首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Drug delivery》2013,20(2):150-158
The purpose of this work was to evaluate the usefulness of silicone hydrogel contact lenses loaded with ketotifen fumarate for ocular drug delivery. First, silicone contact lenses were prepared by photopolymerization of bitelechelic methacrylated polydimethylsiloxanes macromonomer, 3-methacryloxypropyltris(trimethylsiloxy)silane, and N,N-dimethylacrylamide using ethylene glycol dimethacrylate as a cross-linker and Darocur 1173 as an initiator followed by surface plasma treatment. Then, the silicone hydrogel matrices of the contact lenses were characterized by equilibrium swelling ratio (ESR), tensile tests, ion permeability, and surface contact angle. Finally, the contact lenses were loaded with ketotifen fumarate by pre-soaking in drug solution to evaluate drug loading capacity, in vitro and in vivo release behavior of the silicone contact lenses. The results showed that ESR and ion permeability increase, and the surface contact angle and tensile strength decreased with the increase of DMA component in the silicone hydrogel. The drug loading and in vitro releases were dependent on the hydrogel composition of hydrophilic/hydrophobic phase of the contact lenses. In rabbit eyes, the pre-soaked contact lenses sustained ketotifen fumarate release for more than 24?h, which leads to a more stable drug concentration and a longer mean retention time in tear fluid than that of eye drops of 0.05%.  相似文献   

2.
Purpose Nanoparticles, drug carriers in the sub-micron size range, can enhance the therapeutic efficacy of encapsulated drug by increasing and sustaining the delivery of the drug inside the cell. However, the use of nanoparticles for small molecular weight, water-soluble drugs has been limited by poor drug encapsulation efficiency and rapid release of the encapsulated drug. Here we report enhanced cellular delivery of water-soluble molecules using novel Aerosol OT™ (AOT)-alginate nanoparticles recently developed in our laboratory. Materials and Methods AOT-alginate nanoparticles were formulated using emulsion-crosslinking technology. Rhodamine and doxorubicin were used as model water-soluble molecules. Kinetics and mechanism of nanoparticle-mediated cellular drug delivery and therapeutic efficacy of nanoparticle-encapsulated doxorubicin were evaluated in two model breast cancer cell lines. Results AOT-alginate nanoparticles demonstrated sustained release of doxorubicin over a 15-day period in vitro. Cell culture studies indicated that nanoparticles enhanced the cellular delivery of rhodamine by about two–tenfold compared to drug in solution. Nanoparticle uptake into cells was dose-, time- and energy-dependent. Treatment with nanoparticles resulted in significantly higher cellular retention of drug than treatment with drug in solution. Cytotoxicity studies demonstrated that doxorubicin in nanoparticles resulted in significantly higher and more sustained cytotoxicity than drug in solution. Conclusions AOT-alginate nanoparticles significantly enhance the cellular delivery of basic, water-soluble drugs. This translates into enhanced therapeutic efficacy for drugs like doxorubicin that have intracellular site of action. Based on these results, AOT-alginate nanoparticles appear to be suitable carriers for enhanced and sustained cellular delivery of basic, water-soluble drugs.  相似文献   

3.
Considerable research efforts have been directed in recent years towards the development of porous carriers as controlled drug delivery matrices because of possessing several features such as stable uniform porous structure, high surface area, tunable pore size and well-defined surface properties. Owing to wide range of useful properties porous carriers have been used in pharmaceuticals for many purposes including development of floating drug delivery systems, sustained drug delivery systems. Various types of pores like open, closed, transport and blind pores in the porous solid allow them to adsorb drugs and release them in a more reproducible and predictable manner. Pharmaceutically exploited porous adsorbents includes, silica (mesoporous), ethylene vinyl acetate (macroporous), polypropylene foam powder (microporous), titanium dioxide (nanoporous). When porous polymeric drug delivery system is placed in contact with appropriate dissolution medium, release of drug to medium must be preceded by the drug dissolution in the water filled pores or from surface and by diffusion through the water filled channels. The porous carriers are used to improve the oral bioavailability of poorly water soluble drugs, to increase the dissolution of relatively insoluble powders and conversion of crystalline state to amorphous state.  相似文献   

