首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study aims to investigate the behavior of melt agglomeration with a low-viscosity hydrophobic meltable binder by using a non-meltable additive. The size, crushing strength, and pore size distribution of resultant agglomerates, the rheological, surface tension, and wetting properties of the molten binder, as well as, the flow characteristics of preagglomeration powder blend were determined. The use of additive showed contradictory agglomerate growth-promoting and -retarding effects on the molten binder surface tension and the interparticulate frictional forces. Critical concentration effects of additive corresponded to threshold transition of agglomeration-promoting to -retarding behavior were discussed.  相似文献   

2.
The present study aims to investigate the behavior of melt agglomeration with a low-viscosity hydrophobic meltable binder by using a non-meltable additive. The size, crushing strength, and pore size distribution of resultant agglomerates, the rheological, surface tension, and wetting properties of the molten binder, as well as, the flow characteristics of preagglomeration powder blend were determined. The use of additive showed contradictory agglomerate growth-promoting and -retarding effects on the molten binder surface tension and the interparticulate frictional forces. Critical concentration effects of additive corresponded to threshold transition of agglomeration-promoting to -retarding behavior were discussed.  相似文献   

3.
This study was performed in order to evaluate the possibility of obtaining spherical agglomerates with a high content of meltable binder by a melt agglomeration process in a high shear mixer. Lactose monohydrate was melt agglomerated with polyethylene glycol (PEG) 1500 or 6000 in a 10-l high shear mixer at an impeller speed of 400 rpm. The PEG 1500 was used as a size fraction of beads, and the PEG 6000 as a fine powder, a powder, unfractionated beads, and size fractions of beads. It was found to be possible to incorporate a high amount of PEG (28% m/m of the amount of lactose), because the rather low impeller speed applied in the present experiments caused less densification of the agglomerates. The fine powder of the PEG 6000 caused a complete adhesion of the mass to the bowl shortly after melting. A rapid agglomerate growth by coalescence was found to be the dominant growth mechanism when agglomeration was performed with the PEG 6000 powder. The PEG beads resulted in a slow and more controllable agglomerate growth, because the growth occurred primarily by an immersion of the lactose particles in the surface of the molten binder droplets. The initial shape of the agglomerates produced with the PEG beads was similar to the spherical shape of the beads. This shape could not be maintained during the process due to a breakage of the agglomerates caused by a hollow structure of the PEG beads.  相似文献   

4.
Lactose monohydrate was melt agglomerated in an 8-l high shear mixer using Gelucire 50/13, Stearate 6000 WL 1644, or polyethylene glycol (PEG) 3000 as meltable binder. The impeller speed was varied at two levels, and massing time was varied at six levels. In order to obtain a similar agglomerate growth, a larger binder volume had to be used with Gelucire 50/13 than with Stearate 6000 WL 1644 and PEG 3000. The lower viscosity of Gelucire 50/13 gave rise to agglomerates of a wider size distribution and a higher porosity as well as more adhesion of mass to the bowl. A lower binder viscosity resulted in more spherical agglomerates at the low impeller speed.  相似文献   

5.
A study was performed in order to elucidate the effects of the interactions between powder particle size and binder viscosity on the mechanisms involved in agglomerate formation and growth. Calcium carbonates having mean particle sizes in the range of 5-214 microm and polyethylene glycols having viscosities in the range of approximately 50-100000 mPas were melt agglomerated in a high shear mixer. Agglomerate growth by nucleation and coalescence was found to dominate when agglomerating small powder particles and binders with a low viscosity. Increasing the binder viscosity increased the formation of agglomerates by immersion of powder particles in the surface of the binder droplets. With a larger powder particle size, an increasing binder viscosity was necessary in order to obtain an agglomerate strength being sufficient to avoid breakage. Due to a low agglomerate strength, a satisfying agglomeration of very large particles (214 microm) could not be obtained, even with very viscous binders. The study demonstrated that the optimum agglomerate growth occurred when the agglomerates were of an intermediate strength causing an intermediate deformability of the agglomerates. In order to produce spherical agglomerates (pellets), a low viscosity binder has to be chosen when agglomerating a powder with a small particle size, and a high viscosity binder must be applied in agglomeration of powders with large particles.  相似文献   

