首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
OBJECTIVE: The authors used proton magnetic resonance spectroscopic imaging ((1)H-MRSI) to assess potential reductions of N-acetylaspartate (a marker of neuronal integrity) in the hippocampal area and dorsolateral prefrontal cortex of patients with schizophreniform disorder. In addition, they assessed the relationship between N-acetylaspartate levels and working memory deficits. METHOD: Twenty-four patients with DSM-IV schizophreniform disorder and 24 healthy subjects were studied. Subjects underwent (1)H-MRSI and were given the N-back working memory test. RESULTS: The schizophreniform disorder patients had selective reductions of N-acetylaspartate ratios in the hippocampal area and the dorsolateral prefrontal cortex, and a positive correlation was seen between N-acetylaspartate ratios in the dorsolateral prefrontal cortex and performance during the 2-back working memory condition. CONCLUSIONS: Similar to findings reported in schizophrenia studies, N-acetylaspartate reductions in the hippocampal area and the dorsolateral prefrontal cortex were seen in patients with schizophreniform disorder. Moreover, the results support other evidence that neuronal pathology in the dorsolateral prefrontal cortex accounts for a proportion of working memory deficits already present at illness outset.  相似文献   

2.
BACKGROUND: A large number of studies suggest the presence of deficits in dorsolateral prefrontal cortex function during performance of working memory tasks in individuals with schizophrenia. However, working memory deficits may also present in other psychiatric disorders, such as major depression. It is not clear whether people with major depression also demonstrate impaired prefrontal activation during performance of working memory tasks. METHODS: We used functional magnetic resonance imaging to assess the patterns of cortical activation associated with the performance of a 2-back version of the N-Back task (working memory) in 38 individuals with schizophrenia and 14 with major depression. RESULTS: We found significant group differences in the activation of dorsolateral prefrontal cortex associated with working memory performance. Consistent with prior research, participants with schizophrenia failed to show activation of right dorsolateral prefrontal cortex in response to working memory tasks demands, whereas those with major depression showed clear activation of right and left dorsolateral prefrontal cortex as well as bilateral activation of inferior and superior frontal cortex. CONCLUSIONS: During performance of working memory tasks, deficits in prefrontal activation, including dorsolateral regions, are more severe in participants with schizophrenia (most of whom were recently released outpatients) than in unmedicated outpatients with acute nonpsychotic major depression.  相似文献   

3.
OBJECTIVE: Working memory, a critical cognitive capacity that is affected in schizophrenia, can be divided into maintenance and manipulation processes. Previous behavioral research suggested that manipulation is more affected than maintenance in patients with chronic schizophrenia. In this study of first-episode schizophrenia patients, the authors evaluated the extent to which the two working memory processes are affected early in the course of schizophrenia. METHOD: Study subjects were 11 first-episode schizophrenia patients and 11 matched healthy comparison subjects. Each group performed two verbal working memory tasks while undergoing functional magnetic resonance imaging. One task required maintenance of information; the other required manipulation of information in addition to maintenance. RESULTS: Under behaviorally matched conditions, both groups activated a predominantly left-sided frontal-parietal network. The manipulation plus maintenance task elicited activation of greater magnitude and spatial extent. With both tasks, patients showed less bilateral dorsolateral prefrontal cortex activation and greater ventrolateral prefrontal cortex activation, relative to the comparison subjects. A group-by-task interaction was observed for activation at the left dorsolateral and ventrolateral prefrontal cortex. The increase in activation when patients engaged in the manipulation plus maintenance task was disproportionately less in the dorsolateral prefrontal cortex and greater in the ventrolateral prefrontal cortex. CONCLUSIONS: These functional neuroanatomical findings add support to earlier suggestions that manipulation of information is selectively more affected than maintenance of information in persons with schizophrenia. They also suggest the presence of interacting regions of dysfunctional and compensatory prefrontal responses in the dorsolateral and ventrolateral prefrontal cortex, respectively, that are more prominent when information is manipulated. This disrupted prefrontal network is present relatively early in the course of schizophrenia.  相似文献   