4.
Abstract

Nanoparticles are widely used as drug carriers for controlled, tumor-targeted delivery of various anticancer agents that have biopharmaceutical limitations such as water solubility and tissue permeability. Growing evidence suggests that nanoparticles not only reduce toxic side effects of anticancer drugs but also improve the therapeutic efficacy as a function of their drug-release profile. The purpose of this study is to confirm such hypothetical effects of tunable drug release on improving antitumor activity of nanoparticles in vitro and in vivo, using block copolymer micelles as drug carriers. Micelles were prepared from poly(ethylene glycol)-poly(aspartate) block copolymers modified with hydrazide (HYD), aminobenzoate hydrazide (ABZ) and glycine hydrazide (GLY) linkers to achieve a pH-dependent, tunable release of doxorubicin (DOX), a model anticancer drug. Regardless of the drug-release profile, all three micelles showed similar properties in vitro, such as pH-dependent drug release, intracellular drug delivery and cancer cell growth inhibition. However, micelles releasing DOX slowly in vitro showed that the most effective antitumor activity in vivo, compared to the micelles releasing drugs faster. These results demonstrate that tumor-preferential sustained drug release can enhance the antitumor activity of the micelles.  相似文献   

5.
Xu J  Li X  Sun F 《Drug delivery》2011,18(2):150-158
The purpose of this work was to evaluate the usefulness of silicone hydrogel contact lenses loaded with ketotifen fumarate for ocular drug delivery. First, silicone contact lenses were prepared by photopolymerization of bitelechelic methacrylated polydimethylsiloxanes macromonomer, 3-methacryloxypropyltris(trimethylsiloxy)silane, and N,N-dimethylacrylamide using ethylene glycol dimethacrylate as a cross-linker and Darocur 1173 as an initiator followed by surface plasma treatment. Then, the silicone hydrogel matrices of the contact lenses were characterized by equilibrium swelling ratio (ESR), tensile tests, ion permeability, and surface contact angle. Finally, the contact lenses were loaded with ketotifen fumarate by pre-soaking in drug solution to evaluate drug loading capacity, in vitro and in vivo release behavior of the silicone contact lenses. The results showed that ESR and ion permeability increase, and the surface contact angle and tensile strength decreased with the increase of DMA component in the silicone hydrogel. The drug loading and in vitro releases were dependent on the hydrogel composition of hydrophilic/hydrophobic phase of the contact lenses. In rabbit eyes, the pre-soaked contact lenses sustained ketotifen fumarate release for more than 24?h, which leads to a more stable drug concentration and a longer mean retention time in tear fluid than that of eye drops of 0.05%.  相似文献   

6.
Introduction: Calcium carbonate (CaCO3) has broad biomedical utilizations owing to its availability, low cost, safety, biocompatibility, pH-sensitivity and slow biodegradability. Recently, there has been widespread interest in their application as drug delivery systems for different groups of drugs. Among them, CaCO3 nanoparticles have exhibited promising potential as drug carriers targeting cancer tissues and cells. The pH-dependent properties, alongside the potential to be functionalized with targeting agents give them the unique property that can be used in targeted delivery systems for anticancer drugs. Also, due to the slow degradation of CaCO3 matrices, these nanoparticles can be used as sustained release systems to retain drugs in cancer tissues for longer times after administration.

Areas covered: Development of drug delivery carriers using CaCO3 nanoparticles has been reviewed. The current state of CaCO3 nanoparticles as cancer drug delivery systems with focus on their special properties like pH-sensitivity and biodegradability has also been evaluated.

