首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution on γ-aminobutyric acid (GABA) containing neurons in the rat pituitary gland and related hypothalamic areas was immunohistochemically investigaed using antibodies raised against GABA conjugated to bovine serum albumin by glutaraldehyde. A dense network of GABA-like immunoreactive fine varicose nerve fibers was observed within the posterior and intermediate lobes of the pituitary gland, surrounding endocrine cells and capillaries, but not in the anterior lobe. In the pituitary stalk, the dense varicose fibers ran along the anterior wall of the posterior lobe into the posterior and intermediate lobes. A small number of GABA-like immunoreactive cell bodies were evident in the intermediate lobe. GABA-like immunoreactive fibers occurred at low to high density in most parts of the hypothalamus. GABA-like immunoreactive neurons were observed in some regions related to the pituitary gland (such as periventricular nucleus, paraventricular nucleus, arcuate nucleus and accessory magnocellular nucleus). These results provide morphological evidence for the presence of GABAergic neurons in the rat hypothalamo-pituitary system.  相似文献   

2.
The distribution of gamma-aminobutyric acid (GABA) containing neurons in the rat pituitary gland and related hypothalamic areas was immunohistochemically investigated using antibodies raised against GABA conjugated to bovine serum albumin by glutaraldehyde. A dense network of GABA-like immunoreactive fine varicose nerve fibers was observed within the posterior and intermediate lobes of the pituitary gland, surrounding endocrine cells and capillaries, but not in the anterior lobe. In the pituitary stalk, the dense varicose fibers ran along the anterior wall of the posterior lobe into the posterior and intermediate lobes. A small number of GABA-like immunoreactive cell bodies were evident in the intermediate lobe. GABA-like immunoreactive fibers occurred at low to high density in most parts of the hypothalamus. GABA-like immunoreactive neurons were observed in some regions related to the pituitary gland (such as periventricular nucleus, paraventricular nucleus, arcuate nucleus and accessory magnocellular nucleus). These results provide morphological evidence for the presence of GABAergic neurons in the rat hypothalamo-pituitary system.  相似文献   

3.
The initial appearance of tyrosine hydroxylase (TH)-, serotonin (5-HT)-, gamma-aminobutyric acid (GABA)-, calcitonin gene-related peptide- (CGRP), substance P-, and synaptophysin-immunoreactivity in the rat pituitary gland, and in the related brain regions was investigated. Several groups of TH-immunoreactive neurons were first detected in the brain stem on day E17, and in the hypothalamus on day E18, followed by TH-immunoreactivity in the median eminence and infundibulum on E19–E20. TH-positive fibers appeared in the posterior lobe on day E20 and in the intermediate lobe on day P0. 5-HT-immunoreactivity was first detected on day E17 in neurons and nerve fibers in the brain stem and in the median eminence, respectively. On day E18, a few 5-HT-immunoreactive fibers were detected in the posterior lobe of the pituitary, although they were consistently seen in the infundibulum from day E19. In newborn rats, some 5-HT-immunoreactive fibers, but no neurons, were seen in the hypothalamus. GABA immunoreactivity appeared on day E17 in several nerve fibers of the infundibulum and the posterior lobe. Some neurons in the cortex and ventral hypothalamus transiently expressed GABA immunoreactivity on day E17. In newborn rats, a plexus of GABA-immunoreactive fibers was detected for the first time in the intermediate lobe. No CGRP-immunoreactive fibers could be detected in the prenatal pituitary. On day P10, CGRP-immunoreactive fibers were first observed in the anterior lobe. Later their number considerably increased, while only sporadic fibers could be found in the intermediate or posterior lobes. No substance P-immunoreactivity could be detected in any of the lobes in the embryonic or developing postnatal rat pituitary, instead the adult anterior lobe occasionally showed some substance P-immunoreactive fibers. Synaptophysin-immunoreactivity was first detected in the posterior lobe on day E20, followed shortly by its expression in the intermediate lobe in newborn rats. The time course of GABA and 5-HT expression revealed in the present study suggests that these transmitters, which are initially expressed in the developing pituitary clearly before synaptic maturation, may act as trophic molecules during the prenatal period.  相似文献   

