首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, magnetic resonance (MR) images of the brain of an adult common dolphin (Delphinus delphis) were acquired in the coronal plane at 66 antero-posterior levels. From these scans a computer-generated set of resectioned virtual images in orthogonal planes was constructed using the programs VoxelView and VoxelMath (Vital Images, Inc., Michigan State Univ.). Sections in all three planes reveal major neuroanatomical structures. These structures in the adult common dolphin brain are compared with those from a fetal common dolphin brain from a previously published study as well as with MR images of adult brains of other odontocetes. This study, like previous ones, demonstrates the utility of MR imaging (MRI) for comparative neuroanatomical investigations of dolphin brains.  相似文献   

2.
The silicon-photomultiplier (Si-PM) is a promising photodetector, especially for integrated PET/MRI systems, due to its small size, high gain, and low sensitivity to static magnetic fields. The major problem using a Si-PM-based PET system within the MRI system is the interference between the PET and MRI units. We measured the interference by combining a Si-PM-based PET system with a permanent-magnet MRI system. When the RF signal-induced pulse height exceeded the lower energy threshold level of the PET system, interference between the Si-PM-based PET system and MRI system was detected. The prompt as well as the delayed coincidence count rates of the Si-PM-based PET system increased significantly. These noise counts produced severe artifacts on the reconstructed images of the Si-PM-based PET system. In terms of the effect of the Si-PM-based PET system on the MRI system, although no susceptibility artifact was observed on the MR images, electronic noise from the PET detector ring was detected by the RF coil and reduced the signal-to-noise ratio (S/N) of the MR images. The S/N degradation of the MR images was reduced when the distance between the RF coil and the Si-PM-based PET system was increased. We conclude that reducing the interference between the PET and MRI systems is essential for achieving the optimum performance of integrated Si-PM PET/MRI systems.  相似文献   

3.
A new automatic method for finding anterior commissure (AC) and posterior commissure (PC) in positron emission tomography (PET) brain image without a reference image is discussed. For labelling and localizing anatomical structures, a PET image aligned in parallel to the detected AC-PC line is normalized spatially into the corresponding transaxial Talairach brain. This labelling system may provide practical application method to make the clinical evaluation of PET brain images easier.  相似文献   

4.
This study aimed to develop and test a simultaneous acquisition and analysis pipeline for voxel‐based magnetic susceptibility and morphometry (VBMSM) on a single dataset using young volunteers, elderly healthy volunteers, and an Alzheimer's disease (AD) group. 3D T1‐weighted and multi‐echo phase images for VBM and quantitative susceptibility mapping (QSM) were simultaneously acquired using a magnetization‐prepared spoiled turbo multiple gradient echo sequence with inversion pulse for QSM (MP‐QSM). The magnitude image was split into gray matter (GM) and white matter (WM) and was spatially normalized. The susceptibility map was reconstructed from the phase images. The segmented image and susceptibility map were compared with those obtained from conventional multiple spoiled gradient echo (mGRE) and MP‐spoiled gradient echo (MP‐GRE) in healthy volunteers to validate the availability of MP‐QSM by numerical measurements. To assess the feasibility of the VBMSM analysis pipeline, voxel‐based comparisons of susceptibility and morphometry in MP‐QSM were conducted in volunteers with a bimodal age distribution, and in elderly volunteers and the AD group, using spatially normalized GM and WM volume images and a susceptibility map. GM/WM contrasts in MP‐QSM, MP‐GRE, and mGRE were 0.14 ± 0.011, 0.17 ± 0.015, and 0.045 ± 0.010, respectively. Segmented GM and WM volumes in the MP‐QSM closely coincided with those in the MP‐GRE. Region of interest analyses indicated that the mean susceptibility values in MP‐QSM were completely in agreement with those in mGRE. In an evaluation of the aging effect, a significant increase and decrease in susceptibility and volume were found by VBMSM in deep GM and WM, respectively. Between the elderly volunteers and the AD group, the characteristic susceptibility and volume changes in GM and WM were observed. The proposed MP‐QSM sequence makes it possible to acquire acceptable‐quality images for simultaneous analysis and determine brain atrophy and susceptibility distribution without image registration by using voxel‐based analyses.  相似文献   

5.
We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 × 8 array of lutetium oxyorthosilicate crystals (2.22 × 2.22 × 5 mm(3)) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [(11)C]raclopride and 2-deoxy-2-[(18)F]fluoro-D-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.  相似文献   