Expert opinion: According to our review, CaCO3 nanoparticles, owing to their special characteristics, will have a potential role in safe and efficient cancer treatment in future.  相似文献   

7.
目的综述聚乙二醇1000维生素E琥珀酸酯(D-α-tocopherol polyethylene glycol 1000 succi-nate,TPGS)在各种纳米制剂中的最新进展。方法查阅国内外相关文献共48篇,对这些文献进行分析、概括和总结。结果 TPGS能够提高药物包封率和细胞吸收,改善药物释放,提高药物生物利用度,并能协同起抗癌疗效。广泛应用于聚合物纳米粒、聚合物胶束、纳米脂质体、纳米药物等纳米给药系统中。结论 TPGS在纳米制剂中有着良好应用前景。  相似文献   

8.
核-壳结构的脂质-聚合物杂化纳米粒(CSLPHNs)是以具有生物可降解性的聚合物纳米粒为核,外层包覆单层或多层具有生物膜仿生性的脂质壳而形成,结合了纳米粒和脂质体的双重优点,具有粒径小、载药量高、生物相容性好及缓控释给药等优势,在药物递送系统中应用甚广。笔者在查阅近年国内外文献的基础上归纳了CSLPHNs的基本特性、制备方法及在眼部给药、肿瘤治疗及临床诊断成像中的最新研究进展。  相似文献   

9.
《Journal of drug targeting》2013,21(10):813-830
Nanostructured lipid carrier (NLC) is second generation smarter drug carrier system having solid matrix at room temperature. This carrier system is made up of physiological, biodegradable and biocompatible lipid materials and surfactants and is accepted by regulatory authorities for application in different drug delivery systems. The availability of many products in the market in short span of time reveals the success story of this delivery system. Since the introduction of the first product, around 30 NLC preparations are commercially available. NLC exhibit superior advantages over other colloidal carriers viz., nanoemulsions, polymeric nanoparticles, liposomes, SLN etc. and thus, have been explored to more extent in pharmaceutical technology. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes NLC versatile delivery system for various routes of administration. The present review gives insights on the definitions and characterization of NLC as colloidal carriers including the production techniques and suitable formulations. This review paper also highlights the importance of NLC in pharmaceutical applications for the various routes of drug delivery viz., topical, oral, pulmonary, ocular and parenteral administration and its future perspective as a pharmaceutical carrier.  相似文献   

10.
《Drug discovery today》2022,27(12):103386
Inorganic nanoparticles for drug delivery in cancer treatment offer many potential advantages because they can maximize therapeutic effect through targeting ligands while minimizing off-target side-effects through drug adsorption and infiltration. Although inorganic nanoparticles were introduced as drug carriers, they have emerged as having the capacity for combined therapeutic capabilities, including anticancer effects through cytotoxicity, suppression of oncogenes and cancer cell signaling pathway inhibition. The most promising advanced strategies for cancer therapy are as synergistic platforms for RNA interference (siRNA, miRNA, shRNA) and as synergistic drug delivery agents for the inhibition of cancer cell signaling pathways. The present work summarizes relevant current work, the promise of which is suggested by a projected compound annual growth rate of ~ 20% for drug delivery alone.  相似文献   

11.
Introduction: Delivery of therapeutic agents to bone is crucial for the treatment of bone metastasis and other bone diseases. The present invention patent relates to bone- and metal-targeted polymeric nanoparticles for targeting delivery of therapeutic molecules to the pathological tissues in bone or the surgical metal implant-bone tissue interface.

Areas covered: The nanoparticles for drug delivery were fabricated via the assembly of amphiphilic polymers, in which the hydrophilic outer layer was minimal to prolong the circulation time, and the hydrophobic insider core was biodegradable and loaded with therapeutic agents. Bone-targeted elements were conjugated on the nanoparticle surface to enhance their affinity to bone and/or metal implant surface.

Expert opinion: A prolonged, sustained release of therapeutic agents was observed by using the delivery system targeting to bone. The described invention provides a bone-targeted vector to deliver diverse therapeutic agents to bone.  相似文献   

12.
ABSTRACT

Introduction: Proteins and peptides are prominent therapeutic agents, which are effective in number of ailments. Long-term delivery of protein and peptide therapeutics requires polymeric encapsulation to protect from degradation and for its sustained release. However, results from encapsulation of protein macromolecules in dynamic delivery systems report unreliable clinical outcome, indicating ease of degradation, low permeability, and serious immune responses. A specifically targeted delivery system as tumor or cancer theranostics may surpass these limitations.

