首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited disease characterized by life threatening arrhythmias and mutations in the gene encoding the ryanodine receptor (RyR2). Disagreement exists on whether (1) RyR2 mutations induce abnormal calcium transients in the absence of adrenergic stimulation; (2) decreased affinity of mutant RyR2 for FKBP12.6 causes CPVT; (3) K201 prevent arrhythmias by normalizing the FKBP12.6-RyR2 binding. We studied ventricular myocytes isolated from wild-type (WT) and knock-in mice harboring the R4496C mutation (RyR2(R4496C+/-)). Pacing protocols did not elicit delayed afterdepolarizations (DADs) (n=20) in WT but induced DADs in 21 of 33 (63%) RyR2(R4496C+/-) myocytes (P=0.001). Superfusion with isoproterenol (30 nmol/L) induced small DADs (45%) and no triggered activity in WT myocytes, whereas it elicited DADs in 87% and triggered activity in 60% of RyR2(R4496C+/-) myocytes (P=0.001). DADs and triggered activity were abolished by ryanodine (10 micromol/L) but not by K201 (1 micromol/L or 10 micromol/L). In vivo administration of K201 failed to prevent induction of polymorphic ventricular tachycardia (VT) in RyR2(R4496C+/-) mice. Measurement of the FKBP12.6/RyR2 ratio in the heavy sarcoplasmic reticulum membrane showed normal RyR2-FKBP12.6 interaction both in WT and RyR2(R4496C+/-) either before and after treatment with caffeine and epinephrine. We suggest that (1) triggered activity is the likely arrhythmogenic mechanism of CPVT; (2) K201 fails to prevent DADs in RyR2(R4496C+/-) myocytes and ventricular arrhythmias in RyR2(R4496C+/-) mice; and (3) RyR2-FKBP12.6 interaction in RyR2(R4496C+/-) is identical to that of WT both before and after epinephrine and caffeine, thus suggesting that it is unlikely that the R4496C mutation interferes with the RyR2/FKBP12.6 complex.  相似文献   

2.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmogenic disease characterized by life-threatening arrhythmias elicited by adrenergic activation. CPVT is caused by mutations in the cardiac ryanodine receptor gene (RyR2). In vitro studies demonstrated that RyR2 mutations respond to sympathetic activation with an abnormal diastolic Ca(2+) leak from the sarcoplasmic reticulum; however the pathways that mediate the response to adrenergic stimulation have not been defined. In our RyR2(R4496C+/-) knock-in mouse model of CPVT we tested the hypothesis that inhibition of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) counteracts the effects of adrenergic stimulation resulting in an antiarrhythmic activity. CaMKII inhibition with KN-93 completely prevented catecholamine-induced sustained ventricular tachyarrhythmia in RyR2(R4496C+/-) mice, while the inactive congener KN-92 had no effect. In ventricular myocytes isolated from the hearts of RyR2(R4496C+/-) mice, CaMKII inhibition with an autocamtide-2 related inhibitory peptide or with KN-93 blunted triggered activity and transient inward currents induced by isoproterenol. Isoproterenol also enhanced the activity of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA), increased spontaneous Ca(2+) release and spark frequency. CaMKII inhibition blunted each of these parameters without having an effect on the SR Ca(2+) content. Our data therefore indicate that CaMKII inhibition is an effective intervention to prevent arrhythmogenesis (both in vivo and in vitro) in the RyR2(R4496C+/-) knock-in mouse model of CPVT. Mechanistically, CAMKII inhibition acts on several elements of the EC coupling cascade, including an attenuation of SR Ca(2+) leak and blunting catecholamine-mediated SERCA activation. CaMKII inhibition may therefore represent a novel therapeutic target for patients with CPVT.  相似文献   