4.
Taurine, a γ-aminobutyric acid (GABA)-like acidic amino acid, has previously been shown to be prominently localized to astrocytes in the supraoptic nucleus, the neurons of which contain only small amounts, and to have inhibitory actions on supraoptic neuronal activity. In the present study, taurine distribution in the neurohypophysis was determined by using a well-characterized monoclonal antibody against taurine itself. Preembedding immunohistochemistry was performed at light and electron microscopic levels by using diaminobenzidine and gold-substituted silver-intensified peroxidase (GSSP) methods. At the light microscopic level, the distribution pattern and cellular localization of taurine immunoreactivity corresponded to that of glial fibrillary acidic protein. Pituicyte cell bodies and processes displayed dense taurine immunoreactivity. Electron microscopic observations revealed strong taurine GSSP reactions in these neural lobe astrocytes, but weak taurine reactivity was seen within only some neurosecretory axons. High-performance liquid chromatography analyses demonstrated that in vitro hypoosmotic stimulation (reduction of 40 mOsm/kg) of isolated posterior pituitaries resulted in preferential increases in taurine release into the bathing medium without increased release of other amino acids. Conversely, tissue concentrations of taurine significantly decreased with hypoosmotic perfusion, while glutamate, glutamine, and GABA concentrations were not reduced. These results indicate that taurine is mainly concentrated in neurohypophysial astrocytes, which are known to engulf the neurosecretory axonal processes and terminals. Taurine released from pituicytes under basal and hypoosmotic conditions may act to suppress axon terminal depolarization and thereby depress release of neurohypophysial peptides.J.Comp. Neurol. 381:513-523, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Glutamine is involved in a variety of metabolic processes, including recycling of the neurotransmitters glutamate and gamma-aminobutyric acid (GABA). The system N transporter SN1 mediates efflux as well as influx of glutamine in glial cells [Chaudhry et al. (1999), Cell, 99, 769-780]. We here report qualitative and quantitative data on SN1 protein expression in rat. The total tissue concentrations of SN1 in brain and in kidney are half and one-quarter, respectively, of that in liver, but the average concentration of SN1 could be higher in astrocytes than in hepatocytes. Light and electron microscopic immunocytochemistry shows that glutamatergic, GABAergic and, surprisingly, purely glycinergic boutons are ensheathed by astrocytic SN1 laden processes, indicating a role of glutamine in the production of all three rapid transmitters. A dedication of SN1 to neurotransmitter recycling is further supported by the lack of SN1 immunoreactivity in oligodendrocytes (cells rich in glutamine but without perisynaptic processes). All neuronal structures appear unlabelled implying that a different protein mediates glutamine uptake into nerve endings. In several regions, SN1 immunoreactivity is higher in association with GABAergic than glutamatergic synapses, in agreement with observations that exogenous glutamine increases output of transmitter glutamate but not GABA. Nerve terminals with low transmitter reuptake or high prevailing firing frequency are associated with high SN1 immunoreactivity in adjacent glia. Bergmann glia and certain other astroglia contain very low levels of SN1 immunoreactivity compared to most astroglia, including retinal Müller cells, indicating the possible existence of SN isoforms and alternative mechanisms for transmitter recycling.  相似文献   

6.
This work was undertaken to analyze if the effects of oral cadmium exposure through puberty, on plasma prolactin and gonadotropin levels are mediated by changes in amino acid contents in various brain areas in male rats. The contents of glutamate, glutamine, aspartate, GABA and taurine in the median eminence, anterior, mediobasal and posterior hypothalamus and prefrontal cortex in pubertal male rats exposed to 50 ppm of cadmium chloride (CdCl2) in the drinking waterfor 1 month (through puberty) were measured by high performance liquid chromatography (HPLC). Plasma prolactin, LH and FSH levels were measured by specific RIA methodology. Plasma prolactin levels decreased after cadmium exposure, whereas plasma levels of LH and FSH were not changed by the metal administration. After cadmium exposure, both glutamine and glutamate contents decreased in the median eminence and in anterior and posterior hypothalamus. Metal exposure also decreased aspartate content in anterior and posterior hypothalamus, but increased it in prefrontal cortex. GABA content decreased in any studied brain region after cadmium administration. Besides, the metal decreased taurine content in the median eminence, anterior and posterior hypothalamus and in prefrontal cortex. The results suggest that cadmium effects on plasma prolactin levels may be partially explained by the changes in aspartate, glutamate or taurine contents, but not by the decrease in GABA content in the brain regions studied.  相似文献   

