首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We analyzed 98 Mycobacterium tuberculosis complex isolates collected in 2 regions of Algeria in 2015–2018 from 93 cases of pulmonary tuberculosis. We identified 93/98 isolates as M. tuberculosis lineage 4 and 1 isolate as M. tuberculosis lineage 2 (Beijing). We confirmed 4 isolates as M. bovis by whole-genome sequencing.  相似文献   

2.
《Vaccine》2018,36(7):939-944
Development of a new vaccine against tuberculosis is urgently needed. Recent work has demonstrated that two related LC3-associated trafficking pathways, autophagy and LC3-associated phagocytosis (LAP), enhance antigen presentation and might play a role in vaccine efficacy. Mycobacterium tuberculosis inhibits both LC3-trafficking pathways. Moreover, the vaccine strain, BCG, induces even less LC3-trafficking than M. tuberculosis, which may help explain its limited efficacy. To determine whether enhanced LC3-trafficking can improve efficacy of a live, attenuated M. tuberculosis vaccine, we took advantage of our recent finding that the bacterial virulence factor CpsA inhibits LAP. When we deleted cpsA in the mc26206 vaccine strain, it dramatically increased LC3-trafficking. We compared the protective efficacy of the strain lacking cpsA to the parent strain and to BCG in mice challenged with M. tuberculosis. We found that the strain lacking cpsA generated modestly enhanced protection in the spleen, but overall did not outperform BCG.  相似文献   

3.
4.
We report a case of a 23-year-old HIV-negative man with multidrug-resistant Mycobacterium tuberculosis that became evident while he was being treated for M. tuberculosis that was sensitive to all first-line drugs. This case should alert clinicians to consider co-infection as a possible cause of recrudescent disease.  相似文献   

5.
Infection with Mycobacterium tuberculosis continues to be a leading cause of death in many regions of the world, and control of this disease is hampered by the lack of a safe and effective vaccine. Secreted proteins of M. tuberculosis are an important group of antigens for subunit vaccines which target this infection. We have tested three secreted members of the cutinase-like protein (CULP) family of M. tuberculosis for their potential as protein vaccine antigens. Culp6 elicited a strong T lymphocyte response in M. tuberculosis infected mice, and importantly, in tuberculosis (TB) patients tested. Culp1, Culp2 and Culp6 when delivered as protein vaccines to mice, induced potent IFN-γ responses which in turn translated into a significant level of protection against aerosol M. tuberculosis infection. A Culp1–6 fusion protein provided an increased level of protection against infection compared to Culp1 or Culp6 alone. The data presented here may indicate that the cell wall-associated, putatively essential protein Culp6, shown here for the first time to be recognised in TB patients, is an attractive candidate for inclusion in future subunit vaccines.  相似文献   

6.
Infections with >1 Mycobacterium tuberculosis strain(s) are underrecognized. We show, in vitro and in vivo, how first-line treatment conferred a competitive growth advantage to amplify a multidrug-resistant M. tuberculosis strain in a patient with mixed infection. Diagnostic techniques that identify mixed tubercle bacilli populations are needed to curb the spread of multidrug resistance.  相似文献   

7.
The development of effective anti-Tuberculosis (TB) vaccines is an important step towards improved control of TB in high burden countries. Subunit vaccines are advantageous in terms of safety, particularly in the context of high rates of HIV co-infection, but they must contain sufficient Mycobacterium tuberculosis antigens to stimulate immunity in genetically diverse human populations. We have used a novel approach to develop a synthetic scrambled antigen vaccine (TB-SAVINE), comprised of overlapping, recombined peptides from four M. tuberculosis proteins, Ag85B, ESAT-6, PstS3 and Mpt83, each of which is immunogenic and protective against experimental TB. This polyvalent TB-SAVINE construct stimulated CD4 and CD8T cell responses against the individual proteins and M. tuberculosis in C57BL/6 and Balb/c mice, when delivered as DNA, Fowl Pox Virus or Vaccinia Virus vaccines. In addition, the DNA-TBS vaccine induced protective immunity against pulmonary M. tuberculosis infection in C57BL/6 mice. Co-immunization of Balb/c mice with virally expressed TBS and HIV1-SAVINE vaccine stimulated strong T cell responses to both the M. tuberculosis and HIV proteins, indicating no effects of antigenic competition. Further development of this TB-SAVINE vaccine expressing components from multiple M. tuberculosis proteins may prove an effective vaccine candidate against TB, which could potentially form part of a safe, combined preventative strategy together with HIV immunisations.  相似文献   

