首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin-mediated vasodilation has been proposed as a determinant of in vivo insulin sensitivity. We tested whether sustained vasodilation with adenosine could overcome the muscle insulin resistance present in mildly overweight patients with essential hypertension. Using the forearm technique, we measured the response to a 40-min local intraarterial infusion of adenosine given under fasting conditions (n = 6) or superimposed on a euglycemic insulin clamp (n = 8). In the fasting state, adenosine-induced vasodilation (forearm blood flow from 2.6 +/- 0.6 to 6.0 +/- 1.2 ml min-1dl-1, P < 0.001) was associated with a 45% rise in muscle oxygen consumption (5.9 +/- 1.0 vs 8.6 +/- 1.7 mumol min-1dl-1, P < 0.05), and a doubling of forearm glucose uptake (0.47 +/- 0.15 to 1.01 +/- 0.28 mumol min-1dl-1, P < 0.05). The latter effect remained significant also when expressed as a ratio to concomitant oxygen balance (0.08 +/- 0.03 vs 0.13 +/- 0.04 mumol mumol-1, P < 0.05), whereas for all other metabolites (lactate, pyruvate, FFA, glycerol, citrate, and beta-hydroxybutyrate) this ratio remained unchanged. During euglycemic hyperinsulinemia, whole-body glucose disposal was stimulated (to 19 +/- 3 mumol min-1kg-1), but forearm blood flow did not increase significantly above baseline (2.9 +/- 0.2 vs 3.1 +/- 0.2 ml min-1dl-1, P = NS). Forearm oxygen balance increased (by 30%, P < 0.05) and forearm glucose uptake rose fourfold (from 0.5 to 2.3 mumol min-1dl-1, P < 0.05). Superimposing an adenosine infusion into one forearm resulted in a 100% increase in blood flow (from 2.9 +/- 0.2 to 6.1 +/- 0.9 ml min-1dl-1, P < 0.001); there was, however, no further stimulation of oxygen or glucose uptake compared with the control forearm. During the clamp, the ratio of glucose to oxygen uptake was similar in the control and in the infused forearms (0.27 +/- 0.11 and 0.23 +/- 0.09, respectively), and was not altered by adenosine (0.31 +/- 0.9 and 0.29 +/- 0.10). We conclude that in insulin-re15-76sistant patients with hypertension, adenosine-induced vasodilation recruits oxidative muscle tissues and exerts a modest, direct metabolic effect to promote muscle glucose uptake in the fasting state. Despite these effects, however, adenosine does not overcome muscle insulin resistance.  相似文献   

2.
1. Experimental elevation of plasma non-esterified fatty acid concentrations has been postulated to decrease insulin-stimulated glucose oxidation and storage rates. Possible mechanisms were examined by measuring skeletal muscle glycogen synthase activity and muscle glycogen content before and during hyperinsulinaemia while fasting plasma non-esterified fatty acid levels were maintained. 2. Fasting plasma non-esterified fatty acid levels were maintained in seven healthy male subjects by infusion of 20% (w/v) Intralipid (1 ml/min) for 120 min before and during a 240 min hyperinsulinaemic euglycaemic clamp (100 m-units h-1 kg-1) combined with indirect calorimetry. On the control day, 0.154 mol/l NaCl was infused. Vastus lateralis muscle biopsy was performed before and at the end of the insulin infusion. 3. On the Intralipid study day serum triacylglycerol (2.24 +/- 0.20 versus 0.67 +/- 0.10 mmol/l), plasma nonesterified fatty acid (395 +/- 13 versus 51 +/- 1 mumol/l), blood glycerol (152 +/- 2 versus 11 +/- 1 mumol/l) and blood 3-hydroxybutyrate clamp levels [mean (95% confidence interval)] [81 (64-104) versus 4 (3-5) mumol/l] were all significantly higher (all P less than 0.001) than on the control study day. Lipid oxidation rates were also elevated (1.07 +/- 0.07 versus 0.27 +/- 0.08 mg min-1 kg-1, P less than 0.001). During the clamp with Intralipid infusion, insulin-stimulated whole-body glucose disposal decreased by 28% (from 8.53 +/- 0.77 to 6.17 +/- 0.71 mg min-1 kg-1, P less than 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effect of glucose infusion