6.
This study was performed in order to evaluate the effects of binder droplet size and powder particle size on agglomerate formation and growth in fluid bed spray agglomeration using a meltable binder. Three different lactose grades, 100, 125 or 350 mesh, were agglomerated using polyethylene glycol (PEG) 3000 at two different concentrations, 11.5 or 22% (volume/mass), and three spray droplet sizes, 30, 60 or 90 microm were applied. The ratio of droplet size/particle size was found to determine whether the mechanism of nucleation was distribution or immersion. Distribution was promoted by a low ratio, whereas immersion was promoted by a high ratio. Distribution as nucleation mechanism led to a more open agglomerate structure and immersion to a denser structure. When the nucleation phase was terminated, coalescence between rewetted nuclei or agglomerates was the growth mechanism with both preceding mechanisms of nucleation. A larger particle size of the lactose led to larger agglomerates. The difference in the effect on growth between the 30 and 60 microm droplets was generally low. The 90 microm droplets at 22% binder concentration offered a potential for uncontrollable growth giving rise to markedly larger agglomerates and a lower reproducibility than 30 and 60 microm droplets.  相似文献   

7.
A study was performed in order to elucidate the effects of the physical properties of small powder particles on binder liquid requirement and agglomerate growth mechanisms. Three grades of calcium carbonate having different particle size distribution, surface area, and particle shape but approximately the same median particle size (4-5 microm), were melt agglomerated with polyethylene glycol (PEG) 3000 or 20,000 in an 8-l high shear mixer at three impeller speeds. The binder liquid requirement was found to be very dependent on the packing properties of the powder, a denser packing resulting in a lower binder liquid requirement. The densification of the agglomerates in the high shear mixer could be approximately predicted by compressing a powder sample in a compaction simulator. With the PEG having the highest viscosity (PEG 20,000), the agglomerate formation and growth occurred primarily by the immersion mechanism, whereas PEG 3000 gave rise to agglomerate growth by coalescence. Powder particles with a rounded shape and a narrow size distribution resulted in breakage of agglomerates with PEG 3000, whereas no breakage was seen with PEG 20,000. Powder particles having an irregular shape and surface structure could be agglomerated with PEG 20,000, whereas agglomerate growth became uncontrollable with PEG 3000. When PEG 20,000 was added as a powder instead of flakes, the resultant agglomerates became rounder and the size distribution narrower.  相似文献   

8.
The aim of this study was to investigate the influence of binder content, binder particle size, granulation time and inlet air flow rate on granule size and size distribution, granule shape and flowability, as well as on drug release rate. Hydrophilic (polyetilenglycol 2000) and hydrophobic meltable binder (glyceryl palmitostearate) were used for in situ fluidized hot melt granulation. Granule size was mainly influenced by binder particle size. Binder content was shown to be important for narrow size distribution and good flow properties. The results obtained indicate that conventional fluid bed granulator may be suitable for production of highly spherical agglomerates, particularly when immersion and layering is dominant agglomeration mechanism. Granule shape was affected by interplay of binder content, binder particle size and granulation time. Solid state analysis confirmed unaltered physical state of the granulate components and the absence of interactions between the active and excipients. Besides the nature and amount of binder, the mechanism of agglomerate formation seems to have an impact on drug dissolution rate. The results of the present study indicate that fluidized hot melt granulation is a promising powder agglomeration technique for spherical granules production.  相似文献   

9.
The purpose was to produce solid dispersions of a poorly water-soluble drug, Lu-X, by melt agglomeration in a laboratory scale rotary processor. The effect of binder type and method of manufacturing on the dissolution profile of Lu-X was investigated. Lactose monohydrate and Lu-X were melt agglomerated with Rylo MG12, Gelucire 50/13, PEG 3000, or poloxamer 188. Either a mixture of binder, drug, and excipient was heated to a temperature above the melting point of the binder (melt-in procedure) or a dispersion of drug in molten binder was sprayed on the heated excipient (spray-on procedure). The agglomerates were characterized by DSC, XRPD, SEM, and EDX-SEM. The study showed that the agglomerates containing solid dispersions had improved dissolution rates compared to physical mixtures and pure drug. The melt-in procedure gave a higher dissolution rate than the spray-on procedure with PEG 3000, poloxamer 188, and Gelucire 50/13, whereas the opposite was found with Rylo MG12. This was explained by differences in mechanisms of agglomerate formation and growth, which were dominated by immersion with PEG 3000, poloxamer 188, and Gelucire 50/13, and by distribution and coalescence with Rylo MG12. The spray-on procedure resulted in a higher content of Lu-X in the core of the agglomerates when immersion was the dominating mechanism, and in a higher content in the agglomerate surface when distribution was dominating. The melt-in procedure resulted generally in a homogeneous distribution of Lu-X in the agglomerates. The compounds in the agglomerates were found primarily to be crystalline, and the dissolution profiles were unchanged after 12 weeks storage at 25 degrees C at 50% RH.  相似文献   

