naturally induced Treg cells of intrathymic (RFP+GFP+) and extrathymic (RFP+GFP?) origin in otherwise unmanipulated mice. These experiments directly demonstrate that extrathymically induced Treg cells substantially contribute to the overall pool of mature Foxp3+ Treg cells residing in peripheral lymphoid tissues of steady‐state mice. Furthermore, we provide evidence that intra‐ and extrathymically induced Foxp3+ Treg cells represent distinct phenotypic and functional sublineages.  相似文献   

16.
CD4+ CD25+ regulatory T (Treg) cells expressing Foxp3+ play a critical role in maintaining immune homoeostasis and controlling excessive immune responses. However, controversy about the immunoregulatory role of Treg cells exists in malaria studies. Given the role of maintenance of Foxp3 expression in Treg cells’ activities, we investigated whether anti‐CD25 mAb (7D4 clone) treatment affects Foxp3 expression in CD4+ T cells in DBA/2 mice infected with Plasmodium chabaudi chabaudi AS (P. c. chabaudi AS). We found that DBA/2 mice succumbed to P. c. chabaudi AS infection, which was accompanied by increased expression of Foxp3 in CD4+ T cells at the peak parasitemia. In contrast, Foxp3 expression was impaired in CD25‐depleted mice with 7D4 mAb treatment, leading to delayed parasitemia and extended survival of infected mice. Production of IFN‐γ, TNF‐α and IL‐6, as well as NO was significantly enhanced in CD25‐depleted mice. The majority of CD4+ CTLA‐4+ cells expressed high levels of Foxp3 (Foxp3hi cells) in control mice with P. c. chabaudi AS infection. However, the number of CD4+ Foxp3hiCTLA‐4+ cells was reduced in CD25‐depleted mice. Together, these data suggest that CD4+ Foxp3hiCTLA‐4+ cells may be involved in regulating the intensity of pro‐inflammatory responses via CTLA‐4.  相似文献   

17.
Although CD8+ Treg‐mediated suppression has been described, CD8+ Treg remain poorly characterized. Here we identify a novel subset of CD8+ Treg that express latency‐associated peptide (LAP) on their cell surface (CD8+LAP+ cells) and exhibit regulatory activity in vitro and in vivo. Only a small fraction of CD8+LAP+ cells express Foxp3 or CD25, although the expression levels of Foxp3 for these cells are higher than their LAP? counterparts. In addition to TGF‐β, CD8+LAP+ cells produce IFN‐γ, and these cells suppress EAE that is dependent on both TGF‐β and IFN‐γ. In an adoptive co‐transfer model, CD8+LAP+ cells suppress myelin oligodendrocyte glycoprotein (MOG)‐specific immune responses by inducing or expanding Foxp3+ cells and by inhibiting proliferation and IFN‐γ production in vivo. Furthermore, in vivo neutralization of IFN‐γ and studies with IFN‐γ‐deficient mice demonstrate an important role for IFN‐γ production in the function of CD8+LAP+ cells. Our findings identify the underlying mechanisms that account for the immunoregulatory activity of CD8+ T cells and suggest that induction or amplification of CD8+LAP+ cells may be a therapeutic strategy to help control autoimmune processes.  相似文献   

18.
Pneumoconiosis is caused by the accumulation of airborne dust in the lung, which stimulates a progressive inflammatory response that ultimately results in lung fibrosis and respiratory failure. It is possible that regulatory cells in the immune system could function to suppress inflammation and possibly slow or reverse disease progression. However, results in this study suggest that in pneumoconiosis patients, the regulatory T cells (Tregs) and B cells are functionally impaired. First, we found that pneumoconiosis patients presented an upregulation of CD4+CD25+ T cells compared to controls, whereas the CD4+CD25+ and CD4+CD25hi T cells were enriched with Th1‐ and Th17‐like cells but not Foxp3‐expressing Treg cells and evidenced by significantly higher T‐bet, interferon (IFN)‐γ, and interleukin (IL)‐17 expression but lower Foxp3 and transforming growth factor (TGF)‐β expression. Regarding the CD4+CD25hi T‐cell subset, the frequency of this cell type in pneumoconiosis patients was significantly reduced compared to controls, together with a reduction in Foxp3 and TGF‐β and an enrichment in T‐bet, RORγt, IFN‐γ, and IL‐17. This skewing toward Th1 and Th17 types of inflammation could be driven by monocytes and B cells, since after depleting CD14+ monocytes and CD19+ B cells, the levels of IFN‐γ and IL‐17 were significantly decreased. Whole peripheral blood mononuclear cells and isolated monocytes and B cells in pneumoconiosis patients also presented reduced capacity of TGF‐β secretion. Furthermore, monocytes and B cells from pneumoconiosis patients presented reduced capacity in inducing Foxp3 upregulation, a function that could be rescued by exogenous TGF‐β. Together, these data indicated a potential pathway for the progression of pneumoconiosis through a loss of Foxp3+ Treg cells associated with impaired TGF‐β secretion.  相似文献   

19.
20.
Anergic T cells can survive for long time periods passively in a hyporesponsive state without obvious active functions. Thus, the immunological reason for their maintenance is unclear. Here, we induced peptide‐specific anergy in T cells from mice by coculturing these cells with immature murine dendritic cells (DCs). We found that these anergic, nonsuppressive IL‐10?Foxp3?CTLA‐4+CD25lowEgr2+ T cells could be converted into suppressive IL‐10+Foxp3?CTLA‐4+CD25highEgr2+ cells resembling type‐1 Treg cells (Tr1) when stimulated a second time by immature DCs in vitro. Addition of TGF‐β during anergy induction favored Foxp3+ Treg‐cell induction, while TGF‐β had little effect when added to the second stimulation. Expression of both CD28 and CTLA‐4 molecules on anergic T cells was required to allow their conversion into Tr1‐like cells. Suppressor activity was enabled via CD28‐mediated CD25 upregulation, acting as an IL‐2 sink, together with a CTLA‐4‐mediated inhibition of NFATc1/α activation to shut down IL‐2‐mediated proliferation. Together, these data provide evidence and mechanistical insights into how persistent anergic T cells may serve as a resting memory pool for Tr1‐like cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号