alone (175 mg/kg bolus dose followed by 4 mg min-1 kg-1 for 70 min) and in combination with forearm exercise on the exchange of glucose, alanine, glutamine and other metabolites and amino acids across forearm muscle was studied in six healthy individuals after an overnight fast. Arterial and deep venous blood was sampled and a mercury strain gauge plethysmograph was used to measure forearm blood flow. Total body energy expenditure and net glucose and fat oxidation were assessed by indirect calorimetry. The infusion of glucose increased the mean arterial blood glucose concentration from 4.95 +/- 0.19 (SEM) to a plateau of 9.6-9.9 mmol/l (P less than 0.01). The arterial blood concentrations of alanine and glutamine were not significantly altered but that of lactate increased from 0.50 +/- 0.02 to 0.65 +/- 0.05 mmol/l (P less than 0.02) and that of pyruvate increased from 46 +/- 5 to 72 +/- 6 mumol/l (P less than 0.01). In the resting state glucose administration did not significantly affect the lactate/pyruvate ratio in arterial or venous blood. Arterial plasma insulin concentration increased four-fold and total ketone body concentration decreased two- to three-fold. After glucose administration, alanine release was suppressed (in all subjects) from a mean value of 153 +/- 22 to 57 +/- 16 nmol min-1 100 ml-1 of forearm (P less than 0.02) whereas that of glutamine was not significantly affected (160 +/- 30 to 143 +/- 29 nmol min-1 100 ml-1 of forearm). Lactate release, like that of alanine, decreased, whereas pyruvate was slowly released in the basal state and was taken up during glucose administration (P less than 0.01). These changes were associated with a decrease in the uptake of total ketone bodies to one-fifth to one-tenth of that in the basal state. The net amino acid balance across the forearm muscle bed was negative throughout the study but decreased from a mean value of -567 in the basal state to -300 nmol min-1 100 ml-1 of forearm after glucose administration for 60 min. This was predominantly due to decreased release of effluxing amino acids, particularly alanine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Insulin regulation of renal glucose metabolism in conscious dogs.   总被引:1,自引:7,他引:1       下载免费PDF全文
Previous studies indicating that postabsorptive renal glucose production is negligible used the net balance technique, which cannot partition simultaneous renal glucose production and glucose uptake. 10 d after surgical placement of sampling catheters in the left renal vein and femoral artery and a nonobstructive infusion catheter in the left renal artery of dogs, systemic and renal glucose and glycerol kinetics were measured with peripheral infusions of [3-3H]glucose and [2-14C]glycerol. After baseline measurements, animals received a 2-h intrarenal infusion of either insulin (n = 6) or saline (n = 6). Left renal vein insulin concentration increased from 41 +/- 8 to 92 +/- 23 pmol/l (P < 0.05) in the insulin group, but there was no change in either arterial insulin, (approximately 50 pmol/l), glucose concentrations (approximately 5.4 mmol/l), or glucose appearance (approximately 18 mumol.kg-1.min-1). Left renal glucose uptake increased from 3.1 +/- 0.4 to 5.4 +/- 1.4 mumol.kg-1.min-1 (P < 0.01) while left renal glucose production decreased from 2.6 +/- 0.9 to 0.7 +/- 0.5 mumol.kg-1.min-1 (P < 0.01) during insulin infusion. Renal gluconeogenesis from glycerol decreased from 0.23 +/- 0.06 to 0.17 +/- 0.04 mumol.kg-1.min-1 (P < 0.05) during insulin infusion. These results indicate that renal glucose production and utilization account for approximately 30% of glucose turnover in postabsorptive dogs. Physiological hyperinsulinemia suppresses renal glucose production and stimulates renal glucose uptake by approximately 75%. We conclude that the kidney makes a major contribution to systemic glucose metabolism in the postabsorptive state.  相似文献   

5.
