首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HCV genotypes have been documented in clinical practice. The aim of this study was to determine the replication priority of different HCV genotypes in a Chinese HCV positive cohort. Serum samples from 491 apparently healthy Chinese blood donors testing positive for HCV antibodies and naive to antiviral drug therapy were tested. Genotyping analysis showed that genotypes 1b and 2a were predominant and accounted for 77.6% of the HCV infections. Among the genotype groups, individuals infected with genotype 2a had an HCV RNA viral load (108 copies/mL) about 200-fold (lg, 2.3) greater than those infected with other genotypes (104–105 copies/mL) indicating a replication priority of genotype 2a. However, there was no correlation between HCV genotype and antibody response suggesting that the amplification advantage of genotype 2a results from a favorable interaction with the host cellular environment. In conclusion, HCV genotypes 1b and 2a are the predominant genotypes in China and genotype 2a possesses a significant replication priority compared with the other genotypes. This suggests the existence of host cellular factors that may act as drug-targets for entirely clearing HCV infection in the future.Abbreviations: EDTA, ethylenediaminetetraacetic acid; GPT, glutamate-pyruvate transaminase; HCV, hepatitis C virus; NS3, NS4 and NS5, non-structure protein 3, 4 and 5; RdRp, RNA dependent RNA polymerase; SVR, sustained virological response  相似文献   

2.
Human enterovirus 71 (EV71) is the main causative pathogen of hand, foot, and mouth disease (HFMD) in children. The epidemic of HFMD has been a public health problem in Asia-Pacific region for decades, and no vaccine and effective antiviral medicine are available. Curcumin has been used as a traditional medicine for centuries to treat a diversity of disorders including viral infections. In this study, we demonstrated that curcumin showed potent antiviral effect again EV71. In Vero cells infected with EV71, the addition of curcumin significantly suppressed the synthesis of viral RNA, the expression of viral protein, and the overall production of viral progeny. Similar with the previous reports, curcumin reduced the production of ROS induced by viral infection. However, the antioxidant property of curcumin did not contribute to its antiviral activity, since N-acetyl-l-cysteine, the potent antioxidant failed to suppress viral replication. This study also showed that extracellular signal-regulated kinase (ERK) was activated by either viral infection or curcumin treatment, but the activated ERK did not interfere with the antiviral effect of curcumin, indicating ERK is not involved in the antiviral mechanism of curcumin. Unlike the previous reports that curcumin inhibited protein degradation through ubiquitin–proteasome system (UPS), we found that curcumin had no impact on UPS in control cells. However, curcumin did reduce the activity of proteasomes which was increased by viral infection. In addition, the accumulation of the short-lived proteins, p53 and p21, was increased by the treatment of curcumin in EV71-infected cells. We further probed the antiviral mechanism of curcumin by examining the expression of GBF1 and PI4KB, both of which are required for the formation of viral replication complex. We found that curcumin significantly reduced the level of both proteins. Moreover, the decreased expression of either GBF1 or PI4KB by the application of siRNAs was sufficient to suppress viral replication. We also demonstrated that curcumin showed anti-apoptotic activity at the early stage of viral infection. The results of this study provide solid evidence that curcumin has potent anti-EV71 activity. Whether or not the down-regulated GBF1 and PI4KB by curcumin contribute to its antiviral effect needs further studies.KEY WORDS: Curcumin, Enterovirus 71, Viral replication, GBF1, PI4KB, Ubiquitin–proteasome system, ApoptosisAbbreviations: CVB, coxsackieviurs B; DCFH-DA, dichloro-dihydro-fluorescein diacetate; ERK, extracellular signal-regulated kinase; EV71, enterovirus 71; GBF1, Golgi brefeldin A resistant guanine nucleotide exchange factor 1; GEF, guanine nucleotide exchange factor; HBV, hepatitis B virus; HCV, hepatitis C virus; HFMD, hand, foot, and mouth disease; HIV, human immunodeficiency virus; HPV, human papillomavirus; NAC, N-acetyl-l-cysteine; PARP-1, poly(ADP-ribose) polymerase; PGC-1α, peroxisome proliferator-activated receptor-gamma co-activator 1 alpha; p.i., post-infection; PI4KB, phosphatidylinositol 4-kinase class III catalytic subunit β; PI4P, phosphatidylinositol 4-phosphate; ROS, reactive oxygen species; siRNA, small interfering RNA; SLLVY-AMC, succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin; UPS, ubiquitin–proteasome system  相似文献   

