首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The blink reflex cannot normally be elicited during surgical anesthesia using inhalation anesthetics. However, in patients with hemifacial spasm (HFS) the early component of the reflex response (R1) can be elicited on the affected side but not on the unaffected side during such anesthesia. The electromyographic (EMG) response from the mentalis muscle to stimulation of the supraorbital nerve was recorded during microvascular decompression (MVD) of the facial nerve to relieve HFS and compared to the response from the same muscle to stimulation of the zygomatic branch of the facial nerve in four patients. During the operation before the facial nerve was decompressed, contractions in both the orbicularis oculi and the mentalis muscles could be elicited by stimulation of the supraorbital nerve (mean latencies 12.2 +/- 1.9 and 12.9 +/- 2.0 ms, respectively). When the facial nerve had been decompressed the blink reflex could no longer be elicited, and there was no response from the mentalis muscle to stimulation of the zygomatic branch of the facial nerve. Compound action potentials (CAP) recorded from the 7th cranial nerve in response to stimulation of the supraorbital nerve had latencies of 7.5 ms +/- 1.4 ms to the negative peak.  相似文献   

2.
Patients with hemifacial spasm (HFS) have an abnormal muscle response (AMR) that can be elicited by stimulating one branch of the facial nerve and recording electromyographically from muscles innervated by other branches of the facial nerve. In addition, the R1 component of the blink reflex can be elicited from the affected side in patients with HFS who are undergoing microvascular decompression (MVD) operations under inhalation anesthesia. A synkinetic component of the blink reflex response that corresponds to the R1 component can be recorded from the mentalis muscle. In the present study we show that the blink reflex elicited by electrical stimulation of the supraorbital nerve can suppress the AMR elicited by electrical stimulation of the temporal branch of the facial nerve in patients with HFS when the interval between stimulation of the supraorbital nerve and stimulation of the temporal branch of the facial nerve (interstimulus interval, ISI) is such that the blink reflex response would appear later than the AMR if they had been elicited independently. Within a short range of ISIs the two responses suppress each other partially or totally. We find evidence that the suppression of the AMR is the result of an interaction in the facial motonucleus. We believe that the results of the present study support the hypothesis that the facial motonucleus is hyperactive in patients with HFS, and we suggest that the AMR is a result of backfiring from the facial motonucleus and that it may thus be an exaggerated F-response.  相似文献   

3.
It has been shown that in patients in whom the central stump of the hypoglossal nerve has been anastomosed to the peripheral stump of a lesioned facial nerve, supraorbital nerve stimulation can elicit a short-latency reflex (12.5±0.6 ms; mean±S.D.) in facial muscles similar to the R1 disynaptic blink reflex response, but not followed by an R2 blink reflex component46. Thus in addition to replacing the facial neurons at peripheral synapses, these hypoglossal nerves contribute to a trigemino-hypoglossal reflex. The aim of this work was to study the type of reflex activities which can be elicited in both facial and tongue muscles by electrical stimulation of cutaneous (supraorbital nerve) or mucosal (lingual nerve) trigeminal (V) afferents in normal subjects. The results show that although stimulation of cutaneous V1 afferents elicits the well-known double component (R1–R2) blink reflex response in the orbicularis oculi muscles, it does not produce any detectable reflex response in the genioglossus muscle, even during experimental paradigms designed to facilitate the reflex activity. Conversely, stimulation of mucosal V3 afferents can elicit a single reflex response of the R1 type in the genioglossus muscle but not in the orbicularis oculi muscles, even during experimental paradigms designed to facilitate the reflex activity. These data are discussed in terms of two similar but separate circuits for the R1 responses of cutaneous (blink reflex) and mucosal (tongue reflex) origins. They suggest that in patients with hypoglossal-facial (XII–VII) nerve anastomosis, the short-latency trigemino-‘hypoglossal-facial' reflex of the R1 blink reflex type observed in facial muscles following supraorbital nerve stimulation could be due to changes in synaptic effectiveness of the central connectivity within the principal trigeminal nucleus where both cutaneous and mucosal trigeminal afferents project.  相似文献   