8.
《Vaccine》2018,36(18):2462-2470
Tuberculosis (TB) infection affects a quarter of the global population resulting in a large burden of TB disease and mortality. The long-term control of TB requires vaccines with greater efficacy and durability than the current Mycobacterium bovis Bacille Calmette-Guérin (BCG). Pulmonary immunization may increase and prolong immunity at the site of Mycobacterium tuberculosis infection. We have investigated recombinant influenza A viruses (rIAVs) expressing the p25 CD4+ T cell epitope of M. tuberculosis Ag85B240–254 for single and sequential immunization against M. tuberculosis infection. Intranasal immunization with single dose of rIAV X31 (H3N2 strain) expressing the p25 epitope (X31-p25), induced p25-specific CD4+ T cells and conferred protection against aerosol delivery of M. tuberculosis infection in the lungs. To enhance this effect, prime-boost immunization with hetero-subtypic rIAVs was examined. Sequential immunization with X31-p25 and a second rIAV, PR8 (H1N1 strain) expressing the same epitope (PR8-p25), increased the frequency of p25-specific IFN-γ T cell responses and polyfunctional CD4+ T cells producing IFN-γ, IL-2, and TNF, compared to immunization with each rIAV alone. This combination resulted in protection against M. tuberculosis in both the lungs and spleen. Therefore, our study revealed that rIAV is not only an efficient vector to induce protective immunity in the lungs, but also has a potential use for sequential immunization with heterologous rIAV to boost the immunogenicity and improve the protection against M. tuberculosis.  相似文献   

9.
BackgroundGenetic tracking of Mycobacterium tuberculosis is a cornerstone of tuberculosis (TB) control programs. The RDRio M. tuberculosis sublineage was previously associated with TB in Brazil. We investigated 3847 M. tuberculosis isolates and registry data from New York City (NYC) (2001–2005) to: (1) affirm the position of RDRio strains within the M. tuberculosis phylogenetic structure, (2) determine its prevalence, and (3) define transmission, demographic, and clinical characteristics associated with RDRio TB.MethodsIsolates classified as RDRio or non-RDRio M. tuberculosis by multiplex PCR were further classified as clustered (?2 isolates) or unique based primarily upon IS6110-RFLP patterns and lineage-specific cluster proportions were calculated. The secondary case rate of RDRio was compared with other prevalent M. tuberculosis lineages. Genotype data were merged with the data from the NYC TB Registry to assess demographic and clinical characteristics.ResultsRDRio strains were found to: (1) be restricted to the Latin American–Mediterranean family, (2) cause approximately 8% of TB cases in NYC, and (3) be associated with heightened transmission as shown by: (i) a higher cluster proportion compared to other prevalent lineages, (ii) a higher secondary case rate, and (iii) cases in children. Furthermore, RDRio strains were significantly associated with US-born Black or Hispanic race, birth in Latin American and Caribbean countries, and isoniazid resistance.ConclusionsThe RDRio genotype is a single M. tuberculosis strain population that is emerging in NYC. The findings suggest that expanded RDRio case and exposure identification could be of benefit due to its association with heightened transmission.  相似文献   

10.
Drug-resistant Mycobacterium tuberculosis is challenging elimination of tuberculosis (TB). We evaluated risk factors for TB and levels of second-line drug resistance in M. tuberculosis in patients in Europe with multidrug-resistant (MDR) TB. A total of 380 patients with MDR TB and 376 patients with non–MDR TB were enrolled at 23 centers in 16 countries in Europe during 2010–2011. A total of 52.4% of MDR TB patients had never been treated for TB, which suggests primary transmission of MDR M. tuberculosis. At initiation of treatment for MDR TB, 59.7% of M. tuberculosis strains tested were resistant to pyrazinamide, 51.1% were resistant to ≥1 second-line drug, 26.6% were resistant to second-line injectable drugs, 17.6% were resistant to fluoroquinolones, and 6.8% were extensively drug resistant. Previous treatment for TB was the strongest risk factor for MDR TB. High levels of primary transmission and advanced resistance to second-line drugs characterize MDR TB cases in Europe.  相似文献   