Despite ample evidence that the kidney can both produce and use appreciable amounts of glucose, the human kidney is generally regarded as playing a minor role in glucose homeostasis. This view is based on measurements of arteriorenal vein glucose concentrations indicating little or no net release of glucose. However, inferences from net balance measurements do not take into consideration the simultaneous release and uptake of glucose by the kidney. Therefore, to assess the contribution of release and uptake of glucose by the human kidney to overall entry and removal of plasma glucose, we used a combination of balance and isotope techniques to measure renal glucose net balance, fractional extraction, uptake and release as well as overall plasma glucose appearance and disposal in 10 normal volunteers under basal postabsorptive conditions and during a 3-h epinephrine infusion. In the basal postabsorptive state, there was small but significant net output of glucose by the kidney (66 +/- 22 mumol.min-1, P = 0.016). However, since renal glucose fractional extraction averaged 2.9 +/- 0.3%, there was considerable renal glucose uptake (2.3 +/- 0.2 mumol.kg-1.min-1) which accounted for 20.2 +/- 1.7% of systemic glucose disposal (11.4 +/- 0.5 mumol.kg-1.min-1). Renal glucose release (3.2 +/- 0.2 mumol.kg-1.min-1) accounted for 27.8 +/- 2.1% of systemic glucose appearance (11.4 +/- 0.5 mumol.kg-1.min-1). Epinephrine infusion, which increased plasma epinephrine to levels observed during hypoglycemia (3722 +/- 453 pmol/liter) increased renal glucose release nearly twofold (5.2 +/- 0.5 vs 2.8 +/- 0.1 mol.kg-1.min-1, P = 0.01) so that at the end of the infusion, renal glucose release accounted for 40.3 +/- 5.5% of systemic glucose appearance and essentially all of the increase in systemic glucose appearance. These observations suggest an important role for the human kidney in glucose homeostasis.  相似文献   

6.
The disturbance of very low density lipoprotein (VLDL) metabolism that occurs as a result of intensive insulin treatment and during a euglycaemic clamp have been investigated in a rat model. Normal rats were maintained with fed blood glucose levels below 5 mmol l-1 for 8 weeks by subcutaneous insulin injections (normal fed levels 5.8 +/- 0.4 (SD) mmol l-1). Glucose requirement to maintain a glucose clamp was significantly reduced (116 +/- 3 mumol min-1 kg-1 (SE) vs. 173 +/- 5 mumol min-1 kg-1, P less than 0.001), compared with weight-matched normal control rats. In the fasting state (blood glucose 3.5 +/- 0.2 mmol l-1 vs. 3.9 +/- 0.1 mmol l-1, NS) plasma non-esterified fatty acid levels were reduced. Fasting VLDL-triglyceride turnover, measured by bolus injection of 14C-VLDL, was also lower (3.17 +/- 0.12 mumol min-1 kg-1 vs. 3.50 +/- 0.07 mumol min-1 kg-1, P less than 0.05). Despite decreased turnover, insulin over-treated rats had normal plasma triglyceride concentrations indicating a removal defect. At the end of a 3-h euglycaemic clamp, plasma triglyceride concentrations and VLDL-triglyceride turnover were decreased in both normal control and insulin over-treated animals, and turnover remained significantly lower in the insulin over-treated rats (2.59 +/- 0.13 mumol min-1 kg-1 vs. 3.08 +/- 0.10 mumol min-1 kg-1, P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Insulin resistance has been reported in normal ageing but discrepancies between such studies may be related to compounding factors such as body composition and exercise patterns. We employed a two-step hyperinsulinaemic euglycaemic clamp to assess peripheral and hepatic tissue insulin sensitivity and glucose recycling in 13 elderly (E) and 14 young (Y) healthy subjects controlling for the above factors. There was no difference in basal hepatic glucose production (E: 2.36 +/- 0.06, Y: 2.47 +/- 0.1 mg kg-1 min-1; P = 0.4). At step 1 (insulin infusion 15 mU kg-1 h-1) glucose turnover was similar (E: 2.65 +/- 0.13, Y: 2.88 +/- 0.22 mg kg-1 min-1; P = 0.4) but hepatic glucose production was lower in the elderly group (0.20 +/- 0.16 vs 0.64 +/- 0.10 mg kg-1 min-1; P = 0.03). At step 2 (insulin infusion 50 mU kg-1 h-1) glucose turnover was similar (E: 7.60 +/- 0.24, Y: 8.05 +/- 0.34 mg kg-1 min-1; P = 0.3) and hepatic glucose production was equal but negative (E: -1.35 +/- 0.18, Y: -1.34 +/- 0.22 mg kg-1 min-1; P = 0.9). Glucose recycling did not differ between the groups at any stage. Similar serum insulin levels were achieved in both groups at each step. Decreased glucose tolerance was confirmed in E with a higher 2 h blood glucose after an OGTT (5.3 +/- 0.4 vs 4.1 +/- 0.3 mmol l-1; P = 0.03) but incremental insulin response was similar (E: 3236 +/- 289, Y: 3586 +/- 463 mU l-1 min-1; P = 0.5). We conclude that changes in hepatic tissue insulin sensitivity do not cause the deterioration in glucose tolerance observed with age. A small reduction in both peripheral tissue insulin sensitivity and late insulin secretion may be responsible.  相似文献   

8.