4.
OBJECTIVE: To evaluate the possible blink reflex responses in facial muscles reinnervated by the accessory nerve. METHOD: Eleven patients with a complete facial palsy were submitted to a surgical repair by an accessory facial nerve anastomosis (AFA). In this pathological group, blink reflex was studied by means of percutaneous electrical stimulation of the supraorbital nerve and recording from the orbicularis oculi muscle. A control group comprised seven normal people and seven patients with a complete Bell's facial palsy; in this group, responses on the sternocleidomastoideus (SCM) muscles were studied after supraorbital nerve stimulation. RESULTS: All the patients with AFA showed a consistent degree of facial reinnervation. Ten out of the 11 patients with AFA showed reflex responses; in six, responses were configured by a double component pattern, resembling the R1 and R2 components of the blink reflex; three patients had an R1-like response and one patient showed a unique R2 component. Mean values of latencies were 15.2 (SD 4.6) ms for the R1 and 85.3 (SD 9.6) ms for the R2. In the control group, eight out of 14 people had evidence of reflex responses in the SCM muscles; these were almost exclusively configured by a bilateral late component (mean latency 63.5 (SD15.9) ms) and only one of the subjects showed an early response at 11 ms. CONCLUSION: The trigemino-accessory reflex response in the pathological group was more complex and of a significantly higher incidence than in the control group. These differences could be tentatively explained by a mechanism of synaptic plasticity induced by the impairment of the efferent portion of the reflex. This could unmask the central linking between the trigeminal and the accessory limbs of the reflex. The findings described could be a demonstration of neurobionomic function in the repairing process of the nervous system.  相似文献   

5.
OBJECTIVE: To investigate cortical regions related to voluntary blinking. METHODS: Transcranial magnetic stimulation (TMS) was applied to the facial motor cortex (M1) and the midline frontal region (Fz) in 10 healthy subjects with eyes opened and closed. Motor-evoked potentials were recorded from the orbicularis oculi (OOC), orbicularis oris (OOR), abductor digiti minimi and tibialis anterior using surface and needle electromyography electrodes. Facial M waves and blink reflex were measured using supramaximal electrical stimulation of the facial and supraorbital nerves. RESULTS: TMS at Fz elicited 3 waves in OOC with no response in other tested muscles except for the early wave in OOR. Facial M1 stimulation produced only early and late waves. Because of their latencies, shapes, and relationship to coil position and stimulation intensity, early and late waves appeared to be analogous to the facial M wave and R1 component of the blink reflex. The intermediate wave at 6-8 ms latency was elicited in OOC by Fz stimulation with eyes closed. CONCLUSIONS: Since its latency matches the central conduction time of other cranial muscles and it has characteristic of muscle activation-related facilitation, the intermediate wave is presumably related to cortical stimulation. This result provides evidence that the cortical center for the upper facial movements, including blinking, is not principally located in the facial M1, but rather in the mesial frontal region.  相似文献   

6.
We compared various electrodiagnostical tests in patients with hemifacial spasm and in patients who developed synkinesia after Bell's palsy. We examined the evoked blink reflexes in the orbicularis oculi (o. oculi) and orbicularis oris (o. oris) muscles in 23 patients with hemifacial spasm (HFS), in 10 patients with synkinesia after Bell's palsy (BPS) and in 22 control subjects. In the patient groups, we recorded synkinesia, latency and amplitude of compound muscle action potential (CMAP) in the mental muscle after stimulation of the facial nerve and we examined electromyographic activity of the o. oculi and mental muscles synchronously. Furthermore, we studied the phenomenon of lateral spreading, also known as ephaptic transmission, between the different facial nerve branches. Patients with BPS had a prolonged R1 latency on the affected side in o. oculi and smaller mental CMAP amplitude as an indication of facial nerve damage and nerve fiber loss. This was not found in patients with HFS, who showed an increased amplitude of the R1 and R2 responses in o. oris. Patients with BPS showed only an increased R1 amplitude in o. oris. All patients had signs of synkinesia. Lateral spreading with different patterns was present in all patients with HFS and in half of the patients with BPS. Latencies of early and late responses showed no differences between HFS and BPS. In addition to alterations in facial nucleus excitability in both conditions, ectopic re-excitation of facial nerve axons in HFS may explain the differences in neurophysiological findings between HFS and BPS patients. A loss of control following synaptic stripping may also be a contributing factor.  相似文献   

