首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 532 毫秒
1.
We have discovered in the X-linked androgen receptor gene a single nucleotide substitution that is the putative cause of complete androgen insensitivity (resistance) in a family with affected individuals in 2 generations. Earlier studies on the family indicated co-segregation of mutant phenotype and the RFLPs at the loci DXS1 and DXYS1. The mutation is an adenine-to-thymine transversion in exon 8 that changes the sense of codon 882 from lysine to an amber (UAG) translation termination signal. The substitution creates a recognition sequence for the restriction endonuclease MaeI: this permits ready recognition of hemizygotes and heterozygotes after amplification of genomic exon 8 by the polymerase chain reaction. The mutation predicts the synthesis of a truncated receptor that lacks 36 amino acids at the carboxy terminus of its 252-amino acid androgen-binding domain. The cultured genital skin fibroblasts of the one affected patient examined have normal levels of androgen receptor mRNA, but negligible androgen-receptor binding activity. These results accord with a variety of data from spontaneous and artificial mutations indicating that all portions of the steroid binding domain contribute to normal steroid binding by a steroid receptor.  相似文献   

2.
We have discovered in the X-linked androgen receptor gene a single nucleotide substitution that is the putative cause of complete androgen insensitivity (resistance) in a family with affected individuals in 2 generations. Earlier studies on the family indicated cosegregation of mutant phenotype and the RFLPs at the loci DXS1 and DXYS1. The mutation is an adenine-to-thymine transversion in exon 8 that changes the sense of codon 882 from lysine to an amber (UAG) translation termination signal. The substitution creates a recognition sequence for the restriction endonuclease MaeI: this permits ready recognition of hemizygotes and heterozygotes after amplification of genomic exon 8 by the polymerase chain reaction. The mutation predicts the synthesis of a truncated receptor that lacks 36 amino acids at the carboxy terminus of its 252-amino acids androgen-binding domain. The cultured genital skin fibroblasts of the one affected patient examined have normal levels of androgen receptor mRNA, but negligible androgen-receptor binding activity. These results accord with a variety of data from spontaneous and artificial mutations indicating that all portions of the steroid binding domain contribute to normal steroid binding by a steroid receptor.  相似文献   

3.
Mutations in the androgen receptor (AR) gene result in androgen insensitivity syndrome (AIS). We have identified five novel mutations that result in a complete loss in AR function and are associated with complete AIS. The mutations span all three AR major functional domains. In two cases, the loss of AR function could be explained on the basis of the current knowledge of AR molecular structure and function. N-terminal mutation c.256C>T (p.Gln86X) leads to an early stop codon and abolishes all DNA and ligand binding. The DNA-binding domain mutation c.1685G>A (p.Cys562Tyr) is located in the N-terminal part of the first zinc finger; a mutation in this position is likely to impair the association of the mutated AR with the androgen response element of target genes. The splice site mutation at intron 2/exon 3 junction (c.1766-1G>A) is shown to lead to c.1765_1766 ins69 (p.[Gly589_Lys590ins23;Gly589Glu]). The two novel ligand-binding domain mutations identified were recreated by site-directed mutagenesis. Both mutations c.2171G>T (p.Gly724Val) and c.2435T>C (p.Leu812Pro) abolished AR ligand binding and severely impaired AR mediated transactivation. Residue p.Gly724 is located in the ligand binding domain, between helices 3 and 4. This region is known to be involved not only in ligand binding but also in AR N/C-terminal interactions. The mutation p.Leu812Pro is located in the C-terminal end of helix 8. This domain is highly conserved and critical for ligand binding. This study extends current understanding of AR mutations associated with CAIS.  相似文献   

4.
A large Manitoba Hutterite kindred with X-linked receptor negative complete androgen insensitivity syndrome (CAIS) was studied. In attempts to identify all carriers of the syndrome in this kindred, using the androgen receptor (AR) cDNA, we have found a novel diagnostic Mspl polymorphic pattern, which cosegregates with the disease. This polymorphism was not detected in 79 unrelated X-chromosomes of which 22 were from Hutterite controls. We were able to localize the polymorphism to exon 4, which is known to encode part of the androgen receptor hormone binding domain. A single base substitution (T→C) was detected, which creates a new Mspl site. This novel transition mutation replaces Leu-676 with Pro at a site which is conserved in numerous members of the steroid receptor gene family. Sequencing all 8 exons of the AR revealed the Leu-676→Pro mutation as the only change in the primary structure of the receptor. Transfection of COS-l cells with an expression vector of the mutant AR demonstrates that this point mutation of nucleotide 2558 abolishes receptor binding activity. The mutation can easily be detected by MspI digestion of the polymerase chain reaction (PCR) amplified exon 4 product.© 1995 wiley-Liss, Inc.  相似文献   