6.
OBJECTIVE: To evaluate the role of PET and MRI fused image study inpatients with primary brain tumors previously treated, to determine the presence of radionecrosis vs residual tumor viability. METHODS: Primary brain tumors were diagnosed by biopse and MR. 18FDG-PET scan and T1 enhanced MRI follow-up studies were performed between 3 and 5 months after treatment. The 18F-FDG uptake was semiquantitavively calculated by a region-of-interest based Tumor hotspot/normal brain tissue index. RESULTS: Fifty-seven patients were studied, 37 had high grade gliomas; 9 had oligoastrocytomas; 5 had Embrionary tumors; I had a meningyoma and I had an oliodendroglial tumor. All MR studies showed tumor enhancement, without determine wether if it was radionecrosis or tumor viability. PET/MR fused study diagnosed 21 negative studies (30%) and 36 positive results (70%). Tumor hotspot/normal brain tissue index correlated well with the visual analysis registered. CONCLUSIONS: Visual analysis in the contrast enhanced MR overestimates the tumoral area, without defining a possible diagnosis between tumor viability and radionecrosis. Metabolic activity in the 18F-FDG PET study in the enhanced area, determines the presence of residual tumor viability. Therefore, coregistration can be used to obtain a more specific diagnosis optimizing the cinical use.  相似文献   

7.
A robust and fast hybrid method using a shell volume that consists of high contrast voxels with their neighbors is proposed for registering PET and MR/CT brain images. Whereas conventional hybrid methods find the best matched pairs from several manually selected or automatically extracted local regions, our method automatically selects a shell volume in the PET image, and finds the best matched corresponding volume using normalized mutual information (NMI) in overlapping volumes while transforming the shell volume into an MR or CT image. A shell volume not only can reduce irrelevant corresponding voxels between two images during optimization of transformation parameters, but also brings a more robust registration with less computational cost. Experimental results on clinical data sets showed that our method successfully aligned all PET and MR/CT image pairs without losing any diagnostic information, while the conventional registration methods failed in some cases.  相似文献   

8.

Background

Attenuation correction is one of the most crucial correction factors for accurate PET data quantitation in hybrid PET/MR scanners, and computing accurate attenuation coefficient maps from MR brain acquisitions is challenging. Here, we develop a method for accurate bone and air segmentation using MR ultrashort echo time (UTE) images.

Methods

MR UTE images from simultaneous MR and PET imaging of five healthy volunteers was used to generate a whole head, bone and air template image for inclusion into an improved MR derived attenuation correction map, and applied to PET image data for quantitative analysis. Bone, air and soft tissue were segmented based on Gaussian Mixture Models with probabilistic tissue maps as a priori information. We present results for two approaches for bone attenuation coefficient assignments: one using a constant attenuation correction value; and another using an estimated continuous attenuation value based on a calibration fit. Quantitative comparisons were performed to evaluate the accuracy of the reconstructed PET images, with respect to a reference image reconstructed with manually segmented attenuation maps.

Results

The DICE coefficient analysis for the air and bone regions in the images demonstrated improvements compared to the UTE approach, and other state-of-the-art techniques. The most accurate whole brain and regional brain analyses were obtained using constant bone attenuation coefficient values.

Conclusions

A novel attenuation correction method for PET data reconstruction is proposed. Analyses show improvements in the quantitative accuracy of the reconstructed PET images compared to other state-of-the-art AC methods for simultaneous PET/MR scanners. Further evaluation is needed with radiopharmaceuticals other than FDG, and in larger cohorts of participants.
  相似文献   

9.
The aim of this paper is twofold: firstly, to explore the potential of simultaneously acquiring multimodal MR–PET–EEG data in a human 9.4 T scanner to provide a platform for metabolic brain imaging. Secondly, to demonstrate that the three modalities are complementary, with MRI providing excellent structural and functional imaging, PET providing quantitative molecular imaging, and EEG providing superior temporal resolution. A 9.4 T MRI scanner equipped with a PET insert and a commercially available EEG device was used to acquire in vivo proton-based images, spectra, and sodium- and oxygen-based images with MRI, EEG signals from a human subject in a static 9.4 T magnetic field, and demonstrate hybrid MR–PET capability in a rat model. High-resolution images of the in vivo human brain with an isotropic resolution of 0.5 mm and post-mortem brain images of the cerebellum with an isotropic resolution of 320 µm are presented. A 1H spectrum was also acquired from 2 × 2 × 2 mm voxel in the brain allowing 12 metabolites to be identified. Imaging based on sodium and oxygen is demonstrated with isotropic resolutions of 2 and 5 mm, respectively. Auditory evoked potentials measured in a static field of 9.4 T are shown. Finally, hybrid MR–PET capability at 9.4 T in the human scanner is demonstrated in a rat model. Initial progress on the road to 9.4 T multimodal MR–PET–EEG is illustrated. Ultra-high resolution structural imaging, high-resolution images of the sodium distribution and proof-of-principle 17O data are clearly demonstrated. Further, simultaneous MR–PET data are presented without artefacts and EEG data successfully corrected for the cardioballistic artefact at 9.4 T are presented.  相似文献   