3.
Although oxymatrine (OMT) has been shown to directly inhibit the replication of hepatitis B virus (HBV) in vitro, limited research has been done with this drug in vivo. In the present study, the antiviral effect of OMT was investigated in an immunocompetent mouse model of chronic HBV infection. The infection was achieved by tail vein injection of a large volume of DNA solution. OMT (2.2, 6.7 and 20 mg/kg) was administered by daily intraperitoneal injection for 6 weeks. The efficacy of OMT was evaluated by the levels of HBV DNA, hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg) and hepatitis B core antigen (HBcAg). The immunoregulatory activity of OMT was evaluated by serum ELISA and flow cytometry. Results shows that OMT at 20 mg/kg inhibited HBV replication, and it was more efficient than entecavir (ETV) in the elimination of serum HBsAg and intrahepatic HBcAg. In addition, OMT accelerated the production of interferon-γ (IFN-γ) in a dose-dependent manner in CD4+ T cells. Our findings demonstrate the beneficial effects of OMT on the enhancement of immunological function and in the control of HBV antigens. The findings suggest this drug to be a good antiviral therapeutic candidate for the treatment of HBV infection.  相似文献   

4.
Coxsackievirus B type 3 (CVB3) is one of the major causative pathogens associated with viral meningitis and myocarditis, which are widespread in the human population and especially prevalent in neonates and children. These infections can result in dilated cardiomyopathy (DCM) and other severe clinical complications. There are no vaccines or drugs approved for the prevention or therapy of CVB3-induced diseases. During screening for anti-CVB3 candidates in our previous studies, we found that jiadifenoic acids C exhibited strong antiviral activities against CVB3 as well as other strains of Coxsackie B viruses (CVBs). The present studies were carried out to evaluate the antiviral activities of jiadifenoic acids C. Results showed that jiadifenoic acids C could reduce CVB3 RNA and proteins synthesis in a dose-dependent manner. Jiadifenoic acids C also had a similar antiviral effect on the pleconaril-resistant variant of CVB3. We further examined the impact of jiadifenoic acids C on the synthesis of viral structural and non-structural proteins, finding that jiadifenoic acids C could reduce VP1 and 3D protein production. A time-course study with Vero cells showed that jiadifenoic acids C displayed significant antiviral activities at 0–6 h after CVB3 inoculation, indicating that jiadifenoic acids C functioned at an early step of CVB3 replication. However, jiadifenoic acids C had no prophylactic effect against CVB3. Taken together, we show that jiadifenoic acids C exhibit strong antiviral activities against all strains of CVB, including the pleconaril-resistant variant. Our study could provide a significant lead for anti-CVB3 drug development.KEY WORDS: CVB3, Jiadifenoic acids C, Antiviral activityAbbreviations: CAR, coxsackievirus and adenovirus receptor; CPE, cytopathic effect; CVB3, coxsackievirus B type 3; CVBs, coxsackie B viruses; DAF, decay accelerating factor; DCM, dilated cardiomyopathy; IC50, 50% inhibitory concentration; IRES, internal ribosomal entry site; MOI, multiplicity of infection; NTR, non-translated region; RBV, ribavirin; RdRp, RNA-dependent RNA polymerase; SI, selectivity index; Vero, African green monkey kidney cells  相似文献   

5.
Three different concentrations of Nigella sativa (N. sativa) ethanolic extract, thymoquinone (TQ), dexamethasone, and saline were examined to see whether they had any effects on cell viability, proliferation, and interleukin 4 (IL-4) and interferon-γ (IFN-γ) secretion in non-stimulated, phytohemagglutinin (PHA) and concavaline A (Con A)-stimulated splenocytes. In PHA and Con A-stimulated splenocytes, cell viability and proliferation were increased and Con A shifted cytokine profile towards Th2 balance. Dexamethasone treatment showed a suppression in viability, IFNγ and IL-4 secretion in non-stimulated and stimulated splenocytes. Extract and TQ reduced the viability and inhibited the proliferation of stimulated and non-stimulated splenocytes concentration-dependently. Higher concentrations of N. sativa (1000 mg/ml) and TQ (5 and 10 mg/ml) reduced the secretion of IL-4 in stimulated cells. Two higher concentrations of N. sativa had decreased IFNγ secretion in both stimulated and non-stimulated cells. In non-stimulated cells, only the highest and in Con A-stimulated cells, all TQ concentrations had inhibited IFNγ secretion. The highest concentration of N. sativa increased IFNγ/IL-4 ratio in both stimulated and non-stimulated cells while higher concentrations of TQ only had the same effect on stimulated cells. N. sativa and TQ showed cytotoxic inhibitory effect on rat splenocytes and on Th1/Th2 cytokines concentration-dependently. Higher concentrations of extract and TQ increased cytokines balance in Th1/Th2.  相似文献   