4.
OBJECTIVE: The dorsolateral prefrontal cortex has been implicated in both working memory and the pathophysiology of schizophrenia. A relationship among dorsolateral prefrontal cortex activity, working memory dysfunction, and symptoms in schizophrenia has not been firmly established, partly because of generalized cognitive impairments in patients and task complexity. Using tasks that parametrically manipulated working memory load, the authors tested three hypotheses: 1) patients with schizophrenia differ in prefrontal activity only when behavioral performance differentiates them from healthy comparison subjects, 2) dorsolateral prefrontal cortex dysfunction is associated with poorer task performance, and 3) dorsolateral prefrontal cortex dysfunction is associated with cognitive disorganization but not negative or positive symptoms. METHOD: Seventeen conventionally medicated patients with schizophrenia and 16 healthy comparison subjects underwent functional magnetic resonance imaging while performing multiple levels of the "n-back" sequential-letter working memory task. RESULTS: Patients with schizophrenia showed a deficit in physiological activation of the right dorsolateral prefrontal cortex (Brodmann's area 46/9) in the context of normal task-dependent activity in other regions, but only under the condition that distinguished them from comparison subjects on task performance. Patients with greater dorsolateral prefrontal cortex dysfunction performed more poorly. Dorsolateral prefrontal cortex dysfunction was selectively associated with disorganization symptoms. CONCLUSIONS: These results are consistent with the hypotheses that working memory dysfunction in patients with schizophrenia is caused by a disturbance of the dorsolateral prefrontal cortex and that this disturbance is selectively associated with cognitive disorganization. Further, the pattern of behavioral performance suggests that dorsolateral prefrontal cortex dysfunction does not reflect a deficit in the maintenance of stimulus representations per se but points to deficits in more associative components of working memory.  相似文献   

5.
CONTEXT: It remains unclear whether altered regional brain physiological activity in patients with schizophrenia during working memory tasks relates to maintenance-related processes, manipulation-related (ie, executive) processes, or both. OBJECTIVE: To examine regional functional activations of the brain during maintenance- and manipulation-related working memory processing in patients with schizophrenia and in healthy comparison subjects. DESIGN: Functional images of the brain were acquired in 11 schizophrenic patients and 12 healthy control subjects (matched for age, sex, handedness, and parental education) during 2 spatial working memory paradigms, one contrasting maintenance-only processing with maintenance and manipulation processing and the other contrasting parametrically varying maintenance demands. RESULTS: Patients and controls showed activation of a large, spatially distributed network of cortical and subcortical regions during spatial working memory processing. When task demands required explicit manipulation of information held in memory, controls recruited right dorsolateral prefrontal cortex (Brodmann areas 45 and 46) to a significantly greater extent than patients. A similar effect was observed for the larger memory set sizes of the memory set size task. No other brain regions showed activation differences between groups for either task. These differences persisted when comparing activation maps for memory set sizes in which the 2 groups were equivalent in behavioral accuracy and when comparing subgroups of patients and controls matched for behavioral accuracy on either task. CONCLUSIONS: Physiological disturbances in the dorsolateral prefrontal cortex contribute differentially to patients' difficulties with maintaining spatial information across a brief delay, as well as with manipulating the maintained representation. These differences persisted when comparing conditions in which the 2 groups were equivalent in behavioral accuracy.  相似文献   

6.
Involvement of the prefrontal cortex in schizophrenia has been implicated by neuropsychological, as well as neuropathological and imaging studies. Reductions of N-acetylaspartate (NAA), an in vivo marker of neuronal integrity, have repeatedly been detected in the frontal lobes of patients with schizophrenia by proton magnetic resonance spectroscopy (1H-MRS). In chronic medicated patients, a positive correlation between NAA levels of the prefrontal cortex and cognitive functioning has been observed, but to date, there have been no studies in first-episode neuroleptic-naive patients. In this study, single-voxel 1H-MRS was used to investigate neuronal function of the dorsolateral prefrontal cortex in 15 first-episode and 20 chronic schizophrenic patients. Outcomes were compared to 20 age-matched healthy controls to assess the relationship between prefrontal metabolism and neuropsychological performance. Patients with chronic schizophrenia had significant reductions of NAA, glutamate/glutamine, and choline levels compared to first-episode patients and healthy controls. Furthermore, creatine and phosphocreatine were significantly reduced in both patient groups compared to healthy controls. In the neuropsychological tests, chronic schizophrenic patients performed significantly poorer in the Auditory Verbal Learning Task (AVLT) compared to first-episode patients. In both patient groups, NAA levels of the left frontal lobe significantly correlated with performances in verbal learning and memory. These results corroborate data from recent structural and spectroscopic imaging studies of the frontal lobes in schizophrenia, in which cortical gray matter reductions after onset of symptoms as well as reduced levels of NAA in chronic, but not in first-episode schizophrenic patients have been reported.  相似文献   