10.
The aim of this study is to use a voxel-based morphometry protocol to compare the brains of 18 children with obsessive-compulsive disorder (OCD) with those of a healthy group matched for gender and handedness. Images were acquired with a 1.5-T MRI scanner, spatially normalized, and segmented with an optimized voxel-based morphometry protocol. OCD children presented a 5.93% reduction of gray matter (GM) total volume in comparison with control brains. We identified OCD brain volume reductions in regions that have been extensively related to action monitoring and error signaling processes. Specifically, we found decreased bilateral GM in frontal (significant after Family Wise Error (FEW), multiple comparisons correction) and cingulate regions as well as decreased white matter (WM) in bilateral frontal and right parietal (p<0.001 uncorrected). Additionally, we found a negative correlation between symptom severity and bilateral hippocampal GM-volume (p<0.001uncorrected) as well as a positive correlation between age and GM left caudate volume (p=0.037 FWE small volume corrected) in the OCD group. As a conclusion, our results point to conflict monitoring structural brain regions as primary deficits in pediatric OCD, and to striatal abnormalities as age-related deficits.  相似文献   

11.
We have developed and tested a new simple computerized finite element method (FEM) approach to MR-to-PET nonrigid breast-image registration. The method requires five-nine fiducial skin markers (FSMs) visible in MRI and PET that need to be located in the same spots on the breast and two on the flanks during both scans. Patients need to be similarly positioned prone during MRI and PET scans. This is accomplished by means of a low gamma-ray attenuation breast coil replica used as the breast support during the PET scan. We demonstrate that, under such conditions, the observed FSM displacement vectors between MR and PET images, distributed piecewise linearly over the breast volume, produce a deformed FEM mesh that reasonably approximates nonrigid deformation of the breast tissue between the MRI and PET scans. This method, which does not require a biomechanical breast tissue model, is robust and fast. Contrary to other approaches utilizing voxel intensity-based similarity measures or surface matching, our method works for matching MR with pure molecular images (i.e. PET or SPECT only). Our method does not require a good initialization and would not be trapped by local minima during registration process. All processing including FSMs detection and matching, and mesh generation can be fully automated. We tested our method on MR and PET breast images acquired for 15 subjects. The procedure yielded good quality images with an average target registration error below 4 mm (i.e. well below PET spatial resolution of 6-7 mm). Based on the results obtained for 15 subjects studied to date, we conclude that this is a very fast and a well-performing method for MR-to-PET breast-image nonrigid registration. Therefore, it is a promising approach in clinical practice. This method can be easily applied to nonrigid registration of MRI or CT of any type of soft-tissue images to their molecular counterparts such as obtained using PET and SPECT.  相似文献   

12.
Reliable attenuation correction represents an essential component of the long chain of modules required for the reconstruction of artifact-free, quantitative brain positron emission tomography (PET) images. In this work we demonstrate the proof of principle of segmented magnetic resonance imaging (MRI)-guided attenuation and scatter corrections in three-dimensional (3D) brain PET. We have developed a method for attenuation correction based on registered T1-weighted MRI, eliminating the need of an additional transmission (TX) scan. The MR images were realigned to preliminary reconstructions of PET data using an automatic algorithm and then segmented by means of a fuzzy clustering technique which identifies tissues of significantly different density and composition. The voxels belonging to different regions were classified into air, skull, brain tissue and nasal sinuses. These voxels were then assigned theoretical tissue-dependent attenuation coefficients as reported in the ICRU 44 report followed by Gaussian smoothing and addition of a good statistics bed image. The MRI-derived attenuation map was then forward projected to generate attenuation correction factors (ACFs) to be used for correcting the emission (EM) data. The method was evaluated and validated on 10 patient data where TX and MRI brain images were available. Qualitative and quantitative assessment of differences between TX-guided and segmented MRI-guided 3D reconstructions were performed by visual assessment and by estimating parameters of clinical interest. The results indicated a small but noticeable improvement in image quality as a consequence of the reduction of noise propagation from TX into EM data. Considering the difficulties associated with preinjection TX-based attenuation correction and the limitations of current calculated attenuation correction, MRI-based attenuation correction in 3D brain PET would likely be the method of choice for the foreseeable future as a second best approach in a busy nuclear medicine center and could be applied to other functional brain imaging modalities such as SPECT.  相似文献   