7.
OBJECTIVE: In patients with hemifacial spasm (HFS), abnormal muscle responses (AMR) are frequently present. The objective of this study was to investigate whether the afferent input of AMR is mediated by antidromic facial nerve stimulation or orthodromic trigeminal nerve stimulation. METHODS: AMR in the orbicularis oris muscle were recorded in 28 patients with HFS. When AMR were present, they were recorded after subthreshold stimulation of the facial nerve and weak stimulation delivered to the skin. RESULTS: AMR were recordable in 24 (86%) of the patients, and usually consisted of the early constant component (mean onset latency, 10.0 ms) and late variable component (35.3 ms), similar to R1 and R2 of the blink reflex. The early or late components of AMR, or both, were frequently elicited after subthreshold stimulation of the facial nerve (43%) and skin stimulation (88%). CONCLUSIONS: AMR are likely to be mediated by trigeminal afferent inputs, rather than antidromic activation of the facial nerve, and are a type of trigeminal reflex.  相似文献   

8.
It has been claimed that functional recovery of the blink reflex occurs after hypoglossal-facial nerve anastomosis. This has been explained through central nervous system plasticity and reorganization of neuronal connections. In 5 patients with reinnervated facial muscles after hypoglossal-facial nerve anastomosis, we observed “R1-like” responses that fulfilled criteria for facial nerve axon reflexes or ephapses. First, displacement of the stimulating electrode from the supraorbital to the zygomatic area shortened the latency of the evoked response. Second, these responses were stable (jitter mean consecutive difference < 25 μs) and they had complex potential shapes unmodified by high-frequency stimulation. Finally, collision techniques demonstrated antidromic conduction of impulses in the facial nerve from supraorbital to zygomatic points. Therefore, these “R1-like” responses are not the early component of a functionally recovered blink reflex but motor axon reflexes or ephaptic responses similar to the short latency responses observed following facial nerve regeneration or from sutured nerves in human forearms. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
In patients with hemifacial spasm (HFS), a lateral spread response (or abnormal muscle response) is recorded from facial muscles after facial nerve stimulation. The origin of this response is not completely understood. We studied the lateral spread responses elicited by double stimulation in 12 patients with HFS during microvascular decompression. The response was recorded from the mentalis muscle by electrical stimulation of the temporal branch of the facial nerve or from the orbicularis oculi muscles by stimulation of the marginal mandibular branch. The interstimulus intervals (ISIs) of double stimulation ranged from 0.5 to 7.0 ms. R1 was defined as the response elicited by the first stimulus, and R2 as the response elicited by the second stimulus. R1 had a constant latency and amplitude regardless of the ISI, whereas R2 appeared after a fixed refractory period without facilitation or depression in a recovery curve of latency and amplitude. From these findings, we consider that the lateral spread response is due to cross-transmission of facial nerve fibers at the site of vascular compression rather than arising from facial nerve motor neurons.  相似文献   