6.
Multidrug resistance protein 7 (MRP7, ABCC10) is a recently identified member of the ATP-binding cassette (ABC) transporter family, which adequately confers resistance to a diverse group of antineoplastic agents, including taxanes, vinca alkaloids and nucleoside analogs among others. Clinical studies indicate an increased MRP7 expression in non-small cell lung carcinomas (NSCLC) compared to a normal healthy lung tissue. Recent studies revealed increased paclitaxel sensitivity in the Mrp7−/− mouse model compared to their wild-type counterparts. This demonstrates that MRP7 is a key contributor in developing drug resistance. Recently our group reported that PD173074, a specific fibroblast growth factor receptor (FGFR) inhibitor, could significantly reverse P-glycoprotein-mediated MDR. However, whether PD173074 can interact with and inhibit other MRP members is unknown. In the present study, we investigated the ability of PD173074 to reverse MRP7-mediated MDR. We found that PD173074, at non-toxic concentration, could significantly increase the cellular sensitivity to MRP7 substrates. Mechanistic studies indicated that PD173074 (1 μmol/L) significantly increased the intracellular accumulation and in-turn decreased the efflux of paclitaxel by inhibiting the transport activity without altering expression levels of the MRP7 protein, thereby representing a promising therapeutic agent in the clinical treatment of chemoresistant cancer patients.KEY WORDS: PD173074, ABCC10, Fibroblast growth factor receptor, Multidrug resistance, Tyrosine kinase inhibitorAbbreviations: ABC, ATP binding cassette; EGFR, epidermal growth factor receptor; FGFR, fibroblast growth factor receptor; HEK293, human embryonic kidney 293; MDR, multidrug resistance; MRP7, multidrug resistance protein 7; MSDs, membrane-spanning domains; NBDs, nucleotide-binding domains; NSCLC, non-small cell lung carcinomas; RTK, receptor tyrosine kinase; TKI, tyrosine kinase inhibitor  相似文献   

7.
Colon cancer is a world-wide health problem and the second-most dangerous type of cancer, affecting both men and women. The modern diet and lifestyles, with high meat consumption and excessive alcohol use, along with limited physical activity has led to an increasing mortality rate for colon cancer worldwide. As a result, there is a need to develop novel and environmentally benign drug therapies for colon cancer. Currently, nutraceuticals play an increasingly important role in the treatment of various chronic diseases such as colon cancer, diabetes and Alzheimer׳s disease. Nutraceuticals are derived from various natural sources such as medicinal plants, marine organisms, vegetables and fruits. Nutraceuticals have shown the potential to reduce the risk of colon cancer and slow its progression. These dietary substances target different molecular aspects of colon cancer development. Accordingly, this review briefly discusses the medicinal importance of nutraceuticals and their ability to reduce the risk of colorectal carcinogenesis.KEY WORDS: Colon cancer, Nutraceuticals, Therapeutics, Marine organisms, Plant derivativesAbbreviations: ACC, acetyl CoA carboxylase; ACF, aberrant crypt foci; ACL, ATP-citrate lyase; ASTX, astaxanthin; COX-2, cyclooxygenase 2; DHA, decahexaenoic acid; DMH, 1,2-dimethylhydrazine; DR, death receptor; EGCG, epigallocatechingallate; EPA, eicosapentaenoic acid; FAS, fatty acid synthase; 5-FU, 5-fluorouracil; GADD, growth arrest and DNA damage; HMG-CoA, 3-hydroxy-3-methyl-glutaryl CoA; HUVEC, human umbilical vein endothelial cell; IGF, insulin-like growth factor; IL, interleukin; LDH, lactate dehydrogenase; MMP, matrix metallo-proteins; NF-κB, nuclear factor-kappa B; PRAP, prolactin receptor associated protein; TCA, tricarboxylic acid cycle; TNF, tumor necrosis factor; TRAIL, tumor necrosis factor-related apoptosis-induced ligand; VEGF, vascular endothelial growth factor  相似文献   