7.
OBJECTIVE: Numerous neuroimaging studies have examined the function of the dorsolateral prefrontal cortex in schizophrenia; although abnormalities usually are identified, it is unclear why some studies find too little activation and others too much. The authors' goal was to explore this phenomenon. METHOD: They used the N-back working memory task and functional magnetic resonance imaging at 3 T to examine a group of 14 patients with schizophrenia and a matched comparison group of 14 healthy subjects. RESULTS: Patients' performance was significantly worse on the two-back working memory task than that of healthy subjects. However, there were areas within the dorsolateral prefrontal cortex of the patients that were more active and areas that were less active than those of the healthy subjects. When the groups were subdivided on the basis of performance on the working memory task into healthy subjects and patients with high or low performance, locales of greater prefrontal activation and locales of less activation were found in the high-performing patients but only locales of underactivation were found in the low-performing patients. CONCLUSIONS: These findings suggest that patients with schizophrenia whose performance on the N-back working memory task is similar to that of healthy comparison subjects use greater prefrontal resources but achieve lower accuracy (i.e., inefficiency) and that other patients with schizophrenia fail to sustain the prefrontal network that processes the information, achieving even lower accuracy as a result. These findings add to other evidence that abnormalities of prefrontal cortical function in schizophrenia are not reducible to simply too much or too little activity but, rather, reflect a compromised neural strategy for handling information mediated by the dorsolateral prefrontal cortex.  相似文献   

8.
BACKGROUND: Pathology of dorsolateral prefrontal cortex and dysregulation of dopaminergic neurons have been associated with the pathophysiology of schizophrenia, but how these phenomena relate to each other in patients has not been known. It has been hypothesized that prefrontal cortical pathology might induce both diminished steady-state and exaggerated responses of dopaminergic neurons to certain stimuli (e.g., stress). We examined the relationship between a measure of prefrontal neuronal pathology and striatal dopamine activity in patients with schizophrenia and in a nonhuman primate model of abnormal prefrontal cortical development. METHODS: In the patients, we studied in vivo markers of cortical neuronal pathology with NMR spectroscopic imaging and of steady-state striatal dopamine activity with radioreceptor imaging. In the monkeys, we used the same NMR technique and in vivo microdialysis. RESULTS: Measures of N-acetyl-aspartate concentrations (NAA) in dorsolateral prefrontal cortex strongly and selectively predicted D2 receptor availability in the striatum (n = 14, rho = -.64, p < .01), suggesting that the greater the apparent dorsolateral prefrontal cortex pathology, the less the steady-state dopamine activity in these patients. A similar relationship between NAA measures in dorsolateral prefrontal cortex and steady-state dopamine concentrations in the striatum was found in the monkeys (n = 5, rho = .70, p < .05). We then tested in the same monkeys the relationship of prefrontal NAA and striatal dopamine overflow following amphetamine infusion into dorsolateral prefrontal cortex. Under these conditions, the relationship was inverted, i.e., the greater the apparent dorsolateral prefrontal cortex pathology, the greater the dopamine release. CONCLUSIONS: These data demonstrate direct relationships between putative neuronal pathology in dorsolateral prefrontal cortex and striatal dopamine activity in human and nonhuman primates and implicate a mechanism for dopamine dysregulation in schizophrenia.  相似文献   

9.
OBJECTIVE: Increased acoustic noise (AN) during working memory leads to increased brain activation in healthy individuals and may have greater impact in human immunodeficiency virus (HIV) patients. RESULTS: Compared with control subjects, HIV patients showed reduced AN activation and lower neuronal marker N-acetylaspartate in prefrontal and parietal cortices. Competing use of the working memory network between AN and cognitive load showed lower dynamic range of the hemodynamic responses in prefrontal and parietal cortices in HIV patients. INTERPRETATION: These findings suggest that reduced reserve capacity of the working memory network in HIV patients and additional stress (eg, AN) might exhaust the impaired network for more demanding tasks.  相似文献   