7.
犬脑干持续缺血模型氨基酸含量的动态变化   总被引:1,自引:0,他引:1  
目的 :探讨氨基酸递质及调质在缺血性脑干损伤中的作用。方法 :建立犬脑干缺血模型 ,测定脑干缺血 3 0min组 ,缺血 3h、6h、12h后氨基酸的含量。结果 :与假手术组相比 ,Glu ,Asp ,Gly ,GABA ,Tau ,Ser ,Gln ,Ala及Thr的含量均随缺血时间的延长而不断增加。海风藤预处理可使缺血时Glu ,Asp及Ser含量的增高程度显著降低 ,使Gly ,GABA及Tau的增高显著加强。结论 :脑干持续缺血后Glu ,Asp及Ser可能是脑干缺血损害的生化基础。海风藤在脑干缺血中起神经保护作用  相似文献   

8.
Taurine-like immunoreactivity in the brain of the honeybee   总被引:1,自引:0,他引:1  
Taurine (2-aminoethanesulfonic acid) is one of the most abundant free amino acids in the insect central nervous system. We have investigated the distribution of taurine-like immunoreactivity in the brain of the honeybee with an antiserum recognizing fixed taurine. Taurine-like immunoreactivity appeared within neuronal perikarya, neurites, and terminals, whereas glial cells were unlabelled. All photoreceptor cells of the compound eyes and the ocelli were stained. So were the fibers of the anterior superior optic tract, which connects the optic lobes to the mushroom bodies in the median protocerebrum. In the mushroom bodies the majority of intrinsic Kenyon cells showed high levels of taurine-like immunoreactivity. The lateral antennoglomerular tract, which interconnects the mushroom bodies with the antennal lobes, was also intensely stained. In the antennal lobes, strong labelling was observed within a few fibers that invade a set of posterior glomeruli from the posterior margin. Sensory projections from the antennal nerve into the antennal lobes showed only intermediate levels of staining. Sensory projections into the dorsal lobe were devoid of taurine-like immunoreactivity. Labral, mandibular, maxillary, and labial nerves, which innervate the various parts of the feeding apparatus, contain a set of five to eight heavily stained fibers. A comparison of taurine-like immunoreactivity with glutamate- and GABA-like immunoreactivities in the brain of the honeybee indicates that the three amino acids are enriched in distinct neuronal populations.  相似文献   

9.
10.
N Lake 《Brain research》1992,596(1-2):124-132
The localizations of taurine, gamma-aminobutyric acid (GABA) and glial fibrillary acidic protein (GFAP) within the developing rat optic nerve were determined using immunocytochemical techniques on tissues from animals ranging in age from embryonic day 20 to postnatal 28 days. Mature nerves from 3-4-month-old adults were also examined. At the younger ages, taurine immunoreactivity was intense and localized specifically to the optic nerve axons, but by postnatal day 15 and thereafter its predominant localization was in macroglia. Some of these glia were astrocytes as indicated by the specific marker, GFAP. GABA immunoreactivity was present at the same time as taurine but was found only in macroglia. In mature nerves the patterns of taurine, GABA and GFAP distribution (within glia) were highly similar.  相似文献   

11.
Cells containing Type II glucocorticoid receptor (GR) immunoreactivity were identified in the rat pituitary gland by immunocytochemistry using a specific monoclonal antibody. At light microscopic level, GR immunoreactive cells were located in the intermediate lobe in addition to the well known GR-containing cell population in the anterior lobe. In both groups of cells GR appeared predominantly in the cell nuclei. Adrenalectomy resulted in a decrease in staining intensity of the anterior lobe and changed the pattern of fluorescence in a minority of cells where cytoplasmic staining became predominant. These changes appeared less marked in the intermediate lobe. Dexamethasone administration reversed the adrenalectomy-induced alterations of GR staining in both lobes. At the electron microscopic level, GR immunoreactive sites were revealed by the protein A-gold technique. In contrast to the distribution of fluorescence, GR was localized in cell nuclei as well as in the cytoplasm in both lobes. Quantitative estimates indicate that about 40% more immunoreactive sites are present in the anterior lobe than in the intermediate lobe. The presence of GR in the intermediate lobe suggests that this pituitary region, like the anterior lobe, is influenced by glucocorticoid hormones.  相似文献   