Areas covered: This review covers recent advancements in approaches involving conjugated protein nano-formulations as targeting delivery technology for various ailments encompassing mostly cancer treatment options. Progressions in targeted chemotherapeutics, protein nanoparticles, peptide nanoparticles, lipidation, and antibody drug-conjugates are discussed.

Expert opinion: Significant expansions have been made in forming new generation of antitumor-recombinant proteins, which proves a milestone of advancements for more potent and explicit cancer therapies. However, transformation of biologics from laboratory to clinical trials is an immense challenge, because of drop in efficiency of drug-loading, poor reproducibility of nanoparticles, inadequate information regarding long-term toxicity and insufficient pharmacokinetics data. Hence, early stage tumor diagnosis with précised drug delivery to tumor site is crucial for protein- and peptide- based therapeutics for cancer.  相似文献   

13.
外泌体(exosomes)是一种由细胞分泌的纳米尺度(40~100 nm)的囊泡,在细胞间物质运输和信号交流中发挥重要作用。外泌体在大小和功能上与合成的纳米颗粒类似,但作为天然内源性转运载体,具有毒性低、无免疫原性、渗透性好等优势,故可能成为更有应用前景的药物递送载体。本文主要介绍了外泌体的基本性质和获得方法、载药方法及其作为纳米载体在小分子和生物大分子药物递送和靶向研究中的应用进展情况,并分析探讨了外泌体在载药和靶向递送方面的不足。  相似文献   

14.
Introduction: Considering that the number of patients afflicted by posterior eye diseases is increasing, effective drug delivery is currently in high clinical demand. Topical administration has been identified as the preferred option, while sufferingfrom multiple barriers. The development of nanoparticle-based drug delivery system provides an option, which would enhance the drug permeability across the barriers and achieve the desired drug level in the targeted tissue.

Areas covered: This review highlights the barrier to the posterior segment of the eye via topical administration. The up-to-date development of lipid nanoparticles, liposomes, emulsions, spanlastics, micelles, polymeric nanoparticles, layered double hydroxides (LDH), dendrimers, cyclodextrins(CDs), and prodrugs are summarized. Moreover, nanocarriers currently in clinical trials for posterior segment diseases have been discussed.

Expert opinion: Topical nanoparticle-based drug delivery systems have demonstrated significant progress. An ideal formulation should prolong retention time on the surface, enhance drug permeability through the ocular tissues, and efficiently deliver drugs to the targeted site. To design the rational targeting nanoparticle-based drug delivery system, a better understanding of the distribution of transporters and receptors on the eye is required. Ultimately, there is an urgent need to develop targeting hybrid drug delivery systems with the combination of the advantages of several nanocarriers.  相似文献   


15.
This paper reviews the design and development of magnetothermally-triggered drug delivery systems, whereby magnetic nanoparticles are combined with thermally-activated materials. By combining superparamagnetic nanoparticles with lower critical solution temperature (LCST) polymers, an alternating current (AC) magnetic field can be used to trigger localized heating in vivo, which in turn causes a phase change in the host polymer to allow diffusion and release of drugs. The use of magnetic nanoparticles for biomedical applications is reviewed, as well as the design of thermally-activated polymeric systems. Current research on externally-triggered delivery is highlighted, with a focus on the design and challenges in developing magnetothermally-activated systems.  相似文献   

16.
Introduction: The development of new therapies for treating various eye conditions has led to a demand for extended release delivery systems, which would lessen the need for frequent application while still achieving therapeutic drug levels in the target tissues.

Areas covered: Following an overview of the different ocular drug delivery modalities, this article surveys the biomaterials used to develop sustained release drug delivery systems. Microspheres, nanospheres, liposomes, hydrogels, and composite systems are discussed in terms of their primary materials. The advantages and disadvantages of each drug delivery system are discussed for various applications. Recommendations for modifications and strategies for improvements to these basic systems are also discussed.