1. The purpose of the present study was to maintain physiological plasma non-esterified fatty acid levels and to (i) examine their effect on skeletal muscle insulin-stimulated glucose uptake and metabolite exchange using the forearm technique, and (ii) evaluate their effect on whole-body glucose uptake and fuel oxidation. 2. Intralipid (10%) and heparin (Lipid) or saline (Control) was administered to eight healthy male subjects on separate occasions for 210 min. Insulin, glucagon and somatostatin were administered from 60 to 210 min in each study and euglycaemia was maintained. 3. Plasma non-esterified fatty acid levels plateaued at 420 +/- 50 mumol/l with the Lipid infusion but were completely suppressed during the Control clamp. Forearm non-esterified fatty acid uptake increased with the Lipid infusion (+50 +/- 10 nmol min-1 100 ml-1 of forearm) and was accompanied by a significant decrease in forearm glucose uptake (+3.23 +/- 0.25 versus +3.65 +/- 0.35 mumol min-1 100 ml-1 of forearm, Lipid and Control, respectively; P less than 0.05) and alanine release (-84 +/- 12 versus -113 +/- 15 nmol min-1 100 ml-1 of forearm, Lipid and Control, respectively; P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
To investigate the temporal response of the liver to insulin and portal glucose delivery, somatostatin was infused into four groups of 42-h-fasted, conscious dogs (n = 6/group), basal insulin and glucagon were replaced intraportally, and hyperglycemia was created via a peripheral glucose infusion for 90 min (period 1). This was followed by a 240-min experimental period (period 2) in which hyperglycemia was matched to period 1 and either no changes were made (CON), a fourfold rise in insulin was created (INS), a portion of the glucose (22.4 mumol.kg-1.min-1) was infused via the portal vein (Po), or a fourfold rise in insulin was created in combination with portal glucose infusion (INSPo). Arterial insulin levels were similar in all groups during period 1 (approximately 45 pM) and were 45 +/- 9, 154 +/- 20, 43 +/- 7, and 128 +/- 14 pM during period 2 in CON, INS, Po, and INSPo, respectively. The hepatic glucose load was similar between periods and among groups (approximately 278 mumol.kg-1.min-1). Net hepatic glucose output was similar among groups during period 1 (approximately 0.1 mumol.kg-1.min-1) and did not change significantly in CON during period 2. In INS net hepatic glucose uptake (NHGU; mumol.kg-1.min-1) was -3.8 +/- 3.3 at 15 min of period 2 and did not reach a maximum (-15.9 +/- 6.6) until 90 min. In contrast, NHGU reached a maximum of -13.0 +/- 3.7 in Po after only 15 min of period 2. In INSPo, NHGU reached a maximum (-23.6 +/- 3.5) at 60 min. Liver glycogen accumulation during period 2 was 21 +/- 10, 84 +/- 17, 65 +/- 16, and 134 +/- 17 mumol/gram in CON, INS, Po, and INSPo, respectively. The increment (period 1 to period 2) in the active form of liver glycogen synthase was 0.7 +/- 0.4, 6.5 +/- 1.2, 2.8 +/- 1.0, and 8.5 +/- 1.3% in CON, INS, Po, and INSPo, respectively. Thus, in contrast to insulin, the portal signal rapidly activates NHGU. In addition, the portal signal independent of a rise in insulin, can cause glycogen accumulation in the liver.  相似文献   

10.
Ketone body transport in the human neonate and infant.   总被引:2,自引:0,他引:2       下载免费PDF全文
Using a continuous intravenous infusion of D-(-)-3-hydroxy[4,4,4-2H3]butyrate tracer, we measured total ketone body transport in 12 infants: six newborns, four 1-6-mo-olds, one diabetic, and one hyperinsulinemic infant. Ketone body inflow-outflow transport (flux) averaged 17.3 +/- 1.4 mumol kg-1 min-1 in the neonates, a value not different from that of 20.6 +/- 0.9 mumol kg-1 min-1 measured in the older infants. This rate was accelerated to 32.2 mumol kg-1 min-1 in the diabetic and slowed to 5.0 mumol kg-1 min-1 in the hyperinsulinemic child. As in the adult, ketone turnover was directly proportional to free fatty acid and ketone body concentrations, while ketone clearance declined as the circulatory content of ketone bodies increased. Compared with the adult, however, ketone body turnover rates of 12.8-21.9 mumol kg-1 min-1 in newborns fasted for less than 8 h, and rates of 17.9-26.0 mumol kg-1 min-1 in older infants fasted for less than 10 h, were in a range found in adults only after several days of total fasting. If the bulk of transported ketone body fuels are oxidized in the infant as they are in the adult, ketone bodies could account for as much as 25% of the neonate's basal energy requirements in the first several days of life. These studies demonstrate active ketogenesis and quantitatively important ketone body fuel transport in the human infant. Furthermore, the qualitatively similar relationships between the newborn and the adult relative to free fatty acid concentration and ketone inflow, and with regard to ketone concentration and clearance rate, suggest that intrahepatic and extrahepatic regulatory systems controlling ketone body metabolism are well established by early postnatal life in humans.  相似文献   

11.