8.
This study aimed to evaluate the effects of the Fusarium toxin zearalenone (ZEA) and deoxynivalenol (DON) on splenic antioxidant functions, IFN levels, and T-cell subsets in mice. Herein, 360 mice were assigned to nine groups for a 12-day study. Mice were administered an intraperitoneal injection for 4 consecutive days with different concentrations of ZEA alone, DON alone, or ZEA + DON. Spleen and blood samples were collected on days 0, 3, 5, 8, and 12. Mice in each of the experimental groups showed dysreglated splenic antioxidant functions, IFN levels, and T-cell subset frequencies, suggesting that the immune system had been affected. The ZEA + DON-treated groups, especially the group that received a higher concentration of ZEA + DON (Group D2Z2), showed more obvious effects on the dysregulation of splenic antioxidant functions, IFN levels, and T-cell subsets. This finding suggested that DON and ZEA exerted synergistic effects.  相似文献   

9.
A Fourier transform infrared derivative spectroscopy (FTIR-DS) method has been developed for determining furosemide (FUR) in pharmaceutical solid dosage form. The method involves the extraction of FUR from tablets with N,N-dimethylformamide by sonication and direct measurement in liquid phase mode using a reduced path length cell. In general, the spectra were measured in transmission mode and the equipment was configured to collect a spectrum at 4 cm−1 resolution and a 13 s collection time (10 scans co-added). The spectra were collected between 1400 cm−1 and 450 cm−1. Derivative spectroscopy was used for data processing and quantitative measurement using the peak area of the second order spectrum of the major spectral band found at 1165 cm−1 (SO2 stretching of FUR) with baseline correction. The method fulfilled most validation requirements in the 2 mg/mL and 20 mg/mL range, with a 0.9998 coefficient of determination obtained by simple calibration model, and a general coefficient of variation <2%. The mean recovery for the proposed assay method resulted within the (100±3)% over the 80%–120% range of the target concentration. The results agree with a pharmacopoeial method and, therefore, could be considered interchangeable.KEY WORDS: FTIR, Derivative spectroscopy, Furosemide, Frusemide, Pharmaceutical analysisAbbreviations: API, active pharmaceutical ingredient; DMF, N,N-dimethylformamide; DS, derivative spectroscopy; FTIR, Fourier transform infrared; FUR, furosemide or frusemide; HPLC, high performance liquid chromatographic; MIR, mid infrared  相似文献   

10.
11.
12.
In this study two genistein derivatives (G1 and G2) are reported as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and differences in the inhibition of AChE are described. Although they differ in structure by a single methyl group, the inhibitory effect of G1 (IC50=264 nmol/L) on AChE was 80 times stronger than that of G2 (IC50=21,210 nmol/L). Enzyme-kinetic analysis, molecular docking and molecular dynamics (MD) simulations were conducted to better understand the molecular basis for this difference. The results obtained by kinetic analysis demonstrated that G1 can interact with both the catalytic active site and peripheral anionic site of AChE. The predicted binding free energies of two complexes calculated by the molecular mechanics/generalized born surface area (MM/GBSA) method were consistent with the experimental data. The analysis of the individual energy terms suggested that a difference between the net electrostatic contributions (ΔEeleGGB) was responsible for the binding affinities of these two inhibitors. Additionally, analysis of the molecular mechanics and MM/GBSA free energy decomposition revealed that the difference between G1 and G2 originated from interactions with Tyr124, Glu292, Val294 and Phe338 of AChE. In conclusion, the results reveal significant differences at the molecular level in the mechanism of inhibition of AChE by these structurally related compounds.KEY WORDS: Genistein derivatives, Acetylcholinesterase (AChE), Kinetics analysis, Molecular docking, Molecular dynamics simulation, MM/GBSAAbbreviations: ACh, acetylcholine; AChEIs, acetylcholinesterase inhibitors; AChE, acetylcholinesterase; AD, Alzheimer׳s disease; BuChE, butyrylcholinesterase; BuSCh, S-butyrylthiocholine chloride; CAS, catalytic active site; DTNB, 5,5′-dithiobis-(2-nitrobenzoic acid); GAFF, generalized AMBER force field; G1, 3-(4-methoxyphenyl)-7-(2-(piperidin-1-yl)ethoxy)-4H-chromen-4-one; G2, (S)-3-(4-methoxyphenyl)-7-(2-(2-methylpiperidin-1-yl)ethoxy)-4H-chromen-4-one; iso-OMPA, tetraisopropyl pyrophosphoramide; MD, molecular dynamics; MM/GBSA, molecular mechanics/generalized born surface area; PAS, peripheral anionic site; PDB, protein data bank; PME, particle mesh Ewald; RMSD, root-mean-square deviation; S-ACh, acetylthiocholine iodide; ΔEele, electrostatic energy contribution; ΔEMM, gas-phase interaction energy between receptor and ligand; ΔEvdw, van der Waals energy contribution; SASA, solvent accessible surface area; ΔGexp, experimental binding free energy; ΔGGB, polar desolvation energy term; ΔGpred, total binding free energy; ΔGSA, nonpolar desolvation energy term; ΔS, conformational entropy contribution  相似文献   