3.
Rationale: Atrial fibrillation (AF) is the most common cardiac arrhythmia, however the mechanism(s) causing AF remain poorly understood and therapy is suboptimal. The ryanodine receptor (RyR2) is the major calcium (Ca(2+)) release channel on the sarcoplasmic reticulum (SR) required for excitation-contraction coupling in cardiac muscle. Objective: In the present study, we sought to determine whether intracellular diastolic SR Ca(2+) leak via RyR2 plays a role in triggering AF and whether inhibiting this leak can prevent AF. Methods and Results: We generated 3 knock-in mice with mutations introduced into RyR2 that result in leaky channels and cause exercise induced polymorphic ventricular tachycardia in humans [catecholaminergic polymorphic ventricular tachycardia (CPVT)]. We examined AF susceptibility in these three CPVT mouse models harboring RyR2 mutations to explore the role of diastolic SR Ca(2+) leak in AF. AF was stimulated with an intra-esophageal burst pacing protocol in the 3 CPVT mouse models (RyR2-R2474S(+/-), 70%; RyR2-N2386I(+/-), 60%; RyR2-L433P(+/-), 35.71%) but not in wild-type (WT) mice (P<0.05). Consistent with these in vivo results, there was a significant diastolic SR Ca(2+) leak in atrial myocytes isolated from the CPVT mouse models. Calstabin2 (FKBP12.6) is an RyR2 subunit that stabilizes the closed state of RyR2 and prevents a Ca(2+) leak through the channel. Atrial RyR2 from RyR2-R2474S(+/-) mice were oxidized, and the RyR2 macromolecular complex was depleted of calstabin2. The Rycal drug S107 stabilizes the closed state of RyR2 by inhibiting the oxidation/phosphorylation induced dissociation of calstabin2 from the channel. S107 reduced the diastolic SR Ca(2+) leak in atrial myocytes and decreased burst pacing-induced AF in vivo. S107 did not reduce the increased prevalence of burst pacing-induced AF in calstabin2-deficient mice, confirming that calstabin2 is required for the mechanism of action of the drug. Conclusions: The present study demonstrates that RyR2-mediated diastolic SR Ca(2+) leak in atrial myocytes is associated with AF in CPVT mice. Moreover, the Rycal S107 inhibited diastolic SR Ca(2+) leak through RyR2 and pacing-induced AF associated with CPVT mutations.  相似文献   

4.
OBJECTIVE: In vitro experiments have shown that the ryanodine receptor-2 (RyR2) central domain peptide DPc10 (Gly(2460)-Pro(2495)) mimics channel dysfunction associated with catecholaminergic polymorphic ventricular tachycardia (CPVT) by acting competitively to reduce stabilizing interactions between the N-terminal and central domains. In the present study, DPc10 was used as a tool to establish an adult cell model of the disease and to analyse the underlying mechanisms. METHODS: Rat ventricular myocytes were permeabilized with saponin and perfused with solutions approximating the intracellular milieu containing fluo-3. Sarcoplasmic reticulum (SR) Ca(2+) release was detected using confocal microscopy. DPc10 (10 or 50 microM) was compared with 0.2 mM caffeine, which is known to activate RyR2 and to facilitate Ca(2+)-induced Ca(2+) release (CICR). RESULTS: Introduction of DPc10 induced a transient increase in spark frequency and a sustained rise in resting [Ca(2+)]. Under conditions causing initial Ca(2+) overload of the SR, DPc10 reduced the frequency and amplitude of spontaneous, propagated Ca(2+) release (SPCR). Following equilibration with 10microM DPc10, the cytosolic [Ca(2+)] threshold for SPCR was markedly reduced and the proportion of spontaneously active cells increased. Caffeine induced a similar, transient increase in spark frequency and a reduction in the [Ca(2+)] threshold for SPCR. However, unlike DPc10, caffeine increased SPCR frequency and had no sustained effect on resting [Ca(2+)]. These results suggest that the net effect of DPc10 (and CPVT mutations) on RyR2 function in situ is not only to increase the sensitivity to CICR as caffeine does, but also to potentiate Ca(2+) leakage from the SR. As SPCR can trigger delayed after-depolarisations, the decrease in [Ca(2+)] threshold may contribute to arrhythmias in CPVT patients during exercise or stress.  相似文献   

5.
Abnormal intracellular Ca(2+) handling by the sarcoplasmic reticulum (SR) is a critical factor in the development of heart failure (HF). Not only decreased Ca(2+) uptake, but also uncoordinated Ca(2+) release plays a significant role in contractile and relaxation dysfunction. Spontaneous Ca(2+) release through ryanodine receptor (RyR) 2, a huge tetrameric protein, during diastole leads to a decrease in the SR Ca(2+) content, and also triggers delayed after depolarization that is a substrate for lethal arrhythmia. Several disease-linked mutations of RyR have been reported in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT) or arrhythmogenic right ventricular cardiomyopathy type 2 (ARVC2). The unique distribution of these mutation sites has lead to the concept that an interaction among the putative regulatory domains within RyR may play a key role in regulating channel opening, and that there seems to be a common abnormality in the channel disorder of HF and CPVT/ARVC2. Recent knowledge gained from pathological conditions may lead to the development of a new therapeutic strategy for the treatment of HF or cardiac arrhythmia.  相似文献   