10.
This study was performed in order to evaluate the effects of binder droplet size and type of binder on the agglomerate growth mechanisms by melt agglomeration in a fluidised bed granulator. Lactose monohydrate was agglomerated with melted polyethylene glycol (PEG) 3000 or Gelucire 50/13 (esters of polyethylene glycol and glycerol), which was atomised at different nozzle air flow rates giving rise to median droplet sizes of 40, 60, and 80 microm. Different product temperatures were investigated, below the melting range, in the middle of the melting range, and above the melting range for each binder. The agglomerates were found to be formed by initial nucleation of lactose particles immersed in the melted binder droplets. Agglomerate growth occurred by coalescence between nuclei followed by coalescence between agglomerates. Complex effects of binder droplet size and type of binder were seen at low product temperatures. Low product temperatures resulted in smaller agglomerate sizes, because the agglomerate growth was counteracted by very high binder viscosity or solidification of the binder. At higher product temperatures, neither the binder droplet size nor the type of binder had a clear effect on the final agglomerate size.  相似文献   

11.
The purpose of this study was to investigate the effect of the airflow, the binder concentration, the massing time, the friction plate rotation speed, and the surface structure of the friction plate on melt pelletization in a laboratory scale rotary processor. Lactose monohydrate was melt agglomerated with polyethylene glycol (PEG) 3000 as meltable binder. The study was performed as a full factorial design. An increase in agglomerate size was found when the binder concentration, the massing time, or the friction plate rotation speed was increased. The agglomerate size was also increased when increasing the shearing forces by using a friction plate with a different surface structure. The size distribution of the agglomerates was significantly narrowed when the binder concentration or the shearing forces caused by the friction plate were increased. An increase in the adhesion of material to the friction plate was found when the shearing forces of the friction plate were increased either by the rotation speed or by the surface structure. Generally, the rotary processor was found to be a suitable alternative to melt pelletization in a high shear mixer.  相似文献   

12.
The lubrication properties of two commercial-grade magnesium stearates were studied. Their moisture contents and crystal structures were similar. There were minor differences in their fatty acid composition, but the differences did not affect the lubrication properties. The lubrication properties correlated with particle size distributions and specific surface area. The effect of these parameters was further studied with unmilled and milled chemically pure magnesium stearate. Milling decreased the particle size and increased the specific surface area. In both cases, the batch with a smaller particle size and larger specific surface area had considerably better lubricity.  相似文献   

13.
This study examined the effects of polyethylene glycol (PEG) binders of different physical forms and from different commercial sources on size and size distribution of pellets produced. The meltable binders used were PEG 6000 in the form of flakes, and coarse and fine powders, and melt pelletization using lactose 450 M was carried out in an 8-liter high-shear mixer. Binder particle size, molecular weight, tack, and viscosity were determined. The results showed that the size and size distribution of the pellets obtained could not be explained by the binder particle size. The size and size distribution of the pellets were related to the tack and viscosity of the molten binders. PEGs used were labeled as the same nominal molecular weight grade, although their determined molecular weights could be quite different. Differences in tack and viscosity of the molten binders were associated with determined molecular weight of the binders. The melt pelletization process is sensitive to tack and viscosity of the molten binders. When different PEG brands of the same nominal molecular weight or different batches of the same brand are used in melt pelletization, it is important to characterize the tack and viscosity of the binders used. The effects of the physical form of binders on the pellet quality appear to be less important when compared to the influences of tack and viscosity of the molten binder.  相似文献   