11.
Mycobacterium tuberculosis, the causative agent of tuberculosis, is the leading infectious disease agent, causing millions of deaths annually. The incidence of disease is increasing with the AIDS pandemic, and current vaccines and therapies are not 100% efficient, resulting in the emergence of drug resistance. The ability of the organism to evolve with enhanced pathogenicity appears, at least in part, to be provided by the mechanism of gene duplication. This evolutionary mechanism results in expansion of gene families, thereby providing the organism with extra copies of the gene and thus the opportunity to evolve new functions. This project aims to identify the expanded gene families in M. tuberculosis and investigate the potential contribution of gene duplication events to pathogenicity. Comparative genomics tools were used to compare the proteomes of over 80 pathogenic and non-pathogenic microorganisms, including several mycobacteria, to identify unique proteins and determine the extent of family expansion in M. tuberculosis. We selected proteins from this organism that were either unique to M. tuberculosis and other pathogens or restricted to pathogenic mycobacteria, as well as expanded families in the mycobacteria, for further analysis. Up to half of all M. tuberculosis proteins belong to expanded families, some of which are unique to this organism or the mycobacteria, suggesting that they have a role to play in evolution of these genomes. Although the evolution of M. tuberculosis is thought to be relatively recent, the maintenance of these duplicated families in the genome suggests they have a role to play in the pathogenic lifestyle of the organism.  相似文献   

12.
Mycobacterium tuberculosis Beijing family includes a variety of sublineages. Knowledge of the distribution of a certain sublineage of the Beijing family may help to understand the mechanisms of its rapid spread and to establish an association between a certain genotype and the disease outcome. We have previously found that M. tuberculosis Beijing family clinical isolates represent approximately 90% of the clinical isolates from Heilongjiang Province, China. To clarify the distribution of M. tuberculosis Beijing family sublineages in Heilongjiang Province, China and to investigate the regularity rule for their evolution, we examined single nucleotide polymorphisms (SNPs) of 250 M. tuberculosis Beijing family clinical isolates using 10 SNP loci that have been identified as appropriate for defining Beijing sublineages. After determining the sequence type (ST) of each isolate, the sublineages of all M. tuberculosis Beijing family isolates were determined, and phylogenetic analysis was performed. We found that 9 out of the 10 SNP loci displayed polymorphisms, but locus 1548149 did not. In total, 92.8% of the isolates in Heilongjiang Province are modern sublineages. ST10 is the most prevalent sublineage (ST10 and ST22 accounted for 63.2% and 23.6% of all the Beijing family isolates, respectively). A new ST, accounting for 4% of the Beijing family isolates in this area, was found for the first time. Each new ST isolate showed a unique VNTR pattern, and none were clustered. The present findings suggest that controlling the spread of these modern sublineages is important in Heilongjiang Province and in China.  相似文献   

13.
Mycobacterium tuberculosis genotype distribution is different between West and Central Indonesia, but there are no data on the most Eastern part, Papua. We aimed to identify the predominant genotypes of M. tuberculosis responsible for tuberculosis in coastal Papua, their transmission, and the association with patient characteristics. A total of 199 M. tuberculosis isolates were collected. Spoligotyping was applied to describe the population structure of M. tuberculosis, lineage identification was performed using a combination of lineage-specific markers, and genotypic clusters were identified using a combination of 24-locus-MIRU-VNTR and spoligotyping. A high degree of genetic diversity was observed among isolates based on their spoligopatterns. Strains from modern lineage 4 made up almost half of strains (46.9%), being more abundant than the ancient lineage 1 (33.7%), and modern lineage 2 (19.4%). Thirty-five percent of strains belonged to genotypic clusters, especially strains in the Beijing genotype. Previous TB treatment and mutations associated with drug resistance were more common in patients infected with strains of the Beijing genotype. Papua shows a different distribution of M. tuberculosis genotypes compared to other parts of Indonesia. Clustering and drug resistance of modern strains recently introduced to Papua may contribute to the high tuberculosis burden in this region.  相似文献   