13.
Multimodality imaging information is regularly used now in radiotherapy treatment planning for cancer patients. The authors are investigating methods to take advantage of all the imaging information available for joint target registration and segmentation, including multimodality images or multiple image sets from the same modality. In particular, the authors have developed variational methods based on multivalued level set deformable models for simultaneous 2D or 3D segmentation of multimodality images consisting of combinations of coregistered PET, CT, or MR data sets. The combined information is integrated to define the overall biophysical structure volume. The authors demonstrate the methods on three patient data sets, including a nonsmall cell lung cancer case with PET/CT, a cervix cancer case with PET/CT, and a prostate patient case with CT and MRI. CT, PET, and MR phantom data were also used for quantitative validation of the proposed multimodality segmentation approach. The corresponding Dice similarity coefficient (DSC) was 0.90 +/- 0.02 (p < 0.0001) with an estimated target volume error of 1.28 +/- 1.23% volume. Preliminary results indicate that concurrent multimodality segmentation methods can provide a feasible and accurate framework for combining imaging data from different modalities and are potentially useful tools for the delineation of biophysical structure volumes in radiotherapy treatment planning.  相似文献   

14.
A standard atlas space with stereotaxic co-ordinates for the postnatal day 0 (P0) C57BL/6J mouse brain was constructed from the average of eight individual co-registered MR image volumes. Accuracy of registration and morphometric variations in structures between subjects were analyzed statistically. We also applied this atlas coordinate system to data acquired using different imaging protocols as well as to a high-resolution histological atlas obtained from separate animals. Mapping accuracy in the atlas space was examined to determine the applicability of this atlas framework. The results show that the atlas space defined here provides a stable framework for image registration for P0 normal mouse brains. With an appropriate feature-based co-registration strategy, the probability atlas can also provide an accurate anatomical map for images acquired using invasive imaging methods. The atlas templates and the probability map of the anatomical labels are available at .  相似文献   

15.
We have assessed the possibility of artefacts that can arise in attempting to perform simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) using a small prototype MR compatible PET scanner (McPET). In these experiments, we examine MR images for any major artefacts or loss in image quality due to inhomogeneities in the magnetic field, radiofrequency interference or susceptibility effects caused by operation of the PET system inside the MR scanner. In addition, possible artefacts in the PET images caused by the static and time-varying magnetic fields or radiofrequency interference from the MR system were investigated. Biological tissue and a T2-weighted spin echo sequence were used to examine susceptibility artefacts due to components of the McPET scanner (scintillator, optical fibres) situated in the MR field of view. A range of commonly used MR pulse sequences was studied while acquiring PET data to look for possible artefacts in either the PET or MR images. Other than a small loss in signal-to-noise using gradient echo sequences, there was no significant interaction between the two imaging systems. Simultaneous PET and MR imaging of simple phantoms was also carried out in different MR systems with field strengths ranging from 0.2 to 4.7 T. The results of these studies demonstrate that it is possible to acquire PET and MR images simultaneously, without any significant artefacts or loss in image quality, using our prototype MR compatible PET scanner.  相似文献   

16.
Image registrations that are based on similarity measures simply adjust the parameters of an appropriate spatial transformation model until the similarity measure reaches an optimum. The numerous similarity measures that have been proposed in the past are differently sensitive to imaging modality, image content and differences in the image content, selection of the floating and target image, partial image overlap, etc. In this paper, we evaluate and compare 12 similarity measures for the rigid registration. To study the impact of different imaging modalities on the behavior of similarity measures, we have used 16 CT/MR and 6 PET/MR image pairs with known 'gold standard' registrations. The results for the PET/MR registration and for the registration of CT to both rectified and unrectified MR images indicate that mutual information, normalized mutual information and the entropy correlation coefficient are the most accurate similarity measures and have the smallest risk of being trapped in a local optimum. The results of an experiment on the impact of exchanging the floating and target image indicate that, especially in MR/PET registrations, the behavior of some similarity measures, such as mutual information, significantly depends on which image is the floating and which is the target.  相似文献   