10.
We studied 18 patients with complete unilateral denervation of the facial muscles after idiopathic facial nerve palsy to determine whether motoneuronal excitability is enhanced in the few motor units that are active at onset of muscle reinnervation. The study was carried out between 75 and 90 days after the facial nerve lesion. We used two needle electrodes to record simultaneously the spontaneous and voluntary activity of the orbicularis oris (OOris) and orbicularis oculi (OOculi) muscles, as well as the responses to ipsilateral and contralateral facial and supraorbital nerve stimuli. All patients showed involuntary firing of motor unit action potentials (MUAPs) in at least one of the muscles. Synkinetic activation of motor units in the OOris was induced by spontaneous blinking in all patients, and by inhalation and swallowing in some. Electrical stimulation of the ipsilateral facial nerve induced a direct M response in only 4 patients. In contrast, long-latency reflex responses were induced in both muscles by electrical stimulation of ipsilateral and contralateral facial and supraorbital nerves in all patients, at latencies ranging between 44 and 132 ms. The shape of such MUAP reflex responses was the same as that of the MUAPs seen to fire at rest. These findings provide evidence of enhanced excitability of facial motoneurons in our patients. Such hyperexcitability may be partly responsible for the postparalytic motor dysfunction syndrome that occurs after facial palsy with severe axonal damage.  相似文献   

11.
To investigate possible abnormalities of the blink reflex pathways, we analyzed the latencies and amplitudes of the blink reflex responses in the orbicularis oculi (Ooculi) muscle, following supraorbital nerve stimulation, in 19 patients with blepharospasm, 16 patients with torticollis spasmodica and 22 control subjects. Furthermore, in order to examine the suprasegmental control of the responses, the reflex responses were also evoked in the orbicularis oris (Ooris) muscle after stimulation of the ipsilateral supraorbital nerve. The responses were recorded only when subjects had no contractions of the eyelid muscles, either involuntarily, voluntarily or spontaneously; this could be controlled by a sound signal. The metrics of the reflex responses in the Ooculi and Ooris muscles in patient groups were comparable to those in controls. Our data indicate that the afferent and efferent pathways of the reflex arc and the suprasegmental control of the reflex are intact in patients with blepharospasm and torticollis spasmodica, at least during spasm-free intervals. Alterations of responses may occur during spasms due to either segmental or suprasegmental changes.  相似文献   

12.
The corneal reflex and the R2 component of the blink reflex   总被引:2,自引:0,他引:2  
A reflex contraction of the human orbicularis oculi muscles can be evoked by stimulation of either the supraorbital region ("blink reflex") or the cornea ("corneal reflex"). We found that the latency of the corneal reflex was longer, and the duration was longer than the R2 component of the blink reflex. The absolute refractory period of the R2 component of the blink reflex was longer after supraorbital than after corneal conditioning stimulation. When the R2 component of the blink reflex was habituated by repetitive stimuli, stimulation of the cornea still evoked a reflex, but supraorbital stimulation produced only a depressed R2 response. These findings suggest that the two reflexes do not have identical neural connections.  相似文献   

13.
Short latency response (SLR), middle latency response and long latency response (LLR) are elicited in facial muscles by transcranial magnetic stimulation. Although it has been said that the LLRs are elicited by the trigeminal nerve stimulation, a trigeminofacial reflex is recorded easily in normal subjects by the electrical stimulation in orbicularis oculi muscles as a blind reflex, but a trigeminal-facial reflex recorded in orbicularis oris, namely a snout reflex, is more difficult to record in normal subjects. The aim of this study is to demonstrate the LLR of lower facial muscles (mentalis muscle) by the transcranial magnetic stimulation, using a circular coil. The transcranial magnetic stimulations were performed over parieto-occipital scalp with frequencies of random and 0.3 Hz in 11 normal subjects and the responses in the mentalis muscle were recorded. The LLR of the mentalis muscle was recorded in all 11 subjects following SLRs. The latency, duration and LLR/SLR ratio were 37.4 msec, 20.3 msec and 9.1%, respectively. The waveform of the LLR varied trial to trial showing habituation with a stimulation of 0.3 Hz. At this time the LLR of the masseter muscle was not recorded following this transmagnetic stimulation. It was suggested that the LLR of the mentalis muscle is recorded by the transcranial magnetic stimulation of the trigeminal nerve with a circular coil. The ease and reliability of their recording make it possible to apply this LLR clinically as well as a blink reflex.  相似文献   