5.
目的 对完全型雄激素不敏感综合征一家系雄激素受体(androgen receptor,AR)基因进行突变检测;并对发现突变的基因进行分析.方法 应用PCR扩增、DNA序列测定等技术分析所有AR基因外显子及其邻近DNA序列片段;应用核苷酸内切酶诊断方法观察其是否存在于正常人群;应用跨物种比对方法探讨突变所在位置的保守性.结果 3例患者AR基因第4外显子均发生E681D(GAG→GAT)错义突变,患者母亲为此突变杂合子携带者;患者父亲未见异常;正常人群未发现AR基因E681D突变;681位谷氨酸在不同物种间高度保守.结论 AR基因E681D(GAG→GAT)突变可能是导致完全型雄激素不敏感综合征新的突变方式.  相似文献   

6.
Partial androgen insensitivity syndrome (PAIS) is caused by defects in the androgen receptor gene and presents with a wide range of undervirilization phenotypes. We studied the consequences of six androgen receptor ligand-binding domain mutations on receptor function in transfected cells. The mutations, Met742Ile, Met780Ile, Gln798Glu, Arg840Cys, Arg855His and Ile869Met, were identified in PAIS patients with phenotypes representing the full spectrum seen in this condition. In all cases the androgen receptor was found to be defective, suggesting that the mutation is the cause of the clinical phenotype. The Gln798Glu mutation is exceptional in that it did not cause an androgen-binding defect in our system, although the mutant receptor was defective in transactivation assays. This mutation may affect an aspect of binding not tested, or may be part of a functional subdomain of the ligand-binding domain involved in transactivation. Overall we found milder mutations to be associated with milder clinical phenotypes. There is also clear evidence that phenotype is not solely dependent on androgen receptor function. Some of the mutant receptors were able to respond to high doses of androgen in vitro, suggesting that patients carrying these mutations may be the best candidates for androgen therapy. One such mutation is Ile869Met. A patient carrying this mutation has virilized spontaneously at puberty, so in vivo evidence agrees with the experimental result. Thus a more complete understanding of the functional consequences of androgen receptor mutations may provide a more rational basis for gender assignment in PAIS.   相似文献   

7.
8.
An unresolved question in the study of the polyglutamine neurodegenerative disorders is the extent to which partial loss of normal function of the mutant protein contributes to the disease phenotype. To address this, we studied Kennedy disease, a degenerative disorder of lower motor neurons caused by a CAG/glutamine expansion in the androgen receptor (Ar) gene. Signs of partial androgen insensitivity, including testicular atrophy and decreased fertility, are common in affected males, although the underlying mechanisms are not well understood. Here, we describe a knock-in mouse model that reproduces the testicular atrophy, diminished fertility, and systemic signs of partial androgen insensitivity that occur in Kennedy disease patients. Using this model, we demonstrate that the testicular pathology in this disorder is distinct from that mediated by loss of AR function. Testes pathology in 113 CAG knock-in mice was characterized by morphological abnormalities of germ cell maturation, decreased solubility of the mutant AR protein, and alterations of the Sertoli cell cytoskeleton, changes that are distinct from those produced by AR loss-of-function mutation in testicular feminization mutant mice. Our data demonstrate that toxic effects of the mutant protein mediate aspects of the Kennedy disease phenotype previously attributed to a loss of AR function.  相似文献   

9.
目的 对1个男性假两性畸形完全性雄激素不敏感综合征的家系雄激素受体(androgen receptor,AR)基因进行突变检测,并分析其致病原因.方法 用PCR扩增及DNA测序等技术分析男性假两性畸形先证者候选基因AR的外显子及外显子内含子接头序列,根据检测到的突变位点情况,检测患者及其家系其他成员的相应DNA区段的碱基序列.结果 先证者及其家庭成员共3例患者均为AR基因1910delA的移码突变.其母亲为AR基因突变杂合子,是此疾病的携带者.该突变导致AR基因的N637I(AAU→AUC)、L638*(CTG→TGA)改变,导致AR蛋白283个氨基酸的截短.正常人群未发现该移码突变,该突变尚未见文献报道.结论 基因水平确定了该家系为AR基因突变引起的完全性雄激素不敏感综合征男性假两性畸形家系,同时发现了1种AR基因病理性新突变.  相似文献   