12.
13.
We observed nuclear swelling in glutamate (Glu)-treated astrocytes that was concomitant with but independent of astrocytic cell swelling. We confirmed Glu-induced nuclear swelling with nuclei isolated from astrocytes. Ammonia is metabolically related to Glu and could induce a nuclear swelling in intact astrocytes but shrinkage in isolated nuclei. Other compounds such as glutamine, aspartate, taurine, glycine, and ATP did not cause any nuclear swelling in isolated nuclei of astrocytes. Surprisingly, Glu and ammonia did not induce nuclear swelling in microglia, C6, HEK 293, or Hep G2 cell lines in cultures and their isolated nuclei. The Glu- and ammonia-induced nuclear size changes appear to be a specific response of astrocytes to these two closely related metabolic compounds.  相似文献   

14.
The total content and extent of processing of the gamma 3MSH and beta-endorphin-containing N- and C-terminal domains of proopiomelanocortin were determined in the anterior and intermediate lobes of the pituitaries and in 11 regions of the brains of three Rhesus monkeys. Most immunoreactive gamma 3MSH and beta-endorphin was located in the pituitary lobes, although significant amounts were also found in several brain regions. Sephadex column chromatography revealed that gamma 3MSH immunoreactivity was found primarily as 4K and 9K forms; no gamma 1MSH was detected. beta-Endorphin immunoreactivity was found as beta-endorphin, beta-lipotropin, and as a 5K form which may represent beta-endorphin extended N-terminally by part or all of beta-MSH. In the anterior lobe of the pituitary, the predominant products were 9K gamma 3MSH and beta-lipotropin; in the intermediate lobe, more processed forms (4K gamma 3MSH, beta-endorphin and 5K beta-endorphin) appeared to be preferentially stored. The pattern of processing in various brain regions was similar to that of the intermediate lobe of the pituitary.  相似文献   

15.
Acetylcholine in the rat pituitary: a possible humoral factor   总被引:2,自引:0,他引:2  
Significant amounts of acetylcholine (ACh) were detected in each of the 3 lobes of the rat pituitary (3-6 pmol/anterior lobe, 3 pmol/intermediate lobe and 1.8 pmol/posterior lobe). In the anterior lobes of cyclic rats the levels of ACh varied with the estrous cycle, with daily peaks being observed on the days of proestrus and estrus. The occurrence of ACh, apparently as a humoral factor, appears to be unique to the anterior pituitary.  相似文献   

16.
Pituicytes of pituitary neural lobe are rich in the amino acid taurine, which they release upon hypoosmotic stimulation. As a generally inhibitory amino acid, taurine is thought to activate receptors on neural lobe nerve terminals and exert some control over hormone release. Previous work has shown the presence of glycine and GABA(A) receptors in neural lobe, both of which have affinity for taurine. Using a perifused explant system, we studied the effects of taurine activation of glycine and GABA(A) receptors on basal hormone release. Somewhat surprisingly, taurine induced increases in basal release of both vasopressin and oxytocin. Taurine-induced increases in oxytocin release were blocked by bicuculline, suggesting involvement of GABA(A) receptors. Increases in vasopressin release were not blocked by bicuculline, indicating involvement of receptors other than GABA(A). Although combined bicuculline and strychnine, an antagonist at most glycine receptors, also did not block increased vasopressin release, picrotoxin (a Cl(-) channel blocker) was effective in blocking increases in both vasopressin and oxytocin release. The other receptor(s) involved in taurine actions is postulated to be strychnine-insensitive glycine receptors. Thus, taurine in neural lobe may act via both a GABA(A) receptor and one or more types of glycine receptors to depolarize nerve terminal membranes under basal conditions. Taurine-induced partial depolarization resulting in Na(+) channel inactivation is probably responsible for its previously observed inhibition of stimulated hormone release from neural lobe.  相似文献   

17.
The nervous system contains an abundance of taurine, a neuroactive sulfonic acid. Antibodies were generated against two cloned high-affinity taurine transporters, referred to in this study as TAUT-1 and TAUT-2. The distribution of such was compared with the distribution of taurine in the rat brain, pituitary, and retina. The cellular pattern of [(3)H] taurine uptake in brain slices, pituitary slices, and retinas was examined by autoradiography. TAUT-2 was predominantly associated with glial cells, including the Bergmann glial cells of the cerebellum and astrocytes in brain areas such as hippocampus. Low-level labeling for TAUT-2 was also observed in some neurones such as CA1 pyramidal cells. TAUT-1 distribution was more limited; in the posterior pituitary TAUT-1 was associated with the pituicytes but was absent from glial cells in the intermediate and anterior lobes. Conversely, in the brain TAUT-1 was associated with cerebellar Purkinje cells and, in the retina, with photoreceptors and bipolar cells. Our data suggest that intracellular taurine levels in glial cells and neurons may be regulated in part by specific high-affinity taurine transporters. The heterogeneous distribution of taurine and its transporters in the brain does not reconcile well with the possibility that taurine acts solely as a ubiquitous osmolyte in nervous tissues.  相似文献   