We have minimized methodological errors in the isotope dilution technique by using stable isotope, [6,6-2H2]glucose, thus avoiding the problem of contamination of tritiated glucose tracers and, by maintaining a constant plasma tracer enrichment have reduced error due to mixing transients. Using these modifications we have calculated hepatic glucose production in 20 patients with non-insulin-dependent diabetes mellitus during low (1 mU kg-1 min-1) and high (8 mU kg-1 min-1) dose insulin infusions. Mean fasting hepatic glucose production was 14.2 +/- 0.8 mumol kg-1 min-1. This suppressed by only 68% to 4.6 +/- 0.8 mumol kg-1 min-1 during the low-dose insulin infusion (plasma insulin 0.85 +/- 0.05 nmol l-1) and did not suppress further during the high-dose insulin infusion (plasma insulin 14.55 +/- 0.83 nmol l-1). Hepatic glucose production was significantly higher than zero throughout the study. Thus, we have found that minimization of known errors in the isotope dilution technique results in physiologically plausible and significantly positive values for hepatic glucose production indicating that the liver is resistant to insulin in patients with non-insulin-dependent diabetes mellitus.  相似文献   

12.
Effect of gut-derived acetate on glucose turnover in man   总被引:1,自引:0,他引:1  
1. The effect of acetate absorbed from the gut on glucose turnover has been determined in four healthy subjects during both fasting and an intravenous glucose infusion by using [U-13C]glucose. 2. In the first part of the study, after an overnight fast, a tracer dose of [U-13C]glucose was infused at a constant rate along with an infusion of saline for 7 h. In the second part the saline infusion was replaced by glucose at 4.25 mg min-1 kg-1. In both studies 15 mmol of sodium acetate was given by mouth at 15 min intervals from the fourth to the sixth hour. Glucose turnover, respiratory quotient, metabolic rate and blood levels of acetate, 3-hydroxybutyrate, lactate, insulin, glucagon and gastric inhibitory polypeptide were measured. 3. Glucose turnover rates (means +/- SEM) were 1.88 +/- 0.1 mg min-1 kg-1 during fasting and 4.0 +/- 0.08 mg min-1 kg-1 during glucose infusion. Acetate had no effect on glucose turnover, insulin, glucagon and gastric inhibitory polypeptide levels, but temporarily halted the rise in free fatty acids seen during the fasting study. No changes in oxygen consumption or carbon dioxide output occurred, in keeping with previous observations that acetate substitutes for lipid oxidation during metabolism and has no direct effect on glucose turnover.  相似文献   

13.