6.
It has been six years since the first reported link between mutations in the cardiac ryanodine receptor Ca(2+) release channel (RyR2) and catecholaminergic polymorphic ventricular tachycardia (CPVT), a malignant stress-induced arrhythmia. In this time, rapid advances have been made in identifying new mutations, and in understanding how these mutations disrupt normal channel function to cause VT that frequently degenerates into ventricular fibrillation (VF) and sudden death. Functional characterisation of these RyR2 Ca(2+) channelopathies suggests that mutations alter the ability of RyR2 to sense its intracellular environment, and that channel modulation via covalent modification, Ca(2+)- and Mg(2+)-dependent regulation and structural feedback mechanisms are catastrophically disturbed. This review reconciles the current status of RyR2 mutation-linked etiopathology, the significance of mutational clustering within the RyR2 polypeptide and the mechanisms underlying channel dysfunction. We will also review new data that explores the link between abnormal Ca(2+) release and the resultant cardiac electrical instability in VT and VF, and how these recent developments impact on novel anti-arrhythmic therapies. Finally, we evaluate the concept that mechanistic differences between CPVT and other arrhythmogenic disorders may preclude a common therapeutic strategy to normalise RyR2 function in cardiac disease.  相似文献   

7.
Different forms of ventricular arrhythmias have been linked to mutations in the cardiac ryanodine receptor (RyR)2, but the molecular basis for this phenotypic heterogeneity is unknown. We have recently demonstrated that an enhanced sensitivity to luminal Ca(2+) and an increased propensity for spontaneous Ca(2+) release or store-overload-induced Ca(2+) release (SOICR) are common defects of RyR2 mutations associated with catecholaminergic polymorphic or bidirectional ventricular tachycardia. Here, we investigated the properties of a unique RyR2 mutation associated with catecholaminergic idiopathic ventricular fibrillation, A4860G. Single-channel analyses revealed that, unlike all other disease-linked RyR2 mutations characterized previously, the A4860G mutation diminished the response of RyR2 to activation by luminal Ca(2+), but had little effect on the sensitivity of the channel to activation by cytosolic Ca(2+). This specific impact of the A4860G mutation indicates that the luminal Ca(2+) activation of RyR2 is distinct from its cytosolic Ca(2+) activation. Stable, inducible HEK293 cells expressing the A4860G mutant showed caffeine-induced Ca(2+) release but exhibited no SOICR. Importantly, HL-1 cardiac cells transfected with the A4860G mutant displayed attenuated SOICR activity compared with cells transfected with RyR2 WT. These observations provide the first evidence that a loss of luminal Ca(2+) activation and SOICR activity can cause ventricular fibrillation and sudden death. These findings also indicate that although suppressing enhanced SOICR is a promising antiarrhythmic strategy, its oversuppression can also lead to arrhythmias.  相似文献   

8.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited disease characterized by adrenergically mediated polymorphic ventricular tachycardia leading to syncope and sudden cardiac death. The autosomal dominant form of CPVT is caused by mutations in the RyR2 gene encoding the cardiac isoform of the ryanodine receptor. In vitro functional characterization of mutant RyR2 channels showed altered behavior on adrenergic stimulation and caffeine administration with enhanced calcium release from the sarcoplasmic reticulum. As of today no experimental evidence is available to demonstrate that RyR2 mutations can reproduce the arrhythmias observed in CPVT patients. We developed a conditional knock-in mouse model carrier of the R4496C mutation, the mouse equivalent to the R4497C mutations identified in CPVT families, to evaluate if the animals would develop a CPVT phenotype and if beta blockers would prevent arrhythmias. Twenty-six mice (12 wild-type (WT) and 14RyR(R4496C)) underwent exercise stress testing followed by epinephrine administration: none of the WT developed ventricular tachycardia (VT) versus 5/14 RyR(R4496C) mice (P=0.02). Twenty-one mice (8 WT, 8 RyR(R4496C), and 5 RyR(R4496C) pretreated with beta-blockers) received epinephrine and caffeine: 4/8 (50%) RyR(R4496C) mice but none of the WT developed VT (P=0.02); 4/5 RyR(R4496C) mice pretreated with propranolol developed VT (P=0.56 nonsignificant versus RyR(R4496C) mice). These data provide the first experimental demonstration that the R4496C RyR2 mutation predisposes the murine heart to VT and VF in response caffeine and/or adrenergic stimulation. Furthermore, the results show that analogous to what is observed in patients, beta adrenergic stimulation seems ineffective in preventing life-threatening arrhythmias.  相似文献   

