首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 843 毫秒
1.
血泵是心脏辅助循环装置的核心部件之一,其运行过程中所产生的血栓和溶血超出安全范围将会引发多种并发症,严重者甚至危及病人生命,因此血栓和溶血问题是衡量血泵性能的重要指标也是血泵的重要研究课题。研究表明,溶血主要是由血泵内叶轮的机械运动及血液的复杂流动的高剪切力引起。因此溶血多出现在血液与固壁接触面上及复杂流动的流体问。本次研究的目的是要探索用数值模拟的方法分析离心血泵内部的流场及溶血情况,在研究中通过与上海某医院合作实验采集一种叶片式离心血泵运行过程中的实验数据,再对该叶片式离心血泵内部流场进行数值模拟,通过对比血泵实际运行情况与数值计算结果对其内部血栓和溶血问题进行系统的分析研究,最终数值模拟分析的情况与该血泵在实际运行中的血栓和溶血情况基本相符。通过本次研究探索用数值模拟的方法对血泵的血栓和溶血现象进行分析,特别是对溶血现象进行一定程度的定量分析,此分析结果及分析方法可为血泵优化及临床应用做方法指导之用。  相似文献   

2.
血泵的溶血程度主要受血液的运动流场影响,所以研究血液在血泵内腔的螺旋流动特性对于螺旋叶片血泵的设计和研究工作具有十分重要的意义。本文将血液流变理论和传统的力学分析方法相结合,对血液在低、高剪切变率两种条件下的环形空间螺旋流动性能进行了研究,给出了速度表达式,分析了各参数对流动性能的影响,同时还对高速螺旋流场中红细胞的力学行为进行了分析。结果表明,高速螺旋流场中的血液流动情况十分复杂,在进行高速螺旋血泵设计时,应综合考虑血液在不同剪切变率条件下的流动性能及红细胞的力学行为。  相似文献   

3.
应用CFD研究叶轮设计对人工心脏泵内流场的影响   总被引:3,自引:1,他引:3  
溶血是叶轮血泵常见的一种血液破坏现象,而造成这种现象的内在原因是血液的动力学行为。本研究针对基于流线型设计的叶轮血泵和一种直叶片血泵,应用CFD对其内部流场进行了数值模拟,并通过溶血实验对结果进行了验证。研究结果表明,流线型叶轮血泵内的流动模式符合流线型设计理论,与直叶片叶轮血泵相比,它的溶血较小,更符合血液动力学要求。可以认为,在相同的边界条件下,流线型叶轮血泵具有更好的血液相容性,不容易造成血液破坏。  相似文献   

4.
自制外触发同步系统,应用二维粒子图像测速技术技术(PIV)实现了流线型叶轮血泵和直叶片叶轮血泵的内流场的测量,并分析叶轮设计和运行条件对血泵内流场和血液相容性的影响.实验结果表明:基于外触发同步的PIV系统实现了对血泵同一流道的流速信息的连续采样;血泵内的绝对速度和相对速度分布随着叶轮设计、流量和进出口压差而改变.在设计工况(4 L/min,100 mmHg)下,流线型叶轮血泵流道内的流动模式较为规则,而直叶片血泵的流动模式则出现了明显的旋涡、回流和流动分离等现象.根据血液动力学理论,在设计工况下,流线型叶轮血泵具有较好的血液相容性.  相似文献   

5.
在人工轴流心脏泵的设计过程中,叶片数目的选取对泵的工作条件的影响很大.为了获得轴流心脏泵模型的合理叶片数目,本文采用了六面体结构网格和非结构四面体网格相结合的方法,对整个流体区域进行了网格划分.通过全流道的计算机数值模拟结果,并结合血液泵传输过程中的要求进行分析,最终得到了合适的轴流血液泵叶片数目.计算结果表明,四叶片的转子是目前采用的泵型中效率、受力、流体等各方面的因素综合考察最好的.  相似文献   

6.
人体血液环形空间螺旋流动研究   总被引:2,自引:2,他引:0  
在低剪变率条件下人体血液表现为卡森流体,在高剪变率条件下则趋向于牛顿流体。近年,螺旋叶片血泵的研究和应用取得了很大的进展。此研究运用流体力学,对血液在低剪变率及高剪变率两种不同条件下的环形空间螺旋流动性能进行了研究,并推导出速度及流量表达式,分析了各参数对流动性能的影响。  相似文献   