Glucose tolerance deteriorates dramatically with advancing age. It is not known whether the underlying pathophysiology is different in older subjects. We employed a two step hyperinsulinaemic euglycaemic glucose clamp with [6(14)C] glucose infusion to compare peripheral and hepatic insulin sensitivity in eight elderly (EAGT) with eight young (YAGT) subjects with abnormal (matched) glucose tolerance and nine elderly subjects with normal glucose tolerance (ENGT). There was no difference in basal HGO (EAGT 14.5 +/- 0.9, YAGT 15.3 +/- 1.1 mumol kg-1 min-1). Glucose turnover was similar in both groups at step 1 (EAGT 13.2 +/- 0.8, YAGT 13.4 +/- 0.8 mumol kg-1 min-1) and step 2 (EAGT 25.1 +/- 3.1, YAGT 27.2 +/- 2.7 mumol kg-1 min-1). HGO was lower in the EAGT subjects at step 1 (2.3 +/- 0.4 vs. 4.3 +/- 0.6 mumol kg-1 min-1 P = 0.01). Incremental serum insulin response to oral glucose was comparable (EAGT 66.8 +/- 11.6 YAGT 57.8 +/- 12.2 mU l-1.h). Compared to the ENGT group the EAGT group was insulin resistant with a lower MCR of glucose at step 1 (2.03 +/- 0.28 vs. 3.23 +/- 0.44 ml kg-1 min-1 P = 0.04) and at step 2 (6.18 +/- 0.83 vs. 9.64 +/- 0.38 ml kg-1 min-1 P = 0.004) and had a lower early insulin response (AUC 0-30 min 5.9 +/- 1.1 vs. 9.8 +/- 1.4 mU l-1.h P = 0.04).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Very little is known about the regulation of protein metabolism in adipose tissue. In this study systemic, adipose tissue, and forearm phenylalanine kinetics were determined in healthy postabsorptive volunteers before and during a 2-h glucose infusion (7 mg.kg-1.min-1). [3H]Phenylalanine was infused and blood was sampled from a radial artery, a subcutaneous abdominal vein, and a deep forearm vein. Adipose tissue and forearm blood flow were measured with 133Xe and plethysmography, respectively, and body fat mass was determined by dual energy x-ray absorptiometry. During glucose infusion, glucose concentration increased from 86 +/- 2 to 228 +/- 13 mg/dl and insulin concentration increased from 6.6 +/- 0.6 to 35.0 +/- 3.9 mU/liter, both P < 0.001. Systemic phenylalanine appearance decreased from 40.3 +/- 1.9 to 37.0 +/- 1.6 mumol/min during glucose infusion (P < 0.05). Baseline whole body adipose tissue phenylalanine release (5.2 +/- 1.4 mumol/min) was approximately 12% of systemic phenylalanine appearance and decreased (P < 0.05) to 2.3 +/- 0.9 mumol/min during glucose infusion. In contrast, phenylalanine release from the forearm did not change during glucose infusion. These results indicate that adipose tissue is a small but significant contributor to systemic phenylalanine appearance. Phenylalanine release from adipose tissue like lipolysis, is relatively sensitive to hyperinsulinemia.  相似文献   

15.
1. 31P nuclear magnetic resonance spectroscopy and the hyperinsulinaemic-euglycaemic clamp were used simultaneously to assess the effect of insulin on intracellular pH and the major phosphorus-containing metabolites of normal human skeletal muscle in vivo in four normal subjects. 2. Insulin and glucose were infused for 120 min. Plasma insulin increased approximately 10-fold over preclamp levels (5.6 +/- 0.9 m-units/l pre-clamp and 54 +/- 5 m-units/l over the last hour of infusion; mean +/- SEM, n = 4). Plasma glucose concentration did not change significantly (5.4 +/- 0.2 mmol/l pre-clamp and 5.5 +/- 0.1 mmol/l over the last hour of infusion). 3. Insulin and glucose infusion resulted in a decline in the intracellular pH of forearm muscle of 0.027 +/- 0.007 unit/h (P less than 0.01), whereas in control studies of the same subjects, pH rose by 0.046 +/- 0.005 unit/h (P less than 0.001). 4. In the clamp studies, intracellular inorganic phosphate concentration rose by 18%/h, whereas ATP, phosphocreatine and phosphomonoester concentrations did not change. In plasma, inorganic phosphate concentration was 1.16 +/- 0.05 mmol/l before infusion, and this decreased by a mean rate of 0.14 mmol h-1 l-1. No change was observed in any of these intracellular metabolites in the control studies. 5. The results show that, under physiological conditions, insulin does not raise intracellular pH in human muscle, and thus cannot influence muscle metabolism by this mechanism. The results also suggest that insulin causes a primary increase in the next flux of inorganic phosphate across the muscle cell membrane.  相似文献   

16.