14.
The orbicularis oculi response can be evoked both by mechanical stimulation of the cornea (corneal reflex) and by electrical stimulation of the skin overlying the supraorbital nerve (blink reflex). Mechanical stimuli to the cornea activate A delta and C free nerve endings of the corneal mucosa. Electrical stimuli to the supraorbital nerve activate A beta, A delta and C fibers of the nerve trunk. Both reflexes present a bilateral late response, but the blink reflex shows in addition an early ipsilateral component (R1), which has never been observed with the corneal stimulation in man. We have developed a simple technique of electrical stimulation of the cornea which provides stable responses and allows precise measurements of threshold and latency of the reflex. In normal subjects, the threshold ranged from 50 to 350 microA, and the maximal stimulus that the subject could bear (tolerance level) ranged from 1000 to 2500 microA. The minimal latency to tolerance level stimuli was 39 +/- 3 msec. The latency difference between the direct responses evoked from the two opposite corneas never exceeded 8 msec and the difference between the direct and consensual responses elicited from the same cornea never exceeded 5 msec. An early ipsilateral component similar to the R1 response of the blink reflex was not observed, even with supramaximal stimulation. The electrically evoked corneal reflex was normal in 10 cases of essential trigeminal neuralgia, while the responses showed significant abnormalities in 18 subjects submitted to thermocoagulation of the Gasserian ganglion as a treatment of neuralgic pain, as well as in 2 cases of symptomatic neuralgia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Although the blink reflex is a standard neurophysiological investigation its relationship with eyelid movement has not been clearly established. We studied normal subjects and patients with unilateral facial paralysis to define the pattern of eyelid movement following glabellar tap, supraorbital nerve stimulation, facial nerve stimulation and direct corneal stimulation. We found that eyelid closure did not necessarily occur in a single movement. Following glabellar tap the first component of a two-stage movement was initiated by levator palpebrae relaxation while with supraorbital nerve stimulation orbicularis oculi contraction produced the first movement. The compound muscle action potential following direct facial nerve stimulation produced only minimal eyelid movement, the major closure being associated with a longer latency orbicularis oculi reflex. Corneal stimulation elicited a single component eyelid movement. Thus, the pattern of eyelid movement differed for each stimulus reflecting variations in orbicularis oculi contraction and levator palpebrae inhibition.  相似文献   

16.
We investigated trigemino-facial excitatory and inhibitory responses in perioral muscles in hemifacial spasm (HFS). We examined 15 patients affected with idiopathic HFS and 8 healthy controls. Five patients had spasms mostly limited to the periocular region and 10 had spasms also involving the perioral muscles. Responses were recorded from the resting orbicularis oculi (OOc), levator labii superioris (LLS) and orbicularis oris (OOr) muscles, after supraorbital (SO) nerve stimulation and during isolated voluntary contraction of LLS muscle. Eight patients showed complete or partial preservation of the late silent period (SP2) in activated LLS muscle. The remaining 7 patients showed absence of SP2. Early and late excitatory responses were variably present in LLS muscle at rest. Patients with HFS clinically restricted to periocular muscles had at least partial preservation of the SP2. In conclusion, in HFS patients inhibitory trigemino-facial reflexes are impaired and excitatory trigemino-facial responses are elicited in perioral muscles. These two phenomena seem to develop independently; the degree of trigemino-facial reflex impairment parallels the extension of involuntary movements to the lower facial muscles.  相似文献   