9.
Background- Catecholaminergic polymorphic ventricular tachycardia is directly linked to mutations in proteins (eg, type 2 ryanodine receptor [RyR2](R4496C)) responsible for intracellular Ca(2+) homeostasis in the heart. However, the mechanism of Ca(2+) release dysfunction underlying catecholaminergic polymorphic ventricular tachycardia has only been investigated in isolated cells but not in the in situ undisrupted myocardium. Methods and Results- We investigated in situ myocyte Ca(2+) dynamics in intact Langendorff-perfused hearts (ex vivo) from wild-type and RyR2(R4496C+/-) mice using laser scanning confocal microscopy. We found that myocytes from both wild-type and RyR2(R4496C+/-) hearts displayed uniform, synchronized Ca(2+) transients. Ca(2+) transients from beat to beat were comparable in amplitude with identical activation and decay kinetics in wild-type and RyR2(R4496C+/-) hearts, suggesting that excitation-contraction coupling between the sarcolemmal Ca(2+) channels and mutated RyR2(R4496C+/-) channels remains intact under baseline resting conditions. On adrenergic stimulation, RyR2(R4496C+/-) hearts exhibited a high degree of Ca(2+) release variability. The varied pattern of Ca(2+) release was absent in single isolated myocytes, independent of cell cycle length, synchronized among neighboring myocytes, and correlated with catecholaminergic polymorphic ventricular tachycardia. A similar pattern of action potential variability, which was synchronized among neighboring myocytes, was also revealed under adrenergic stress in intact hearts but not in isolated myocytes. Conclusions- Our studies using an in situ confocal imaging approach suggest that mutated RyR2s are functionally normal at rest but display a high degree of Ca(2+) release variability on intense adrenergic stimulation. Ca(2+) release variability is a Ca(2+) release abnormality, resulting from electric defects rather than the failure of the Ca(2+) release response to action potentials in mutated ventricular myocytes. Our data provide important insights into Ca(2+) release and electric dysfunction in an established model of catecholaminergic polymorphic ventricular tachycardia.  相似文献   

10.
Cardiac excitation-contraction coupling occurs by a calcium ion-mediated mechanism in which the signal of action potential is converted into Ca2+ influx into the cardiomyocytes through the sarcolemmal L-type calcium channels. This is followed by Ca2+-induced release of additional Ca2+ ions from the lumen of the sarcoplasmic reticulum into the cytosol via type 2 ryanodine receptors (RyR2). RyR2 channels form large complexes with additional regulatory proteins, including FKBP12.6 and calsequestrin 2 (CASQ2). Catecholamines, released into the body fluids during emotional or physical stress, activate Ca2+-induced Ca2+ release by protein kinase A-mediated phosphorylation of RyR2. Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an insidious, early-onset and highly malignant, inherited disorder characterized by effort-induced ventricular arrhythmias in the absence of structural alterations of the heart. At least some cases of sudden, unexplained death in young individuals may be ascribed to CPVT. Mutations of the RyR2 gene cause autosomal dominant CPVT, while mutations of the CASQ2 gene may cause an autosomal recessive or dominant form of CPVT. The steps of the molecular pathogenesis of CPVT are not entirely clear, but inappropriate "leakiness" of RyR2 channels is thought to play a role; the underlying mechanisms may involve an increase in the basal activity of the RyR2 channel, alterations in its phosphorylation status, a defective interaction of RyR2 with other molecules or ions, such as FKBP12.6, CASQ2, or Mg2+, or its abnormal activation by extra- or intraluminal Ca2+ ions. Beta-adrenergic antagonists have proven to be of value in prevention of arrhythmias in CPVT patients, but occasional treatment failures call for alternative measures. There is great interest at present for the development of novel antiarrhythmic drugs for CPVT, as the same approaches may be applied for treatment of more common forms of life-threatening arrhythmias, such as those arising during ischemia and heart failure.  相似文献   