OBJECTIVE--To examine the hormonal mechanisms underlying the variability in glycemic control during the different phases of the menstrual cycle in women with insulin-dependent diabetes mellitus (IDDM). RESEARCH DESIGN AND METHODS--Hyperglycemic (11.7 +/- 0.1 mM), hyperinsulinemic (24 +/- 3 mU/L) clamp studies were performed in 16 women with IDDM during the follicular (day 8 +/- 1) and luteal (day 23 +/- 1) phases of the menstrual cycle. Seven of the patients (group 1) experienced worsening glucose control during the luteal phase, whereas nine patients (group 2) did not. RESULTS--In group 1, glucose metabolism fell from 30.2 +/- 3.8 mumol.kg-1.min-1 during the follicular phase to 24.5 +/- 2.0 mumol.kg-1.min-1 during the luteal phase (P = 0.09), whereas in group 2 it increased from 18.5 +/- 1.2 to 23.2 +/- 2.3 mumol.kg-1.min-1 (P = 0.03). The decrease in glucose metabolism during the luteal phase in patients in group 1 was associated with a significant rise in the serum estradiol levels from the follicular to luteal phase (164 +/- 39 vs. 352 +/- 59 pM, P = 0.006), whereas this rise was not observed in group 2 (334 +/- 156 vs. 423 +/- 74 pM, NS). Changes in other reproductive hormones (progesterone, testosterone, dihydrotestosterone, androstenedione, luteinizing hormone, follicular-stimulating hormone, or prolactin) were not related to the differences in glucose uptake in the two groups. CONCLUSIONS--1) Marked heterogeneity in glucose metabolism is seen throughout the menstrual cycle in women with IDDM, 2) a subgroup of patients exhibits worsening premenstrual hyperglycemia and a decline in insulin sensitivity during the luteal phase, and 3) the deterioration in glucose uptake in this subgroup was associated with a greater increment in estradiol levels from the follicular to the luteal phase.  相似文献   

17.
Acute hyperinsulinaemia, achieving insulin levels within the physiological range, induces sodium retention. At the same time an activation of the renin-angiotensin system occurs, with a rise in plasma renin activity (PRA) and angiotensin-II level but no change in plasma aldosterone. After administration of higher, pharmacological doses of insulin an increase in systolic blood pressure and heart rate can also be observed, while further increases in PRA and angiotensin-II are noted. To determine whether angiotensin-II is involved in observed insulin actions, we studied the renal and cardiovascular effects of three dosages of insulin (50 (Ins I), 300 (Ins II) and 500 (Ins III) mU kg-1 h-1) in healthy subjects after one week of treatment with the angiotensin-I converting enzyme inhibitor enalapril (10 mg twice a day), using the euglycaemic clamp technique. Control data were obtained from two previously conducted experiments in the same subjects, one with infusion of insulin and one with the insulin solvent only. The effect of insulin on fractional sodium excretion, blood pressure and heart rate was unaffected by enalapril, which precludes any involvement of the renin-angiotensin system with regard to these aspects of insulin action. Insulin sensitivity increased significantly during treatment with enalapril (with enalapril: Ins I: 11.3 +/- 3.0, Ins II: 20.0 +/- 3.4 and Ins III: 20.6 +/- 3.9 mg kg-1 min-1 glucose (mean +/- SD); without enalapril: Ins I: 8.7 +/- 2.3, Ins II: 13.7 +/- 3.0 and Ins III: 15.5 +/- 3.1 mg kg-1 min-1 glucose; P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
To compare glutamine and alanine as gluconeogenic precursors, we simultaneously measured their systemic turnovers, clearances, and incorporation into plasma glucose, their skeletal muscle uptake and release, and the proportion of their appearance in plasma directly due to their release from protein in postabsorptive normal volunteers. We infused the volunteers with [U-14C] glutamine, [3-13C] alanine, [2H5] phenylalanine, and [6-3H] glucose to isotopic steady state and used the forearm balance technique. We found that glutamine appearance in plasma exceeded that of alanine (5.76 +/- 0.26 vs. 4.40 +/- 0.33 mumol.kg-1.min-1, P < 0.001), while alanine clearance exceeded glutamine clearance (14.7 +/- 1.3 vs. 9.3 +/- 0.8 ml.kg-1.min-1, P < 0.001). Glutamine appearance in plasma directly due to its release from protein was more than double that of alanine (2.45 +/- 0.25 vs. 1.16 +/- 0.12 mumol.kg-1.min-1, P < 0.001). Although overall carbon transfer to glucose from glutamine and alanine was comparable (3.53 +/- 0.24 vs 3.47 +/- 0.32 atoms.kg-1.min-1), nearly twice as much glucose carbon came from protein derived glutamine than alanine (1.48 +/- 0.15 vs 0.88 +/- 0.09 atoms.kg-1.min-1, P < 0.01). Finally, forearm muscle released more glutamine than alanine (0.88 +/- 0.05 vs 0.48 +/- 0.05 mumol.100 ml-1.min-1, P < 0.01). We conclude that in postabsorptive humans glutamine is quantitatively more important than alanine for transporting protein-derived carbon through plasma and adding these carbons to the glucose pool.  相似文献   

19.