10.
X-linked recessive bulbospinal neuronopathy is a motoneuron disorder to be distinguished from amyotrophic lateral sclerosis. Effective treatment is not known. Patients with X-linked recessive bulbospinal neuronopathy may show gynecomastia and testicular atrophy, and a mutation in the androgen receptor gene has been found associated with the disease. Intermediate steps leading from the androgen receptor abnormality to the clinical syndrome have not yet been elucidated. Therefore, binding of androgen ([3H]dihydrotestosterone) to its specific receptor by genital skin fibroblasts cultured from a patient with X-linked recessive bulbospinal neuronopathy and confirmed androgen receptor mutation was studied. Markedly decreased binding capacity was found. We treated the patient for 6 months with nandrolone-decanoate. No effect on his neuromuscular status was observed during 2 years of follow-up.Abbreviations AR androgen receptor - BSN X-linked recessive bulbospinal neuronopathy  相似文献   

11.
Three cases of Down syndrome (DS) are reported in association with features of the androgen insensitivity syndrome (AIS). All were 47, XY, +21 and reared as females. One case had a normal female phenotype, and two cases showed minimal clitoromegaly and labial fusion. Minor genital underdevelopment has been reported as common in males with DS; however, AIS has not previously been associated with DS. Androgen binding studies in genital skin fibroblasts were normal in two cases and in the 46,XY brother of the third who has perineal hypospadias. Mutation screening of the androgen receptor (AR) gene by PCR-SSCP was normal in all cases. Normal androgen binding and the absence of an identified mutation in the coding region of the AR gene is very unusual in AIS, particularly in the complete form. This finding suggests the operation of hitherto unrecognised genes on chromosome 21 with a role in androgen response and sex differentiation.  相似文献   

12.
Using whole genital skin fibroblasts, we have characterized a novel androgen receptor mutation in a family with partial androgen resistance. The proposita was born with bilateral labioscrotal folds and a single perineal urogenital orifice. Her similarly affected maternal aunt was raised as a female with the support of gonadectomy and vaginoplasty. The mutant androgen receptor has a normal maximum binding capacity (Bmax), but an increased apparent equilibrium dissociation constant (Kd) with 5 alpha-dihydrotestosterone (DHT) and 2 synthetic androgens, methyltrienolone (MT) and mibolerone (MB). Preformed mutant DHT-receptor complexes dissociate (k) at a near-normal rate, but their MT and MB counterparts dissociate twice as quickly as normal. The native free mutant receptor is not more thermolabile than normal, but its recently dissociated counterpart is. Prolonged incubation of the cells with each of the 3 androgens causes the mutant receptor to acquire a normal increment of increased androgen-receptor activity. This androgen-sensitive pattern of misbehavior of the present mutant receptor distinguishes it from those responsible for 3 other families with partial androgen resistance studied previously. These differences will help to identify structure-function domains on the androgen receptor protein, particularly in conjunction with the use of DNA probes to analyze mutations at the X-linked androgen receptor locus.  相似文献   

13.
Structural studies of the ligand-binding domain (LBD) of several steroid receptors have revealed that the dynamic properties of the C-terminal helix 12 (H12) are the major determinant of the activation mode of these receptors. H12 exhibits high mobility and different conformations in the absence of ligand. Upon ligand binding, H12 is stabilized in a precise position to seal the ligand-binding pocket and finalize the assembly of the activation function (AF-2) domain. In this study, we investigated the role of the conserved proline 892 of the androgen receptor (AR) in directing the dynamic location and orientation of the AR-H12. We used a combined approach including kinetic and biochemical assays with molecular dynamic simulations to analyze two substitutions (P892A and P892L) identified in individuals with complete androgen insensitivity syndrome. Our analyses revealed distinct mechanisms by which these substitutions impair H12 function resulting in severely defective receptors. The AR-P892A receptor exhibited reduced ligand binding and transactivational potential because of an increased flexibility in H12. The AR-P892L substitution renders the receptor inactive due to a distorted, unstructured and misplaced H12. To confirm the mutants' inability to stabilize H12 in an active position, we have developed a novel in vivo assay to evaluate the accessibility of the H12-docking site on the AR-LBD surface. An extrinsic AR-H12 peptide was able to interact with wild-type and mutant LBDs in the absence of ligand. Ligand-induced proper positioning of the intrinsic H12 of wild-type AR prevented these interactions, whereas the misplacement of the mutants' H12 did not. Proline at this position may be critical for H12 dynamics not only in the AR, but also in other nuclear receptors where this proline is conserved.  相似文献   