11.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a familial arrhythmogenic disorder associated with mutations in the cardiac ryanodine receptor (RyR2) and cardiac calsequestrin (CASQ2) genes. Previous in vitro studies suggested that RyR2 and CASQ2 interact as parts of a multimolecular Ca(2+)-signaling complex; however, direct evidence for such interactions and their potential significance to myocardial function remain to be determined. We identified a novel CASQ2 mutation in a young female with a structurally normal heart and unexplained syncopal episodes. This mutation results in the nonconservative substitution of glutamine for arginine at amino acid 33 of CASQ2 (R33Q). Adenoviral-mediated expression of CASQ2(R33Q) in adult rat myocytes led to an increase in excitation-contraction coupling gain and to more frequent occurrences of spontaneous propagating (Ca2+ waves) and local Ca2+ signals (sparks) with respect to control cells expressing wild-type CASQ2 (CASQ2WT). As revealed by a Ca2+ indicator entrapped inside the sarcoplasmic reticulum (SR) of permeabilized myocytes, the increased occurrence of spontaneous Ca2+ sparks and waves was associated with a dramatic decrease in intra-SR [Ca2+]. Recombinant CASQ2WT and CASQ2R33Q exhibited similar Ca(2+)-binding capacities in vitro; however, the mutant protein lacked the ability of its WT counterpart to inhibit RyR2 activity at low luminal [Ca2+] in planar lipid bilayers. We conclude that the R33Q mutation disrupts interactions of CASQ2 with the RyR2 channel complex and impairs regulation of RyR2 by luminal Ca2+. These results show that intracellular Ca2+ cycling in normal heart relies on an intricate interplay of CASQ2 with the proteins of the RyR2 channel complex and that disruption of these interactions can lead to cardiac arrhythmia.  相似文献   

12.
Using biochemical/pharmacological approaches, we previously showed that type 2 ryanodine receptors (RyR2) become dysfunctional in hearts of streptozotocin-induced type 1 diabetic rats. However, the functional consequence of this observation remains incompletely understood. Here we use laser confocal microscopy to investigate whether RyR2 dysfunction during diabetes alters evoked and spontaneous Ca(2+) release from the sarcoplasmic reticulum (SR). After 7-8 weeks of diabetes, steady-state levels of RyR2 remain unchanged in hearts of male Sprague-Dawley rats, but the number of functional receptors decreased by >37%. Interestingly, residual functional RyR2 from diabetic rat hearts exhibited increased sensitivity to Ca(2+) activation (EC(50activation) decreased from 80 microM to 40 microM, peak Ca(2+) activation decreased from 425 microM to 160 microM). When field stimulated, intracellular Ca(2+) release in diabetic ventricular myocytes was dyssynchronous (non-uniform) and this was independent of L-type Ca(2+) currents. Time to peak Ca(2+) increased 3.7-fold. Diabetic myocytes also exhibited diastolic Ca(2+) release and 2-fold higher frequency of spontaneous Ca(2+) sparks, albeit at a lower amplitude. The amplitude of caffeine-releasable Ca(2+) was also lower in diabetic myocytes. RyR2 from diabetic rat hearts exhibited increased phosphorylation at Ser2809 and contained reduced levels of FKBP12.6 (calstablin2). Collectively, these data suggest that RyR2 becomes leaky during diabetes and this defect may be responsible to the reduced SR Ca(2+) load. Diastolic Ca(2+) release could also serve as a substrate for delayed after-depolarizations, contributing to the increased incidence of arrhythmias and sudden cardiac death in type 1 diabetes.  相似文献   