Three studies were performed on nine normal volunteers to assess whether catecholamine-mediated lipolysis contributes to counterregulation to hypoglycemia. In these three studies, insulin was intravenously infused for 8 h (0.30 mU.kg-1.min-1 from 0 to 180 min, and 0.40 mU.kg-1.min-1 until 480 min). In study I (control study), only insulin was infused; in study II (direct + indirect effects of catecholamines), propranolol and phentolamine were superimposed to insulin and exogenous glucose was infused to reproduce the same plasma glucose (PG) concentration of study I. Study III (indirect effect of catecholamines) was the same as study II, except heparin (0.2 U.kg-1.min-1 after 80 min), 10% Intralipid (1 ml.min-1 after 160 min) and variable glucose to match PG of study II, were also infused. Glucose production (HGO), glucose utilization (Rd) [3-3H]glucose, and glucose oxidation and lipid oxidation (LO) (indirect calorimetry) were determined. In all three studies, PG decreased from approximately 4.8 to approximately 2.9 mmol/liter (P = NS between studies), and plasma glycerol and FFA decreased to a nadir at 120 min. Afterwards, in study I plasma glycerol and FFA increased by approximately 75% at 480 min, but in study II they remained approximately 40% lower than in study I, whereas in study III they rebounded as in study I (P = NS). In study II, LO was lower than in study I (1.69 +/- 0.13 vs. 3.53 +/- 0.19 mumol.kg-1.min-1, P less than 0.05); HGO was also lower between 60 and 480 min (7.48 +/- 0.57 vs. 11.6 +/- 0.35 mumol.kg-1.min-1, P less than 0.05), whereas Rd was greater between 210 and 480 min (19 +/- 0.38 vs. 11.4 +/- 0.34 mumol.kg-1.min-1, respectively, P less than 0.05). In study III, LO increased to the values of study I; between 4 and 8 h, HGO increased by approximately 2.5 mumol.kg-1.min-1, and Rd decreased by approximately 7 mumol.kg-1.min-1 vs. study II. We conclude that, in a late phase of hypoglycemia, the indirect effects of catecholamines (lipolysis mediated) account for at least approximately 50% of the adrenergic contribution to increased HGO, and approximately 85% of suppressed Rd.  相似文献   

20.
To examine the effects of physiological insulin concentrations on the renin-angiotensin and sympathetic nervous systems, healthy volunteers were studied by the euglycaemic glucose clamp technique with sequential 60 min 0.5 and 1.0 mU kg-1 min-1 insulin infusions and, subsequently, by a control infusion simulating clamp conditions. Plasma renin activity increased from 0.8 +/- 0.1 ng ml-1 h-1 basally to 1.0 +/- 0.2 ng ml-1 h-1 during the 0.5 mU infusion to 1.4 +/- 0.1 ng ml-1 h-1 during the 1 mU infusion but did not change during control infusion (0.9 +/- 0.3 ng ml-1h-1 to 0.9 +/- 0.2 ng ml-1h-1 to 1.0 +/- 0.1 ng ml-1h-1) (P less than 0.001 insulin vs. control by ANOVAR). Plasma angiotensin II increased during insulin (21.2 +/- 1.8 to 25.2 +/- 2.3 to 29.3 +/- 2.4 pg ml-1) but not during control infusion (24.0 +/- 2.8 to 23.6 +/- 2.6 to 23.5 +/- 2.5 pg ml-1) (P less than 0.001 insulin vs. control). Serum aldosterone did not change significantly during either infusion (insulin: 239 +/- 89 pmol l-1 to 237 +/- 50 pmol l-1 to 231 +/- 97 pmol l-1, control: 222 +/- 79 to 237 +/- 50 to 213 +/- 97 pmol l-1). Plasma noradrenaline increased to a greater extent during insulin (1.03 +/- 0.2 to 1.14 +/- 0.8 to 1.27 +/- 0.17 nmol l-1) than control infusion (0.86 +/- 0.09 to 0.97 +/- 0.09 to 0.99 +/- 0.09 nmol 1-1 (P less than 0.01 insulin vs. control). Changes in mean systolic blood pressure during insulin infusion were significantly different from control (+ 3 vs. -4 mmHg, P less than 0.001). In conclusion acute hyperinsulinaemia within the physiological range increases circulating hormones of the renin-angiotensin and sympathetic nervous systems and also increases systolic blood pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号