17.
Kokubun N  Hirata K 《Muscle & nerve》2007,35(2):203-207
Cranial neuropathy is clinically uncommon in patients with chronic inflammatory demyelinating polyneuropathy (CIDP), but there is little information on the neurophysiological examination of cranial nerve involvement. To determine the incidence of trigeminal and facial nerve involvement in patients with CIDP, the direct response of the orbicularis oculi muscle to percutaneous electric stimulation of the facial nerve and the blink reflex (induced by stimulation of the supraorbital nerve) were examined in 20 CIDP patients. The latency of the direct response was increased in 12 patients (60%) and an abnormal blink reflex was observed in 17 patients (85%). There was no correlation between electrophysiological findings and the latencies of the direct and R1 responses and disease duration or clinical grade in CIDP patients. Nevertheless, the prevalence of subclinical trigeminal and facial neuropathy is extremely high in patients with CIDP when examined by neurophysiological tests.  相似文献   

18.
Contralateral reinnervation of midline muscles in facial paralysis.   总被引:1,自引:0,他引:1  
We report on a patient with recovery of activity of the left orbicularis oris and nasalis muscles 3 months after a complete left facial palsy. Stimulation of the affected facial nerve evoked no responses, whereas contralateral facial nerve stimulation showed polyphasic responses with very long latencies in the nasalis and orbicularis oris muscles. Needle electromyography (EMG) revealed abnormal spontaneous activity in the left orbicularis oris muscle. The motor unit action potentials on the left side of the face could be recruited only during marked contraction of the corresponding muscles on the right and were of low voltage and polyphasic ("nascent potentials"). Contralateral reinnervation is probably due to sprouting of terminal branches crossing the midline of the face and innervating bundles of muscle fibers on the affected side. This phenomenon seems unfamiliar to most clinicians. Whether the activity is due to conduction along nerve fibers or muscle fibers crossing the midline is discussed.  相似文献   

19.
A crossed short latency component (R1) of the human blink reflex could be elicited in orbicularis oculi muscles to stimulation of the contralateral supraorbital nerve, when infraliminal conditioning stimuli were applied to various cutaneous afferents of the body (facial, upper and lower limbs). The crossed R1 responses appeared when the time interval between the conditioning and the test stimuli was of 30 to 40 ms, 50 to 65 ms and 95 to 110 ms for facial, upper and lower limbs afferents respectively. For the same time intervals, these conditioning volleys also exerted a facilitatory effect on the ipsilateral R1 responses. Furthermore, crossed R1 responses were also obtained during supraspinal facilitation induced by a voluntary contraction of the eyelids. These data show that crossed oligosynaptic trigemino-facial reflex connections exist in normal subjects, which become functional when adequate conditioning stimuli are available.  相似文献   

20.
In normal subjects, electrical stimulation of trigeminal mucosal afferents (lingual nerve - V3) can elicit a short latency (12.5+/-0. 3 ms; mean+/-S.D.) reflex response in the ipsilateral genioglossus muscle (Maisonobe et al., Reflexes elicited from cutaneous and mucosal trigeminal afferents in normal human subjects. Brain Res. 1998;810:220-228). In the present study on patients with hypoglossal-facial (XII-VII) nerve anastomoses, we were able to record similar R1-type blink reflex responses in the orbicularis oculi muscles, following stimulation of either supraorbital nerve (V1) or lingual nerve (V3) afferents. However, these responses were not present in normal control subjects. Voluntary swallowing movements produced clear-cut facilitations of the R1 blink reflex response elicited by stimulation of V1 afferents. In a conditioning-test procedure with a variable inter-stimulus interval, the R1 blink reflex response elicited by supraorbital nerve stimulation was facilitated by an ipsilateral mucosal conditioning stimulus in the V3 region. This facilitatory effect was maximal when the two stimuli (conditioning and test) were applied simultaneously. This effect was not observed on the R1 component of the blink reflex in the normal control subjects. These data strongly suggest that in patients with XII-VII anastomoses, but not in normal subjects, both cutaneous (V1) and mucosal (V3) trigeminal afferents project onto the same interneurones in the trigeminal principal sensory nucleus. This clearly supports the idea that peripheral manipulation of the VIIth and the XIIth nerves induces a plastic change within this nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号