13.
Mutations in the cardiac ryanodine receptor 2 (RyR2) have been associated with catecholaminergic polymorphic ventricular tachycardia and a form of arrhythmogenic right ventricular dysplasia. To study the relationship between RyR2 function and these phenotypes, we developed knockin mice with the human disease-associated RyR2 mutation R176Q. Histologic analysis of hearts from RyR2(R176Q/+) mice revealed no evidence of fibrofatty infiltration or structural abnormalities characteristic of arrhythmogenic right ventricular dysplasia, but right ventricular end-diastolic volume was decreased in RyR2(R176Q/+) mice compared with controls, indicating subtle functional impairment due to the presence of a single mutant allele. Ventricular tachycardia (VT) was observed after caffeine and epinephrine injection in RyR2(R176Q/+), but not in WT, mice. Intracardiac electrophysiology studies with programmed stimulation also elicited VT in RyR2(R176Q/+) mice. Isoproterenol administration during programmed stimulation increased both the number and duration of VT episodes in RyR2(R176Q/+) mice, but not in controls. Isolated cardiomyocytes from RyR2(R176Q/+) mice exhibited a higher incidence of spontaneous Ca(2+) oscillations in the absence and presence of isoproterenol compared with controls. Our results suggest that the R176Q mutation in RyR2 predisposes the heart to catecholamine-induced oscillatory calcium-release events that trigger a calcium-dependent ventricular arrhythmia.  相似文献   

14.
During physical exercise and stress, the sympathetic system stimulates cardiac contractility via β-adrenergic receptor activation, resulting in protein kinase A (PKA)-mediated phosphorylation of the cardiac ryanodine receptor, RyR2, at Ser2808. Hyperphosphorylation of RyR2-S2808 has been proposed as a mechanism contributing to arrhythmogenesis and heart failure. However, the role of RyR2 phosphorylation during β-adrenergic stimulation remains controversial. We examined the contribution of RyR2-S2808 phosphorylation to altered excitation-contraction coupling and Ca(2+) signaling using an experimental approach at the interface of molecular and cellular levels and a transgenic mouse with ablation of the RyR2-S2808 phosphorylation site (RyR2-S2808A). Experimentally challenging the communication between L-type Ca(2+) channels and RyR2 led to a spatiotemporal de-synchronization of RyR2 openings, as visualized using confocal Ca(2+) imaging. β-Adrenergic stimulation re-synchronized RyR2s, but less efficiently in RyR2-S2808A than in control cardiomyocytes, as indicated by comprehensive analysis of RyR2 activation. In addition, spontaneous Ca(2+) waves in RyR2-S2808A myocytes showed significantly slowed propagation and complete absence of acceleration during β-adrenergic stress, unlike wild type cells. Single channel recordings revealed an attenuation of luminal Ca(2+) sensitivity in RyR2-S2808A channels upon addition of PKA. This suggests that phosphorylation of RyR2-S2808 may be involved in RyR2 modulation by luminal (intra-SR) Ca(2+) ([Ca(2+)](SR)). We show here by three independent experimental approaches that PKA-dependent RyR2-S2808 phosphorylation plays significant functional roles at the subcellular level, namely, Ca(2+) release synchronization, Ca(2+) wave propagation and functional adaptation of RyR2 to variable [Ca(2+)](SR). These results indicate a direct mechanistic link between RyR2 phosphorylation and SR luminal Ca(2+) sensing.  相似文献   

15.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an autosomal dominant inherited disorder characterized by adrenergic induced polymorphic ventricular tachycardias and associated with sudden cardiac death. The human cardiac ryanodine receptor gene (RyR2) was linked to CPVT. A 20-year-old male was referred to our hospital because of recurrent syncope after physical and emotional stress. Routine cardiac examinations including catheterization revealed no structural abnormality. Exercise on treadmill induced premature ventricular contraction in bigeminy and bidirectional ventricular tachycardia was induced during isoproterenol infusion. Beta-blocking drug was effective in suppressing the arrhythmias. We performed genetic screening by PCR-SSCP method followed by DNA sequencing, and a novel missense mutation R2401H in RyR2 located in FKBP12.6 binding region was identified. This mutation was not detected in 190 healthy controls. Since FKBP12.6 plays a critical role in Ca channel gating, the R2401H mutation can be expected to alter Ca-induced Ca release and E-C coupling resulting in CPVT. This is the first report of RyR2 mutation in CPVT patient from Asia including Japan.  相似文献   