14.
Intra-species phylogeny of Mycobacterium tuberculosis has been regarded as a clue to estimate its potential risk to develop drug-resistance and various epidemiological tendencies. Genotypic characterization of variable number of tandem repeats (VNTR), a standard tool to ascertain transmission routes, has been improving as a public health effort, but determining phylogenetic information from those efforts alone is difficult. We present a platform based on maximum a posteriori (MAP) estimation to estimate phylogenetic information for M. tuberculosis clinical isolates from individual profiles of VNTR types. This study used 1245 M. tuberculosis clinical isolates obtained throughout Japan for construction of an MAP estimation formula. Two MAP estimation formulae, classification of Beijing family and other lineages, and classification of five Beijing sublineages (ST11/26, STK, ST3, and ST25/19 belonging to the ancient Beijing subfamily and modern Beijing subfamily), were created based on 24 loci VNTR (24Beijing-VNTR) profiles and phylogenetic information of the isolates. Recursive estimation based on the formulae showed high concordance with their authentic phylogeny by multi-locus sequence typing (MLST) of the isolates. The formulae might further support phylogenetic estimation of the Beijing lineage M. tuberculosis from the VNTR genotype with various geographic backgrounds. These results suggest that MAP estimation can function as a reliable probabilistic process to append phylogenetic information to VNTR genotypes of M. tuberculosis independently, which might improve the usage of genotyping data for control, understanding, prevention, and treatment of TB.  相似文献   

15.
Tuberculosis caused by Mycobacterium tuberculosis is responsible for nearly two million deaths every year globally. A single licensed vaccine derived from Mycobacterium bovis, bacille Calmette-Guerin (BCG) administered perinatally as a prophylactic vaccine has been in use for over 80 years and confers substantial protection against childhood tuberculous meningitis and miliary tuberculosis. However, the BCG vaccine is virtually ineffective against the adult pulmonary form of tuberculosis that is pivotal in the transmission of tuberculosis that has infected almost 33% of the global population. Thus, an effective vaccine to both prevent tuberculosis and reduce its transmission is urgently needed. We have generated a multi-valent, vectored vaccine candidate utilizing the modified virus Ankara (MVA) strain of vaccinia virus to tandemly express five antigens, ESAT6, Ag85A, Ag85B, HSP65 and Mtb39A of M. tuberculosis that have been reported to be protective individually in certain animal models together with an immunostimulatory cytokine interleukin-15 (MVA/IL-15/5Mtb). Although, immunological correlates of protection against tuberculosis in humans remain to be established, we demonstrate that our vaccine induced comparable CD4+ T cell and greater CD8+ T cell and antibody responses against M. tuberculosis in vaccinated mice in a direct comparison with the BCG vaccine and conferred protection against an aerogenic challenge of M. tuberculosis, thus warranting its further preclinical development.  相似文献   

16.
Mycobacterium tuberculosis has a considerable degree of genetic variability resulting in different epidemiology and disease outcomes. We evaluated the pathogen-host cell interaction of two genetically closely-related multidrug-resistant M. tuberculosis strains of the Haarlem family, namely the strain M, responsible for an extensive multidrug-resistant tuberculosis outbreak, and its kin strain 410 which caused a single case in two decades. Intracellular growth and cytokine responses were evaluated in human monocyte-derived macrophages and dU937 macrophage-like cells. In monocyte-derived macrophages, strain M grew more slowly and induced lower levels of TNF-α and IL-10 than 410, contrasting with previous studies with other strains, where a direct correlation was observed between increased intracellular growth and epidemiological success. On the other hand, in dU937 cells, no difference in growth was observed between both strains, and strain M induced significantly higher TNF-α levels than strain 410. We found that both cell models differed critically in the expression of receptors for M. tuberculosis entry, which might explain the different infection outcomes. Our results in monocyte-derived macrophages suggest that strain M relies on a modest replication rate and cytokine induction, keeping a state of quiescence and remaining rather unnoticed by the host. Collectively, our results underscore the impact of M. tuberculosis intra-species variations on the outcome of host cell infection and show that results can differ depending on the in vitro infection model.  相似文献   

17.
Resistance to pyrazinamide in Mycobacterium tuberculosis is usually associated with a reduction of pyrazinamidase activity caused by mutations in pncA, the pyrazinamidase coding gene. Pyrazinamidase is a hydrolase that converts pyrazinamide, the antituberculous drug against the latent stage, to the active compound, pyrazinoic acid. To better understand the relationship between pncA mutations and pyrazinamide resistance, it is necessary to analyze the distribution of pncA mutations from pyrazinamide resistant strains.We determined the distribution of Peruvian and globally reported pncA missense mutations from M. tuberculosis clinical isolates resistant to pyrazinamide. The distributions of the single amino acid substitutions were compared at the secondary structure domains level. The distribution of the Peruvian mutations followed a similar pattern as the mutations reported globally. A consensus clustering of mutations was observed in hot-spot regions located in the metal coordination site and to a lesser extent in the active site of the enzyme.The data was not able to reject the null hypothesis that both distributions are similar, suggesting that pncA mutations associated to pyrazinamide resistance in M. tuberculosis, follow a conserved pattern responsible to impair the pyrazinamidase activity.  相似文献   