10.
OBJECTIVE: Certain cognitive, behavioral, and emotional deficits (so-called negative symptoms) in patients with schizophrenia have often been attributed to prefrontal cortical pathology, but direct evidence for a relationship between prefrontal neuronal pathology and negative symptoms has been lacking. The authors hypothesized that an in vivo measure of prefrontal neuronal pathology (N:-acetylaspartate [NAA] levels) in patients with schizophrenia would predict negative symptoms. METHOD: Proton magnetic resonance spectroscopic imaging ((1)H-MRSI) and rating scales for negative and positive symptoms were used to study 36 patients with schizophrenia. Magnetic resonance spectra were analyzed as metabolite ratios, and parametric correlations were performed. RESULTS: A regionally selective negative correlation was found between prefrontal NAA-creatine ratio and negative symptom ratings in this group of patients with schizophrenia. CONCLUSIONS: Lower prefrontal NAA-and by inference greater neuronal pathology-predicted more severe negative symptoms in patients with schizophrenia. These data demonstrate a relationship between an intraneuronal measure of dorsolateral prefrontal cortex integrity and negative symptoms in vivo and represent further evidence for the involvement of the dorsolateral prefrontal cortex in negative symptoms associated with schizophrenia.  相似文献   

11.
Schizophrenia patients show eye movement abnormalities that suggest dysfunction in neocortical control of the oculomotor system. Fifteen never-medicated, first episode schizophrenia patients and 24 matched healthy individuals performed eye movement tasks during functional magnetic resonance imaging studies. For both visually guided saccade and smooth pursuit paradigms, schizophrenia patients demonstrated reduced activation in sensorimotor areas supporting eye movement control, including the frontal eye fields, supplementary eye fields, and parietal and cingulate cortex. The same findings were observed for an oculomotor delayed response paradigm used to assess spatial working memory, during which schizophrenia patients also had reduced activity in dorsolateral prefrontal cortex. In contrast, only minimal group differences in activation were found during a manual motor task. These results suggest a system-level dysfunction of cortical sensorimotor regions supporting oculomotor function, as well as in areas of dorsolateral prefrontal cortex that support spatial working memory. These findings indicate that a generalized rather than localized pattern of neocortical dysfunction is present early in the course of schizophrenia and is related to deficits in the sensorimotor and cognitive control of eye movement activity.  相似文献   

12.
BACKGROUND: The specific intracellular effects of antipsychotic drugs are largely unknown. Studies in animals have suggested that antipsychotics modify the expression of various intraneuronal proteins, but no analogous in vivo data in humans are available. The objective of the present study was to assess whether antipsychotics modify N-acetylaspartate (an intraneuronal marker of neuronal functional integrity) measures in brains of patients with schizophrenia. METHODS: We used proton magnetic resonance spectroscopic imaging to study 23 patients with schizophrenia (DSM-IV diagnosis) using a within-subject design. Patients were studied twice: once while on a stable regimen of antipsychotic drug treatment (for at least 4 weeks) and once while off medication for at least 2 weeks. Several cortical and subcortical regions were assessed, including the dorsolateral prefrontal cortex and the hippocampal area. RESULTS: Analysis of variance showed that, while on antipsychotics, patients had significantly higher N-acetylaspartate measures in the dorsolateral prefrontal cortex (p =.002). No other region showed any significant effect of treatment. CONCLUSIONS: These results indicate that antipsychotic drugs increase N-acetylaspartate measures selectively in the dorsolateral prefrontal cortices of patients with schizophrenia, suggesting that these drugs modify in a regionally specific manner the function of a population of cortical neurons. N-Acetylaspartate measures may provide a useful tool to further investigate the effects of antipsychotics at the intracellular level.  相似文献   

13.
OBJECTIVE: The authors previously reported that in monozygotic twins discordant for schizophrenia the affected twin almost invariably had a smaller anterior pes hippocampus, measured with magnetic resonance imaging (MRI), and invariably had less regional cerebral blood flow (rCBF) in the dorsolateral prefrontal cortex during performance of the Wisconsin Card Sorting Test. The present study was an investigation of the relationship between hippocampal pathology and prefrontal hypofunction in the same twin pairs. METHOD: Nine pairs of monozygotic twins discordant for schizophrenia underwent MRI scanning for determination of anterior hippocampal volume and xenon-inhalation rCBF testing for determination of prefrontal physiological activation associated with the Wisconsin Card Sorting Test. RESULTS: The differences within twin pairs on the MRI and rCBF measures were strongly and selectively correlated. Specifically, the more an affected twin differed from the unaffected twin in left hippocampal volume, the more they differed in prefrontal physiological activation during the Wisconsin Card Sorting Test. In the affected twins as a group, prefrontal activation was strongly related to both left and right hippocampal volume. These relationships were not found in the group of unaffected twins. CONCLUSIONS: This finding is consistent with the notion that schizophrenia involves pathology of and dysfunction within a widely distributed neocortical-limbic neural network that has been implicated in, among other activities, the performance of cognitive tasks requiring working memory.  相似文献   