16.
Ca2+ release from the sarcoplasmic reticulum mediated by the cardiac ryanodine receptor (RyR2) is a fundamental event in cardiac muscle contraction. RyR2 mutations suggested to cause defective Ca2+ channel function have recently been identified in catecholaminergic polymorphic ventricular tachycardia (CPVT) and arrhythmogenic right ventricular dysplasia (ARVD) affected individuals. We report expression of three CPVT-linked human RyR2 (hRyR2) mutations (S2246L, N4104K, and R4497C) in HL-1 cardiomyocytes displaying correct targeting to the endoplasmic reticulum. N4104K also localized to the Golgi apparatus. Phenotypic characteristics including intracellular Ca2+ handling, proliferation, viability, RyR2:FKBP12.6 interaction, and beat rate in resting HL-1 cells expressing mutant hRyR2 were indistinguishable from wild-type (WT) hRyR2. However, Ca2+ release was augmented in cells expressing mutant hRyR2 after RyR activation (caffeine and 4-chloro-m-cresol) or beta-adrenergic stimulation (isoproterenol). RyR2:FKBP12.6 interaction remained intact after caffeine or 4-CMC activation, but was dramatically disrupted by isoproterenol or forskolin, an activator of adenylate cyclase. Isoproterenol and forskolin elevated cyclic-AMP to similar magnitudes in all cells and were associated with equivalent hyperphosphorylation of mutant and WT hRyR2. CPVT-linked mutations in hRyR2 did not alter resting cardiomyocyte phenotype but mediated augmented Ca2+ release on RyR-agonist or beta-AR stimulation. Furthermore, equivalent interaction between mutant and WT hRyR2 and FKBP12.6 was demonstrated.  相似文献   

17.
Spontaneous sarcoplasmic reticulum (SR) Ca(2+) release causes delayed afterdepolarizations (DADs) via Ca(2+)-induced transient inward currents (I:(ti)). However, no quantitative data exists regarding (1) Ca(2+) dependence of DADs, (2) Ca(2+) required to depolarize the cell to threshold and trigger an action potential (AP), or (3) relative contributions of Ca(2+)-activated currents to DADs. To address these points, we evoked SR Ca(2+) release by rapid application of caffeine in indo 1-AM-loaded rabbit ventricular myocytes and measured caffeine-induced DADs (cDADs) with whole-cell current clamp. The SR Ca(2+) load of the myocyte was varied by different AP frequencies. The cDAD amplitude doubled for every 88+/-8 nmol/L of Delta[Ca(2+)](i) (simple exponential), and the Delta[Ca(2+)](i) threshold of 424+/-58 nmol/L was sufficient to trigger an AP. Blocking Na(+)-Ca(2+) exchange current (I(Na/Ca)) by removal of [Na](o) and [Ca(2+)](o) (or with 5 mmol/L Ni(2+)) reduced cDADs by >90%, for the same Delta[Ca(2+)](i). In contrast, blockade of Ca(2+)-activated Cl(-) current (I(Cl(Ca))) with 50 micromol/L niflumate did not significantly alter cDADs. We conclude that DADs are almost entirely due to I(Na/Ca), not I(Cl(Ca)) or Ca(2+)-activated nonselective cation current. To trigger an AP requires 30 to 40 micromol/L cytosolic Ca(2+) or a [Ca(2+)](i) transient of 424 nmol/L. Current injection, simulating I(ti)s with different time courses, revealed that faster I:(ti)s require less charge for AP triggering. Given that spontaneous SR Ca(2+) release occurs in waves, which are slower than cDADs or fast I(ti)s, the true Delta[Ca(2+)](i) threshold for AP activation may be approximately 3-fold higher in normal myocytes. This provides a safety margin against arrhythmia in normal ventricular myocytes.  相似文献   