18.
The glutamine-glutamate/GABA cycle is critical for the developing brain as glutamatergic neurotransmission is important for neuronal survival and drives synaptogenesis and activity-dependent synaptic plasticity. GABAergic transmission may be essential for the formation of neural circuits. Recently a cDNA encoding a brain-enriched System A transporter (SAT1/ATA1), has been identified which may provide glutamine to neurons for the biosynthesis of neurotransmitters glutamate and gamma-aminobutyric acid (GABA). In this study, we have examined the developmental expression pattern of SAT1/ATA1 protein in rat brain by immunohistochemistry. We find that SAT1/ATA1 was present in the developing rat brain at all gestational ages examined including prenatal days 17 and 19 and postnatal days 2, 10, 14, and adult. SAT1/ATA1 immunoreactivity was seen in the neocortex, hippocampus, and neuroepithelium at the earliest time point examined, prenatal day 17. SAT1/ATA1 was prominent in the striatum, the hippocampus and the cortex in the postnatal animals. In adults, SAT1/ATA1 was limited to the cell body region while in developing animals SAT1/ATA1 protein was found in neuronal processes. These results contribute to our understanding of the relationship between the cycling of glutamate and glutamine between astrocytes and glia and the pathophysiological conditions that occur in hypoxic ischemic encephalopathy.  相似文献   

19.
Postnatal development of proopiomelanocortin gene expression in the rat pituitary was examined using in situ hybridization histochemistry. In adult rats, a very high density of hybridization signals was seen in the intermediate lobe of the pituitary, while only a moderate density occurred in the anterior lobe. No evidence of hybridization was detected in the posterior lobe. At birth, both the intermediate and anterior lobes had low to moderate frequencies of hybridization signals but a rapid rise to moderate density was noted by the 8th postnatal day. Radioactive labelling in the intermediate lobe continued to increase sharply with age to reach a plateau at postnatal day 28, while hybridization signals in the anterior lobe levelled off at postnatal day 8 with no subsequent rise in density.  相似文献   

20.
The sensorimotor synapse of Aplysia has been used extensively to study the cellular and molecular basis for learning and memory. Recent physiologic studies suggest that glutamate may be the excitatory neurotransmitter used by the sensory neurons (Dale and Kandel [1993] Proc Natl Acad Sci USA. 90:7163-7167; Armitage and Siegelbaum [1998] J Neurosci. 18:8770-8779). We further investigated the hypothesis that glutamate is the excitatory neurotransmitter at this synapse. The somata of sensory neurons in the pleural ganglia showed strong glutamate immunoreactivity. Very intense glutamate immunoreactivity was present in fibers within the neuropil and pleural-pedal connective. Localization of amino acids metabolically related to glutamate was also investigated. Moderate aspartate and glutamine immunoreactivity was present in somata of sensory neurons, but only weak labeling for aspartate and glutamine was present in the neuropil or pleural-pedal connective. In cultured sensory neurons, glutamate immunoreactivity was strong in the somata and processes and was very intense in varicosities; consistent with localization of glutamate in sensory neurons in the intact pleural-pedal ganglion. Cultured sensory neurons showed only weak labeling for aspartate and glutamine. Little or no gamma-aminobutyric acid or glycine immunoreactivity was observed in the pleural-pedal ganglia or in cultured sensory neurons. To further test the hypothesis that the sensory neurons use glutamate as a transmitter, in situ hybridization was performed by using a partial cDNA clone of a putative Aplysia high-affinity glutamate transporter. The sensory neurons, as well as a subset of glia, expressed this mRNA. Known glutamatergic motor neurons B3 and B6 of the buccal ganglion also appeared to express this mRNA. These results, in addition to previous physiological studies (Dale and Kandel [1993] Proc Natl Acad Sci USA. 90:7163-7167; Trudeau and Castellucci [1993] J Neurophysiol. 70:1221-1230; Armitage and Siegelbaum [1998] J Neurosci. 18:8770-8779)) establish glutamate as an excitatory neurotransmitter of the sensorimotor synapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号