17.
The silicon photomultiplier (Si-PM) is a promising photo-detector for PET for use in magnetic resonance imaging (MRI) systems because it has high gain and is insensitive to static magnetic fields. Recently we developed a Si-PM-based depth-of-interaction PET system for small animals and performed simultaneous measurements by combining the Si-PM-based PET and the 0.15 T permanent MRI to test the interferences between the Si-PM-based PET and an MRI. When the Si-PM was inside the MRI and installed around the radio frequency (RF) coil of the MRI, significant noise from the RF sequence of the MRI was observed in the analog signals of the PET detectors. However, we did not observe any artifacts in the PET images; fluctuation increased in the count rate of the Si-PM-based PET system. On the MRI side, there was significant degradation of the signal-to-noise ratio (S/N) in the MRI images compared with those without PET. By applying noise reduction procedures, the degradation of the S/N was reduced. With this condition, simultaneous measurements of a rat brain using a Si-PM-based PET and an MRI were made with some degradation in the MRI images. We conclude that simultaneous measurements are possible using Si-PM-based PET and MRI.  相似文献   

18.
约1/4的难治性颞叶癫痫患者的发作无法通过常规前颞叶切除术得到有效控制,这可能是因为疾病存在多种复杂的亚型,且部分亚型涉及颞叶外的脑区病变。基于多模态脑影像特征,使用隐含狄利克雷分布模型可以估计潜在疾病因子及各因子在患者大脑内的表达程度,有助于个体精准分型。该研究通过PET/MR同步一体扫描仪采集了86名难治性颞叶癫痫患者的T1加权影像和FDG PET影像,并采集了39名健康志愿者的T1加权影像和36名健康志愿者的FDG PET影像作为对照。该研究提取与癫痫病理相关的灰质体积和葡萄糖摄取值,使用隐含狄利克雷分布进行分型,将疾病因子的数量分别设为3、4、5,进行多次实验,并对四因子模型中的各疾病因子与临床指标之间的关系进行统计分析。研究发现,选取不同数量的疾病因子进行分型时得到的结果具有一定的相似性。在四因子模型中存在与病灶偏侧性、癫痫发作年限和认知能力显著相关(P<0.05)的疾病因子。该研究对颞叶癫痫分型具有一定的参考价值。  相似文献   

19.
Structures were obtained from images with morphological characteristics to register with voxel-based method. We applied simple morphological operations to obtain human brain cortex and chose normalized mutual information as similarity measure for the geometric alignment of PET and MR images. Evaluation used nine patients, and the results showed that sub-voxel accuracy was achieved and the registration process was significantly more rapid. Thus this new automated multi-modality registration method is more robust and has high accuracy.  相似文献   

20.
Spatial normalization and segmentation of pediatric brain magnetic resonance images (MRI) data with adult templates may impose biases and limitations in pediatric neuroimaging work. To remedy this issue, we created a single database made up of a series of pediatric, age-specific MRI average brain templates. These average, age-specific templates were constructed from brain scans of individual children obtained from two sources: (1) the NIH MRI Study of Normal Brain Development and (2) MRIs from University of South Carolina's McCausland Brain Imaging Center. Participants included young children enrolled at ages ranging from 8 days through 4.3 years of age. A total of 13 age group cohorts spanning the developmental progression from birth through 4.3 years of age were used to construct age-specific MRI brain templates (2 weeks, 3, 4.5, 6, 7.5, 9, 12, 15, 18 months, 2, 2.5, 3, 4 years). Widely used processing programs (FSL, SPM, and ANTS) extracted the brain and constructed average templates separately for 1.5T and 3T MRI volumes. The resulting age-specific, average templates showed clear changes in head and brain size across ages and between males and females, as well as changes in regional brain structural characteristics (e.g., myelin development). This average brain template database is available via our website (http://jerlab.psych.sc.edu/neurodevelopmentalmridatabase) for use by other researchers. Use of these age-specific, average pediatric brain templates by the research community will enhance our ability to gain a clearer understanding of the early postnatal development of the human brain in health and in disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号