14.
15.
16.
The androgen insensitivity syndrome (AIS) is an X-linked form of male pseudohermaphroditism caused by mutations in the androgen receptor (AR) gene. In the present study, we analyzed the AR gene in 8 patients, 4 sporadic and 2 familial cases with the syndrome, using exon-specific polymerase chain reaction, single-stranded conformational polymorphism and sequencing analysis and identified six new single base mutations, including one nonsense mutation at the hinge region of the receptor. These molecular lesions occurred in the steroid-binding domain (SBD) and all but one affected the first nucleotide of their respective codons. A nonsense mutation in exon 4, which converts a glutamine into a premature termination signal (Q657stop), a missense mutation changing arginine instead of glycine (G743R) and a conservative substitution of leucine with valine at amino acid 830 (L830V) were detected in patients with CAIS. Three other missense mutations located in exons 4 (L701I), 5 (A765S), and 6 (Q802R) were present in individuals bearing a partial form of AIS. These data allow us to reaffirm the view that nonsense mutations in the AR results almost invariably in a CAIS phenotype and underly the importance of the SBD for the AR functional activity.  相似文献   

17.
18.
We have identified androgen receptor (AR) gene mutations in eight Australian subjects with complete androgen insensitivity syndrome (AIS). Four individuals, from three families, have novel mutations that introduce premature termination codons. Two siblings have the nonsense mutation Glu681X, and another subject has the nonsense mutation p.Ser884X. The other subject has a CA insertion at codon 829 (c.2847_2848insCA), causing a frameshift mutation that introduces four nonsense amino acids prior to a Stop codon. All the termination codons occur in the ligand binding domain, and cause reduced androgen binding in patient genital skin fibroblasts. Four further patients have missense mutations. One subject has two different mutations, p.Ala645Asp in the hinge region of the receptor, and p.Arg752Gln in the ligand binding domain. Both these mutations have previously been reported in patients with AIS, but the combination of these two mutations in one subject is unique. Another subject has a novel c.2533G>C transversion at the first nucleotide in exon 5, introducing the amino acid change p.Gly724Ala at a highly conserved residue in the ligand binding domain. Androgen binding is normal in fibroblasts from this subject, although other point mutations at this amino acid totally abolish binding. Two other subjects have mutations previously described as causing AIS, namely p.Arg779Trp and p.Val889Met substitutions in the ligand binding domain of the receptor. The p.Arg779Trp mutation is associated with the detection of a truncated AR protein in this patient's fibroblasts, suggesting the mutation renders the receptor susceptible to proteolysis.  相似文献   

19.
DNA linkage analysis of the X chromosome and studies with cDNA probes specific for the androgen receptor gene were performed on the largest known kindred with the syndrome of complete androgen insensitivity. The affected subjects (XY) have absent binding of dihydrotestosterone to the androgen receptor (the receptor negative form of androgen insensitivity). In this kindred there was maternal transmission of the gene, with all affected males expressing complete genital feminization. Linkage analysis studies were conducted with two DNA probes, DXS1 and PGK1, localized to the Xq11-Xq13 region of the long arm of the X chromosome near the centromere. The results demonstrate linkage to the markers in the order of DXS1-(AR; PGK1), thus localizing the AR gene to an area between Xq11 and Xq13. Three cDNA probes that span various parts of the androgen receptor gene, including the DNA and steroid binding domain, were used to evaluate the androgen receptor gene in normal individuals, carrier mothers, and affected subjects. Identical restriction fragment patterns were found in all three groups studied. Thus the androgen receptor gene was present in affected subjects without detectable DNA polymorphism at the androgen binding domain. Therefore, despite complete absence of binding to the androgen receptor, the defect in the androgen receptor gene in this kindred is not the result of a gene deletion. The results point to a mutation or a small insertion/deletion as the probable cause of the syndrome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号