18.
Human tuberculosis (TB) is caused by members of the Mycobacterium tuberculosis complex (MTBC), including Mycobacterium tuberculosis var. tuberculosis (MTB) and Mycobacterium tuberculosis var. africanum (MAF). While MTB is isolated worldwide, MAF is almost completely restricted to the African continent, and despite the historical proximity between Brazil and Africa during the slave trade, no case of TB being caused by MAF has been reported in Brazil to date. We hereby describe the first case of TB caused by MAF in Brazil comparing its genome against the published ones. A female patient who had never visited Africa presented with clinical symptoms typical of pulmonary TB. Based on 16S rRNA gene sequencing, the cultured isolate was identified as belonging to MTBC and partial sequence of the hsp65 gene was identical to that of MAF. This was confirmed by genotyping based on detection of Single Nucleotide Polymorphism (SNP), Region of Difference (RD) and spoligotyping. The isolate presented the Shared International Typing (SIT) 181. In the whole-genome comparison against MAF genomes available on published EMBL-EBI European Nucleotide Archive (ENA), the Brazilian genome (MAFBRA00707) was identified as belonging to Lineage 6 and clustered with isolates from The Gambia. This is the first report of the isolation of MAF from a patient from Brazil, without evidence of having any contact with an African index case.  相似文献   

19.
Preventing latently infected or inadequately treated individuals from progressing to active disease could make a major impact on tuberculosis (TB) control worldwide. The purpose of this study was to evaluate a new approach to prevent reactivation and TB relapse that combines drug treatment and vaccination. Mycobacterium tuberculosis harbors a gene called mce1R that, in vivo, negatively regulates a 13-gene cluster called the mce1 operon. In a Cornell mouse model, BALB/c mice infected with M. tuberculosis H37Rv disrupted in mce1R consistently develop latent infection and reactivation disease. We used this new mouse model to test a recombinant M. tuberculosis cell wall protein (Mce1A), encoded by a gene in the mce1 operon, for its ability to prevent post-treatment TB. At 32 weeks of follow-up, a complete sterilizing protection was observed in lungs of the vaccinated mice. Mce1A but not phosphate-buffered saline administered intraperitoneally during the period of latent infection prevented disease progression and proliferation of M. tuberculosis mce1R mutant. The only visible lung lesions in vaccinated mice included small clusters of lymphocytes, while the unvaccinated mice showed progressively enlarging granulomas comprised of foamy macrophages surrounded by lymphocytes. The combination of anti-TB drugs and a vaccine may serve as a powerful treatment modality against TB reactivation and relapse.  相似文献   

20.
《Vaccine》2015,33(42):5633-5639
Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), infects over two billion people, claiming around 1.5 million lives annually. The only vaccine approved for clinical use against this disease is the Bacillus Calmette–Guérin (BCG) vaccine. Unfortunately, BCG has limited efficacy against the adult, pulmonary form of tuberculosis. This vaccine was developed from M. bovis with antigen expression and host specificity that differ from M. tuberculosis. To address these problems, we have designed two novel, live attenuated vaccine (LAV) candidates on an M. tuberculosis background: ΔmosR and ΔechA7. These targeted genes are important to M. tuberculosis pathogenicity during infection. To examine the efficacy of these strains, C57BL/6 mice were vaccinated subcutaneously with either LAV, BCG, or PBS. Both LAV strains persisted up to 16 weeks in the spleens or lungs of vaccinated mice, while eliciting minimal pathology prior to challenge. Following challenge with a selected, high virulence M. tuberculosis Beijing strain, protection was notably greater for both groups of LAV vaccinated animals as compared to BCG at both 30 and 60 days post-challenge. Additionally, vaccination with either ΔmosR or ΔechA7 elicited an immune response similar to BCG. Although these strains require further development to meet safety standards, this first evidence of protection by these two new, live attenuated vaccine candidates shows promise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号