14.
The aim of this study was to prepare by melt agglomeration agglomerates containing solid dispersions of diazepam as poorly water-soluble model drug in order to evaluate the possibility of improving the dissolution rate. Lactose monohydrate was melt agglomerated with polyethylene glycol (PEG) 3000 or Gelucire 50/13 (mixture of glycerides and PEG esters of fatty acids) as meltable binders in a high shear mixer. The binders were added either as a mixture of melted binder and diazepam by a pump-on procedure or by a melt-in procedure of solid binder particles. Different drug concentrations, maximum manufacturing temperatures, and cooling rates were investigated. It was found to be possible to increase the dissolution rate of diazepam by melt agglomeration. A higher dissolution rate was obtained with a lower drug concentration. Admixing the binders by the melt-in procedure resulted in similar dissolution rates as the pump-on procedure. The different maximum manufacturing temperatures and cooling rates were found to have complex effects on the dissolution rate for formulations containing PEG 3000, whereas only minor effects of the cooling procedure were found with Gelucire 50/13. Gelucire 50/13 resulted in faster dissolution rates compared to PEG 3000.  相似文献   

15.
The purpose of this study was to investigate the effect of the binder particle size and the binder addition method on the mechanisms of agglomerate formation and growth during melt agglomeration in a laboratory scale rotary processor. Lactose monohydrate was agglomerated with molten polyethylene glycol (PEG) 3000 by adding the PEG either as solid particles from the size fraction 0-250, 250-500, or 500-750 microm or as droplets with a median size of 25, 48, or 69 microm. It was found that the PEG particle size, the PEG droplet size, and the massing time significantly influenced the agglomerate size and size distribution. Agglomerate formation and growth were found to occur primarily by distribution and coalescence for the PEG size fraction 0-250 microm and mainly by the immersion mechanism for the PEG size fractions 250-500 and 500-750 microm. When the PEG was sprayed upon the lactose, the mechanism of agglomerate formation was supposed to be a mixture of immersion and distribution, and the agglomerate growth was found to occur by coalescence regardless of the PEG mean droplet size. Compared to high shear mixers and conventional fluid bed granulators, the mechanisms of agglomerate formation and growth in the rotary processor resembled mostly those seen in the fluid bed granulator.  相似文献   

16.
Spontaneous agglomeration of engineered nanoparticles (ENPs) is a common problem in cell culture media which can confound interpretation of in vitro nanotoxicity studies. The authors created stable agglomerates of iron oxide nanoparticles (IONPs) in conventional culture medium, which varied in hydrodynamic size (276 nm–1.5 μm) but were composed of identical primary particles with similar surface potentials and protein coatings. Studies using C10 lung epithelial cells show that the dose rate effects of agglomeration can be substantial, varying by over an order of magnitude difference in cellular dose in some cases. Quantification by magnetic particle detection showed that small agglomerates of carboxylated IONPs induced greater cytotoxicity and redox-regulated gene expression when compared with large agglomerates on an equivalent total cellular IONP mass dose basis, whereas agglomerates of amine-modified IONPs failed to induce cytotoxicity or redox-regulated gene expression despite delivery of similar cellular doses. Dosimetry modelling and experimental measurements reveal that on a delivered surface area basis, large and small agglomerates of carboxylated IONPs have similar inherent potency for the generation of ROS, induction of stress-related genes and eventual cytotoxicity. The results suggest that reactive moieties on the agglomerate surface are more efficient in catalysing cellular ROS production than molecules buried within the agglomerate core. Because of the dynamic, size and density-dependent nature of ENP delivery to cells in vitro, the biological consequences of agglomeration are not discernible from static measures of exposure concentration (μg/ml) alone, highlighting the central importance of integrated physical characterisation and quantitative dosimetry for in vitro studies. The combined experimental and computational approach provides a quantitative framework for evaluating relationships between the biocompatibility of nanoparticles and their physical and chemical characteristics.  相似文献   