7.
XZ-Ⅱ型轴流血泵的流场分析   总被引:6,自引:2,他引:4  
血液破坏是目前影响国产心室辅助装置(ventricular assist device,VAD)不能临床应用的主要障碍.方法本文中采用计算机辅助设计(computer-aided design,CAD)工具设计XZ-Ⅱ型轴流血泵,并用计算流体力学(computationalfluid dynamics,CFD)方法进行泵内流场分析对VAD进行血液相容性研究.结果①血泵的压力流量输出可以满足心室辅助的要求;②流场中的最大剪切率出现在叶轮入口的地方,在整个叶轮端面保持了较高的剪切率,而且随着转速升高,剪切率增大,流量增加,剪切率也增大;③在叶轮相对径向流速以较高速度旋转时,在入口附近,流场保持层流状态,接近转子时,出现周向剪切速度,转子和泵壁之间的流场出现了不对称性,中下壁面出现较大波动,在叶轮附近,流场发生剧烈的变化,在靠近轮毂的地方会出现湍流,叶片之间出现较大的分离涡流,在出口导流叶片与叶轮的相接区域,流动出现局部回流,在狭窄的交接区域,出现流动滞止,流体进入导流叶片时,流动方向在此急剧变化会引起流动分离,从而影响了出口流速和流动的稳定性;④叶轮与出口导叶片接触端面压力变化剧烈.结论叶轮内部、叶轮与导叶片连接部分、出口导叶片内部流场不稳定容易形成涡流和流动停滞,容易形成血栓;叶轮与出口导叶片连接端面以及叶轮内部剪切力较高,容易产生溶血.  相似文献   

8.
造成溶血、血栓等血液破坏现象的内在原因之一是血液的动力学行为。研究表明,不规则的流动模式尤其是切变流中产生的机械切应力直接导致血液的破坏。计算机技术的迅速发展使得微观动力学的数值模拟成为可能。本文针对基于流线型设计的叶轮心脏泵和直叶片叶轮心脏泵,应用计算流体动力学对其内部的流动行为进行了数值模拟。分析两种心脏泵的内流场和切应力分布,认为在相同的边界条件下,流线型设计的叶轮心脏泵要比直叶片心脏泵更符合血液动力学的要求,对血液的破坏较小。  相似文献   

9.
目的应用专业计算流体动力学(computational fluid dynamics,CFD)分析软件FLUENT,对一种具有长短叶片的Sarns离心式血泵的内部流场进行三维数值模拟。方法利用Solidworks软件对Sams型血泵进行三维建模,然后对所建模型网格处理,通过选取标准,κ-ε湍流模型和SIMPLE算法,具体分析了内部流动状态、压力分布、壁面剪切力等流场特性。结果结果表明,该离心泵内部流场分布较不匀,叶片及血泵出口处有回流和旋涡现象,剪切力大小基本处于致红细胞破碎的临界状态之下,高转速下剪切力最大,主要分布在叶轮区域,但暴露时间极短,基本满足血液生理要求。结论该研究为Sarns血泵的进一步优化提供了理论基础。  相似文献   

10.
根据中国终末期心衰患者对左心辅助泵辅助人体血液循环的要求,设计以3 L/min流量、100 mm Hg压升为设计点,流量范围为2~7 L/min的微型可植入轴流血泵。该血泵采用纺锤形的转子叶轮结构以及带分流叶片、悬臂叶片的尾导结构,以使血泵在较宽的压力流量范围内具有良好的溶血和抗血栓特性。本文用数值模拟及粒子成像测速(PIV)的方法分析血泵的水力学特性、流场及溶血特性。结果表明:血泵转速为7 000~11 000 r/min时,在2~7 L/min的流量范围内可提供60.0~151.3 mm Hg的压升;分流叶片抑制了尾导的尾缘吸力面处的流动分离;悬臂式叶片结构将转子叶片的叶尖间隙变为尾导叶片的叶根间隙,间隙的切线速度由6.2 m/s降至4.3~1.1 m/s;血泵的最大标量剪切应力值为897.3 Pa,平均剪切应力值为37.7 Pa;采用Heuser溶血模型得到的溶血指数为0.168%;PIV试验所得泵内尾导区域的流场速度分布与数值计算得到的流场特征吻合良好。本研究所设计的轴流血泵的尾导具有分流叶片和悬臂叶片,流道内血流无较大分离流动,降低了剪切力对血液的破坏,溶血性能良好,压力流量性能满足临床需要。  相似文献   