Expert opinion: An ideal sustained release drug delivery system should be able to encapsulate and deliver the necessary drug to the target tissues at a therapeutic level without any detriment to the drug. Drug encapsulation should be as high as possible to minimize loss and unless it is specifically desired, the initial burst of drug release should be kept to a minimum. By modifying various biomaterials, it is possible to achieve sustained drug delivery to both the anterior and posterior segments of the eye.  相似文献   


17.
Modern drug delivery aims to develop drug delivery systems that are able to meet specific therapeutic requirements. Whereas sustained drug release aims to maintain a constant drug level within the body, pulsed drug delivery intends to release the drug rapidly within a short period of time, as a result of a biological or external trigger, after a specific lag time. This editorial highlights some of the recent advances in new concepts for pulsed drug delivery and proposes some future strategies.  相似文献   

18.
During the past decades, chemotherapy has been regarded as the most effective method for tumor therapy, but still faces significant challenges, such as poor tumor selectivity and multidrug resistance. The development of targeted drug delivery systems brings certain dramatic advantages for reducing the side effects and improving the therapeutic efficacy. Coupling a specific stimuli-triggered drug release mechanism with these delivery systems is one of the most prevalent approaches for targeted therapy. Among these approaches, pH-sensitive micelles are regarded as the most general strategy with advantages of increasing solubility of water-insoluble drugs, pH-sensitive release, high drug loading, etc.This review will focus on the potential of pH-sensitive micelles in tumor therapy, analyze four types of drug-loaded micelles and mechanisms of drug release and give an exhaustive collection of recent investigations. Sufficient understanding of these mechanisms will help us to design more efficient pH-sensitive drug delivery system to address the challenges encountered in targeted drug delivery systems for tumor therapy.  相似文献   

19.
Introduction: In situ gel systems refer to a class of novel delivery vehicles, composed of natural, semisynthetic or synthetic polymers, which present the unique property of sol–gel conversion on receipt of biological stimulus.

Areas covered: The present review summarizes the latest developments in in situ gel technology, with regard to ophthalmic drug delivery. Starting with the mechanism of ocular absorption, the review expands on the fabrication of various polymeric in situ gel systems, made up of two or more polymers presenting multi-stimuli sensitivity, coupled with other interesting features, such as bio-adhesion, enhanced penetration or sustained release. Various key issues and challenges in this area have been addressed and critically analyzed.

Expert opinion: The advent of in situ gel systems has inaugurated a new transom for ‘smart’ ocular delivery. By virtue of possessing stimuli-responsive phase transition properties, these systems can easily be administered into the eye, similar to normal eye drops. Their unique gelling properties endow them with special features, such as prolonged retention at the site of administration, followed by sustained drug release. Despite the superiority of these systems as compared with conventional ophthalmic formulations, further investigations are necessary to address the toxicity issues, so as to minimize regulatory hurdles during commercialization.  相似文献   

20.
Objective There is a growing interest in developing bioresponsive drug delivery systems to achieve greater control over drug release than can be achieved with the conventional diffusion controlled polymeric delivery systems. While a number of such systems have been studied for oral or parenteral delivery, little or no work has been done on bioresponsive delivery systems for inhalation. Using the raised elastase levels present at sites of lung inflammation as a proof‐of‐concept model, we endeavoured to develop a prototype of inhalable elastase sensitive microparticles (ESMs). Methods Microparticles degradable by the enzyme elastase were formed by crosslinking the polymer alginate in the presence of an elastase substrate, elastin, using Ca+2 ions and subsequent spray drying. Key findings The bioresponsive release of a protein cargo in the presence of elastase demonstrated the enzyme‐specific degradability of the particles. The microparticles showed favorable properties such as high drug encapsulation and good powder dispersibility. Potential polymer toxicity in the lungs was assessed by impinging the microparticles on Calu‐3 cell monolayers and assessing changes in transepithelial permeability and induction of cytokine release. The microparticles displayed no toxic or immunogenic effects. Conclusions With a manufacturing method that is amenable to scale‐up, the ability to be aerosolised efficiently from a first‐generation inhaler device, enzyme‐specific degradability and lack of toxicity, the ESMs show significant promise as pulmonary drug carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号