17.
Magnesium stearate is a functional excipient used to ensure efficient ejection of tablets. This study compares the functionality of a vegetable and bovine grade of magnesium stearate. Tablets were prepared by direct compression and dry granulation of a model formulation. Physical and chemical tests were performed on bulk powders, granule intermediates, and finished tablets to provide a comprehensive comparison of the two grades of magnesium stearates. Raw material characterization of the two grades showed no difference in particle size, surface area, true density, and total moisture content. However, significant differences in fatty acid composition, surface tension, and zeta potential were detected. Tablet ejection force for the physical mixture formulations was variable, showing similar ejection force for the two grades of magnesium stearate at some concentrations and different ejection forces at other concentrations. The dry granulated formulation containing vegetable-based magnesium stearate showed a lower ejection force than the formulation containing bovine-based magnesium stearate. There was no difference between the dissolution profiles of the tablets containing the two grades of magnesium stearate prepared by both methods. The results indicated that magnesium stearate interchangeability with respect to lubricant efficiency depends upon the level in which it is used and the manufacturing method.  相似文献   

18.
Two lubricants, magnesium stearate and sodium stearyl fumarate, were compared under identical mixing conditions to study their roles in drug-excipient interactions. After prolonged mixing, sodium stearyl fumarate did not interact with the drug or excipients; as a result, the disintegration time and drug dissolution rate from hand-filled, uncompacted capsules were not adversely affected. In contrast, magnesium stearate did exhibit drug-excipient interactions which resulted in lamination and subsequent adhesion of the lubricant to the drug-crospovidone agglomerates. These interactions adversely affected the disintegration time and drug dissolution rate from hand-filled, uncompacted capsules. Although the initial specific surface area of magnesium stearate was higher than that of sodium stearyl fumarate, flaking of magnesium stearate due to particulate-particulate interactions caused a large increase in the surface area. The adhesion of the magnesium stearate flakes to the drug-crospovidone agglomerates resulted in a decrease in the drug dissolution rate.  相似文献   

19.
Conventional melt pelletization and granulation processes produce round and dense, and irregularly shaped but porous agglomerates respectively. This study aimed to design centrifugal air-assisted melt agglomeration technology for manufacture of spherical and yet porous "granulets" for ease of downstream manufacturing and enhancing drug release. A bladeless agglomerator, which utilized shear-free air stream to mass the powder mixture of lactose filler, polyethylene glycol binder and poorly water-soluble tolbutamide drug into "granulets", was developed. The inclination angle and number of vane, air-impermeable surface area of air guide, processing temperature, binder content and molecular weight were investigated with reference to "granulet" size, shape, texture and drug release properties. Unlike fluid-bed melt agglomeration with vertical processing air flow, the air stream in the present technology moved centrifugally to roll the processing mass into spherical but porous "granulets" with a drug release propensity higher than physical powder mixture, unprocessed drug and dense pellets prepared using high shear mixer. The fast-release attribute of "granulets" was ascribed to porous matrix formed with a high level of polyethylene glycol as solubilizer. The agglomeration and drug release outcomes of centrifugal air-assisted technology are unmet by the existing high shear and fluid-bed melt agglomeration techniques.  相似文献   

20.
The effects of Eudragit(R) nature on the formation and spherical agglomeration of ibuprofen microcrystals have been examined when solvent change (ethanol-water) technique is applied. Four methacrylic polymers (Eudragit(R) S100, L100, RS, and RL), with different solubility and solubilizing ability, were used. The extrapolated points of maximum temperature deviation rate in crystallization liquid that reflect the maximum crystallization rate and the corresponding water addition were determined, as well as crystal yielding and incorporation of drug and polymer in the agglomerates. The physicomechanical properties of the agglomerates, such as size, sphericity, surface roughness and porosity, as well as flow and packing or compression behavior during tableting, were evaluated for different drug/polymer ratios. It was found that crystal yield is greatly reduced in the presence of water-insoluble polymers and that formation of the microcrystals and incorporation of drug and polymer are affected by the polymer nature. Crystal formation changes are attributed to alterations in the metastable zone, whereas the changes in drug and polymer incorporation and crystal yield are caused by changes in the polymers' solubility and micellization. The size of agglomerates depends on the polymer nature and its interactions with the ibuprofen microcrystals formed. Sphericity, surface roughness, and intraparticle porosity of agglomerates increase, in general, with the presence of polymer owing to changes in habit and growth rate of the microcrystals and to their coating before binding into spherical agglomerates. The particle density or intraparticle porosity and size changes determine flow or packing behavior and densification of agglomerates at low compression. The incorporation and brittleness of the polymer determine the deformation under higher compression pressure, expressed as yield pressure, Py.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号