11.
Inverse design and CFD investigation of blood pump impeller   总被引:3,自引:0,他引:3  
In this paper, a three-dimensional inverse design method using mean swirl specification is applied to the design of centrifugal blood pump impeller blades. CFD investigation of the passage flows is carried out to analyze the flow field and pressure generated across the blade. The results show that the possibility of blood cells' damage may not be increased when the pressure developed is increased. This technique can provide designers valuable insight on the development of efficient blood pump with reduced risk of blood traumatization.  相似文献   

12.
目的应用计算流体动力学方法(computational fluid dynamics,CFD)对离心式双向液力悬浮人工心脏血泵流场进行仿真分析,通过改进叶轮入口结构来改善血液在血泵的流动状态,从而提升其抗溶血性能。方法从影响血泵溶血性能的角度考虑,基于N-S方程和k-ε标准双方程湍流模型,应用软件FLUENT6.3对离心式人工心脏血泵流场进行数值模拟,分析在设计工况下,叶轮入口处的结构变化对泵内流场的影响,以及流场中最大速度与溶血水平之间的关系,并根据流场分析结果对血泵叶轮入口进行优化。结果经过优化,血泵内流场紊乱现象得到改善,影响溶血值的切应力和曝光时间均有所降低,溶血性能得到改善。同时,对于离心式双向液力悬浮血泵,在设计工况下,其流场中最大速度有作为流场优化过程中的直观指标参数的潜力。结论该研究的仿真分析可为离心式双向液力悬浮人工心脏的设计积累一定经验。  相似文献   

13.
Thrombus formation and hemolysis have been linked to the dynamics of blood flow in rotary blood pumps and ventricular assist devices. Hemolysis occurs as the blood passes through the pump housing, and thrombi develop in stagnation and low-velocity regions. The predicted velocities, pressure, and turbulence quantities from the numerical simulation are used to identify regions of high shear stress and internal recirculation. A nimerical technique is described that simulates the hydrodynamic characteristics of a rotary blood pump with a flow rate of 6 l/min at a rotational speed of 3000 RPM. A computational fluid dynamics (CFD) code, CFX 4, is used to solve the time-dependent incompressible Navier-Stokes equations using a transient finite volume method and three-dimensional structured grids. The simulation utilized the sliding mesh capabilities of this numerical code to model the rotating impeller and examine the effect of blade shape on the hydrodynamic performance of the blood pump in terms of pressure rise, flow rates, and energy losses. The first impeller model has six straight channels; the second impeller has six backward-curved channels. The results for two impeller configurations are presented and discussed. The curvedpump design resulted in higher pressure rise and maximum shear stresses than the straight-channel one. In general the paper demonstrates that CFD is an essential numerical tool for optimizing pump performance with the aim of reducing trauma to the blood cells.  相似文献   

14.
The relative flow field within the impeller passage of a centrifugal blood pump had been examined using flow visualization technique and computational fluid dynamics. It was found that for a seven-blade radial impeller design, the required flow rate and static pressure rise across the pump could be achieved but the flow field within the blades was highly undesirable. Two vortices were observed near the suction side and these could lead to thrombus formation. Preliminary results presented in this article are part of our overall effort to minimize undesirable flow patterns such flow separation and high shear stress regions within the centrifugal blood pump. This will facilitate the future progress in developing a long-term clinically effective blood pump.  相似文献   

15.
A miniature Maglev blood pump based on magnetically levitated bearingless technology is being developed and optimized for pediatric patients. We performed impeller optimization by characterizing the hemodynamic and hemocompatibility performances using a combined computational and experimental approach. Both three-dimensional flow features and hemolytic characteristics were analyzed using computational fluid dynamics (CFD) modeling. Hydraulic pump performances and hemolysis levels of three different impeller designs were quantified and compared numerically. Two pump prototypes were constructed from the two impeller designs and experimentally tested. Comparison of CFD predictions with experimental results showed good agreement. The optimized impeller remarkably increased overall pump hydraulic output by more than 50% over the initial design. The CFD simulation demonstrated a clean and streamlined flow field in the main flow path. The numerical results by hemolysis model indicated no significant high shear stress regions. Through the use of CFD analysis and bench-top testing, the small pediatric pump was optimized to achieve a low level of blood damage and improved hydraulic performance and efficiency. The Maglev pediatric blood pump is innovative due to its small size, very low priming volume, excellent hemodynamic and hematologic performance, and elimination of seal-related and bearing-related failures due to adoption of magnetically levitated bearingless motor technology, making it ideal for pediatric applications.  相似文献   