14.
OBJECTIVE: The goal of this study was to determine whether the regions of the prefrontal and parietal cortices showing abnormal activation among individuals with schizophrenia during working memory tasks are associated with either 1) phonological coding processes that may be specific to verbal tasks (i.e., ventral prefrontal and parietal cortices) or 2) domain-general executive processes engaged by verbal and nonverbal tasks (i.e., dorsal prefrontal and parietal cortices). METHOD: The participants were 57 medicated individuals with schizophrenia and 120 healthy subjects. Functional magnetic resonance imaging was used to scan all participants during performance of verbal and nonverbal 2-back working memory tasks. RESULTS: In the healthy subjects there was similar bilateral dorsal prefrontal and inferior parietal cortex activation for both the verbal and nonverbal working memory tasks, but greater left ventral prefrontal and parietal cortex activation during verbal compared to nonverbal working memory. Individuals with schizophrenia showed bilateral deficits in dorsal frontal and parietal activation during both verbal and nonverbal working memory tasks. They also demonstrated the typical pattern of greater activity for verbal, as compared to nonverbal, working memory in ventral prefrontal and parietal regions, although they showed less verbal superiority in a left ventral prefrontal region. CONCLUSIONS: These results support the hypothesis that working memory deficits in individuals with schizophrenia reflect deficits in activation of brain regions associated with the central executive components of working memory rather than domain-specific storage buffers.  相似文献   

15.
Earlier studies with functional imaging in schizophrenia have demonstrated dysfunction of the dorsolateral prefrontal cortex during working memory. Controlling for behavioral performance and for catechol-O-methyltransferase (COMT) Val158Met genotype, we here demonstrate in a functional magnetic resonance imaging paradigm that patients recruit greater neuronal resources in prefrontal cortex during working memory, suggesting that this phenotype is a core functional trait of the disease. We also replicated earlier findings that the Val allele of the COMT polymorphism is associated with greater engagement of the prefrontal cortex.  相似文献   

16.
Using positron emission tomography (PET), we investigated the organisation of spatial versus object-based visual working memory in 11 normal human subjects. The paradigm involved a conditional colour-response association task embedded within two visual working memory tasks. The subject had to remember a position (spatial) or shape (object-based) and then use this to recover the colour of the matching element for the conditional association. Activation of the nucleus accumbens and the anterior cingulate cortex was observed during the conditional associative task, indicating a possible role of these limbic structures in associative memory. When the 2 memory tasks were contrasted, we observed activation of 2 distinct cortical networks: (1) The spatial task activated a dorsal stream network distributed in the right hemisphere in the parieto-occipital cortex and the dorsal prefrontal cortex, and (2) The non spatial task activated a ventral stream network distributed in the left hemisphere in the temporo- occipital cortex, the ventral prefrontal cortex and the striatum. These results support the existence of a domain-specific dissociation with dorsal and ventral cortical systems involved respectively in spatial and non spatial working memory functions.  相似文献   

17.
OBJECTIVE: The identification of neurobiological intermediate phenotypes may hasten the search for susceptibility genes in complex psychiatric disorders such as schizophrenia. Earlier family studies have suggested that deficits in executive cognition and working memory may be related to genetic susceptibility for schizophrenia, but the biological basis for this behavioral phenotype has not been identified. METHOD: The authors used functional magnetic resonance imaging (fMRI) during performance of the N-back working memory task to assess working memory-related cortical physiology in nonschizophrenic, cognitively intact siblings of patients with schizophrenia. They compared 23 unaffected siblings of schizophrenic patients to 18 matched comparison subjects. As a planned replication, they studied another 25 unaffected siblings and 15 comparison subjects. RESULTS: In both cohorts, there were no group differences in working memory performance. Nevertheless, both groups of siblings showed an exaggerated physiological response in the right dorsolateral prefrontal cortex that was qualitatively similar to results of earlier fMRI studies of patients with schizophrenia. CONCLUSIONS: These fMRI data provide direct evidence of a primary physiological abnormality in dorsolateral prefrontal cortex function in individuals at greater genetic risk for schizophrenia, even in the absence of a manifest cognitive abnormality. This exaggerated fMRI response implicates inefficient processing of memory information at the level of intrinsic prefrontal circuitry, similar to earlier findings in patients with schizophrenia. These data predict that inheritance of alleles that contribute to inefficient prefrontal information processing will increase risk for schizophrenia.  相似文献   