18.
The multifunctional Ca(2+)/calmodulin-dependent protein kinase II delta(C) (CaMKIIdelta(C)) is found in the macromolecular complex of type 2 ryanodine receptor (RyR2) Ca(2+) release channels in the heart. However, the functional role of CaMKII-dependent phosphorylation of RyR2 is highly controversial. To address this issue, we expressed wild-type, constitutively active, or dominant-negative CaMKIIdelta(C) via adenoviral gene transfer in cultured adult rat ventricular myocytes. CaMKII-mediated phosphorylation of RyR2 was reduced, enhanced, or unaltered by dominant-negative, constitutively active, or wild-type CaMKIIdelta(C) expression, whereas phosphorylation of phospholamban at Thr17, an endogenous indicator of CaMKII activity, was at 73%, 161%, or 115% of the control group expressing beta-galactosidase (beta-gal), respectively. In parallel with the phospholamban phosphorylation, the decay kinetics of global Ca(2+) transients was slowed, accelerated, or unchanged, whereas spontaneous Ca(2+) spark activity was hyperactive, depressed, or unchanged in dominant-negative, constitutively active, or wild-type CaMKIIdelta(C) groups, respectively. When challenged by high extracellular Ca(2+), both wild-type and constitutively active CaMKIIdelta(C) protected the cells from store overload-induced Ca(2+) release, manifested by a approximately 60% suppression of Ca(2+) waves (at 2 to 20 mmol/L extracellular Ca(2+)) in spite of an elevated sarcoplasmic reticulum Ca(2+) content, whereas dominant-negative CaMKIIdelta(C) promoted Ca(2+) wave production (at 20 mmol/L Ca(2+)) with significantly depleted sarcoplasmic reticulum Ca(2+). Taken together, our data support the notion that CaMKIIdelta(C) negatively regulates RyR2 activity and spontaneous sarcoplasmic reticulum Ca(2+) release, thereby affording a negative feedback that stabilizes local and global Ca(2+)-induced Ca(2+) release in the heart.  相似文献   

19.
We recently showed that phosphoinositide-3-kinase-gamma-deficient (PI3Kgamma(-/-)) mice have enhanced cardiac contractility attributable to cAMP-dependent increases in sarcoplasmic reticulum (SR) Ca(2+) content and release but not L-type Ca(2+) current (I(Ca,L)), demonstrating PI3Kgamma locally regulates cAMP levels in cardiomyocytes. Because phosphodiesterases (PDEs) can contribute to cAMP compartmentation, we examined whether the PDE activity was altered by PI3Kgamma ablation. Selective inhibition of PDE3 or PDE4 in wild-type (WT) cardiomyocytes elevated Ca(2+) transients, SR Ca(2+) content, and phospholamban phosphorylation (PLN-PO(4)) by similar amounts to levels observed in untreated PI3Kgamma(-/-) myocytes. Combined PDE3 and PDE4 inhibition caused no further increases in SR function. By contrast, only PDE3 inhibition affected Ca(2+) transients, SR Ca(2+) loads, and PLN-PO(4) levels in PI3Kgamma(-/-) myocytes. On the other hand, inhibition of PDE3 or PDE4 alone did not affect I(Ca,L) in either PI3Kgamma(-/-) or WT cardiomyocytes, whereas simultaneous PDE3 and PDE4 inhibition elevated I(Ca,L) in both groups. Ryanodine receptor (RyR(2)) phosphorylation levels were not different in basal conditions between PI3Kgamma(-/-) and WT myocytes and increased in both groups with PDE inhibition. Our results establish that L-type Ca(2+) channels, RyR(2), and SR Ca(2+) pumps are regulated differently in distinct subcellular compartments by PDE3 and PDE4. In addition, the loss of PI3Kgamma selectively abolishes PDE4 activity, not PDE3, in subcellular compartments containing the SR Ca(2+)-ATPase but not RyR(2) or L-type Ca(2+) channels.  相似文献   

20.
OBJECTIVE: Cellular Ca(2+) waves are understood as reaction-diffusion systems sustained by Ca(2+)-induced Ca(2+) release (CICR) from Ca(2+) stores. Given the recently discovered sensitization of Ca(2+) release channels (ryanodine receptors; RyRs) of the sarcoplasmic reticulum (SR) by luminal SR Ca(2+), waves could also be driven by RyR sensitization, mediated by SR overloading via Ca(2+) pump (SERCA), acting in tandem with CICR. METHODS: Confocal imaging of the Ca(2+) indicator fluo-3 was combined with UV-flash photolysis of caged compounds and the whole-cell configuration of the patch clamp technique to carry out these experiments in isolated guinea pig ventricular cardiomyocytes. RESULTS: Upon sudden slowing of the SERCA in cardiomyocytes with a photoreleased inhibitor, waves indeed decelerated immediately. No secondary changes of Ca(2+) signaling or SR Ca(2+) content due to SERCA inhibition were observed in the short time-frame of these experiments. CONCLUSIONS: Our findings are consistent with Ca(2+) loading resulting in a zone of RyR 'sensitization' traveling within the SR, but inconsistent with CICR as the predominant mechanism driving the Ca(2+) waves. This alternative mode of RyR activation is essential to fully conceptualize cardiac arrhythmias triggered by spontaneous Ca(2+) release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号