16.
The effects of impeller geometry on the performance of a centrifugal blood pump model [the MSCBP design of Akamatsu and Tsukiya (The Seventh Asian Congress of Fluid Mechanics (1997), 7-10) at a 1:1 scale] have been investigated both experimentally and computationally. Four impeller designs were tested for pump hydraulic performance at the operating point (i.e. 2000 rpm), using blood analog as the working fluid. Each impeller has seven blades with different configurations including the radial straight blade and backward swept blade designs. The results show that both designs can achieve a stable head of about 100 mm Hg at the operating point. Subsequent investigations involved the visualization of the relative flow field within the impeller passages via the image de-rotation system coupled with a 2.5 W argon ion laser. Flow structures in all sectors of each impeller were examined and discussed. To further quantify the possible effects of blade geometry to thrombus formation and hemolysis, computational fluid dynamics (CFD) was used to simulate a simplified two-dimensional blade-to-blade flow analysis so as to estimate the shear stress levels. The results indicate that the stress levels found within the blade passages are generally below the threshold level of 150 N/m(2) for extensive erythrocyte damage to occur. There are some localized regions near the leading edge of the blades where the stress levels are 60% above the threshold level. However, given such a short residence time for the fluid particles to go through these high shear stress regions, their effects appear to be insignificant.  相似文献   

17.
轴流式血泵转速过高、离心式血泵容易产生流动死区是造成血液损伤的重要原因,而混流式血泵能有效缓解轴流式血泵的转速过高以及离心式血泵的流动死区问题。基于此,本研究旨在探究闭式叶轮混流式血泵的性能效果。通过数值模拟的方法对闭式叶轮混流式血泵进行数值模拟,分析该类型血泵的流场特性及压力分布情况,探讨其水力性能以及可能对红细胞造成的损伤程度,并与半开式叶轮结构混流式血泵的数值模拟结果进行性能对比。结果表明:本研究中的闭式叶轮混流式血泵具有良好的性能,能够安全高效运行。该泵在5 L/min下能够达到100 mm Hg的扬程,血泵内流动均匀,没有明显的涡流、回流以及流动停滞现象,压力分布均匀合理,可有效地避免血栓;溶血指数平均值(HI)为4.99×10^-4,具有良好的血液相容性;与半开式叶轮混流式血泵相比,闭式叶轮混流式血泵扬程和效率更高、溶血指数平均值更小,且具有更好的水力性能及避免血液损伤的能力。通过本文研究结果,或能为闭式叶轮混流式血泵的性能评价提供依据。  相似文献   

18.
提高溶血性能,降低溶血率作为血泵性能优化的一个重要指标,对血泵的结构优化具有重要的指导意义。本文基于一款离心式血泵通过使用计算流体力学(CFD)技术,采用非结构化网格、N-S方程和标准K-ε湍流模型在fluent中模拟分析出不同工况下血泵流场内部的剪切力场、压力场等重要参数并根据叶轮流场数据分析,提出了4种不同的结构优化方案;并基于三维快速溶血预估模型计算出不同流量、不同叶轮结构下血泵的溶血性能。仿真结果显示:当叶片与叶轮径向夹角为45°,流量达到5 L/min、转速为2 100 r/min时,扬程为115 mmHg,溶血率达到0.022 1 g/100 L,优化后模型较原模型溶血率提升40.9%,满足人体泵血生理需求。实验结果显示:选用优化后结构进行实验分析,得到扬程的实验数据与仿真数据相互验证,进一步证实了该仿真结果的准确性。  相似文献   

19.
The flow in the impeller of a centrifugal blood pump developed at the National Cardiovascular Center of Japan was clearly visualized by the oil film method to illustrate the overall flow structure inside the open-type impeller. The results showed that the main stream went along the pressure surface with a backward flow at the inlet. Large-scale vortices were formed near both tips of the suction side, and a low-velocity area was found in the middle of the suction side that could be eliminated by increasing the flow rate. These findings were helpful for improving the design of the impeller to enhance the hydraulic performance and the antithrombogenicity of the pump. Received: March 23, 2001 / Accepted: July 11, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号