18.
Functional neuroimaging studies on cognitive dysfunction in schizophrenia have suggested regional brain activation changes in the dorsolateral prefrontal cortex and the medial temporal lobe. However, less is known about the functional coupling of these areas during cognitive performance. In this study, we used functional magnetic resonance imaging, a verbal working memory (WM) task and multivariate statistical techniques to investigate the functional coupling of temporally anticorrelated neural networks during cognitive processing in patients with schizophrenia (n = 16) compared to healthy controls (n = 16). Independent component analysis identified 18 independent components (ICs) among which two ICs were selected for further analyses. These ICs included temporally anticorrelated networks which were most highly associated with the delay period of the task in both healthy controls and patients with schizophrenia. Functional network abnormalities in patients with schizophrenia were detected within a “task-positive” lateral frontoparietal network, where increased functional connectivity was found in bilateral dorsolateral prefrontal regions. In addition, aberrant functional coupling of the hippocampal cortex in patients with schizophrenia was detected within a “task-negative” medial frontotemporal network. In patients with schizophrenia, functional connectivity indices in the left dorsolateral prefrontal cortex and the right hippocampal cortex were positively correlated with accuracy during the WM task, while the connectivity strength in the right dorsolateral prefrontal cortex was negatively correlated with measures of symptom severity. These data suggest that within two temporally anticorrelated network states, patients with schizophrenia exhibit increased and persistent dorsolateral prefrontal and hippocampal connectivity during WM performance.  相似文献   

19.
OBJECTIVE: Neuropsychological studies have demonstrated verbal episodic memory deficits in schizophrenia during word encoding and retrieval. This study examined neural substrates of memory in an analysis that controlled for successful retrieval. METHOD: Event-related blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) was used to measure brain activation during word encoding and recognition in 14 patients with schizophrenia and 15 healthy comparison subjects. An unbiased multiple linear regression procedure was used to model the BOLD response, and task effects were detected by contrasting the signal before and after stimulus onset. RESULTS: Patients attended during encoding and had unimpaired reaction times and normal response biases during recognition, but they had lower recognition discriminability scores, compared with the healthy subjects. Analysis of contrasts was restricted to correct items. Previous findings of a deficit in bilateral prefrontal cortex activation during encoding in patients were reproduced, but patients showed greater parahippocampal activation rather than deficits in temporal lobe activation. During recognition, left dorsolateral prefrontal cortex activation was lower in the patients and right anterior prefrontal cortex activation was preserved, as in the authors' previous study using positron emission tomography. Successful retrieval was associated with greater right dorsolateral prefrontal cortex activation in the comparison subjects, whereas orbitofrontal, superior frontal, mesial temporal, middle temporal, and inferior parietal regions were more active in the patients during successful retrieval. CONCLUSIONS: The pattern of prefrontal cortex underactivation and parahippocampal overactivation in the patients suggests that functional connectivity of dorsolateral prefrontal and temporal-limbic structures is disrupted by schizophrenia. This disruption may be reflected in the memory strategies of patients with schizophrenia, which include reliance on rote rehearsal rather than associative semantic processing.  相似文献   

20.
OBJECTIVE: Proton magnetic resonance spectroscopy (1H-MRS) was used to study medial prefrontal metabolic impairments in schizophrenic patients with the deficit syndrome. METHOD: The subjects were 22 schizophrenic patients categorized as deficit (N=5) or nondeficit (N=17) and 21 healthy subjects. (1)H-MRS was performed for the right and the left medial prefrontal cortex. RESULTS: The patients with the deficit syndrome had significantly lower ratios of N-acetylaspartate to creatine plus phosphocreatine than did the healthy subjects or nondeficit patients. CONCLUSIONS: As N-acetylaspartate levels could reflect neuronal density and/or viability, this finding suggests a neuronal loss in the medial prefrontal cortex of deficit patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号