13.
Receptor activity-modulating proteins (RAMPs) are accessory molecules that form complexes with specific G protein-coupled receptors (GPCRs) and modulate their functions. It is established that RAMP interacts with the glucagon receptor family of GPCRs but the underlying mechanism is poorly understood. In this study, we used a bioluminescence resonance energy transfer (BRET) approach to comprehensively investigate such interactions. In conjunction with cAMP accumulation, Gαq activation and β-arrestin1/2 recruitment assays, we not only verified the GPCR–RAMP pairs previously reported, but also identified new patterns of GPCR–RAMP interaction. While RAMP1 was able to modify the three signaling events elicited by both glucagon receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R), and RAMP2 mainly affected β-arrestin1/2 recruitment by GCGR, GLP-1R and glucagon-like peptide-2 receptor, RAMP3 showed a widespread negative impact on all the family members except for growth hormone-releasing hormone receptor covering the three pathways. Our results suggest that RAMP modulates both G protein dependent and independent signal transduction among the glucagon receptor family members in a receptor-specific manner. Mapping such interactions provides new insights into the role of RAMP in ligand recognition and receptor activation.  相似文献   

14.
The alpha-7 nicotinic acetylcholine receptor (α7 nAChR), consisting of homomeric α7 subunits, is a ligand-gated Ca2+-permeable ion channel implicated in cognition and neuropsychiatric disorders. Enhancement of α7 nAChR function is considered to be a potential therapeutic strategy aiming at ameliorating cognitive deficits of neuropsychiatric disorders such as Alzheimer's disease (AD) and schizophrenia. Currently, a number of α7 nAChR modulators have been reported and several of them have advanced into clinical trials. In this brief review, we outline recent progress made in understanding the role of the α7 nAChR in multiple neuropsychiatric disorders and the pharmacological effects of α7 nAChR modulators used in clinical trials.  相似文献   

15.
Chronic dietary exposure to Triclosan (TCS) produced increased incidence of liver tumors in mice. The mechanism for liver tumor induction has been attributed to activation of either peroxisome proliferator activated receptor α (PPARα) or constitutive androstane receptor (CAR). To further define the mechanism of TCS induced liver tumors, male CD-1 and C57BL/6 mice were treated with TCS at 0, 10, 100 and 200 mg/kg diet/day for 14 or 28 days. In addition, a recovery group and positive control groups for CAR or PPARα activation with either phenobarbital or diethylhexyl-phthalate were included in the 14-day study. TCS induced a dose-dependent increase in relative liver weight and centrilobular hypertrophy in both strains of mice. Hepatocyte DNA synthesis (BrdU labeling) was also increased in a dose-related pattern. In comparison with previous studies, TCS induced a significant increase in CAR/PXR (Cyp2b10, Cyp3a11) and PPARα (Cyp4a10) responsive genes in both CD-1 and C57BL/6 mice. The corresponding enzyme activity for CAR (7-pentoxyresorufin-O-dealkylase) and PPARα (peroxisomal Acyl-CoA oxidase) were also significantly increased in a similar fashion. Oxidative stress related genes Gpx1 and Aox1 were increased in the C57BL/6 but not in CD-1 mice. The increases in gene expression and enzyme activities returned to control levels after 14-day recovery. The present results demonstrate that both CAR and PPARα activation are involved in the TCS induced mouse liver tumor.  相似文献   

16.
Syl930 is a novel sphingosine-1-phosphate receptor subtype 1 (S1PR1) agonist for the treatment of autoimmune encephalitis with promising receptor selectivity and little risk of bradycardia. Syl930 could be reversibly converted to its phosphorylated metabolite, acting as the active form to provide therapeutic effects, but eliminated principally in the form of oxidative metabolites. The aim of the present study was to identify the cytochrome P450 isoforms (CYPs) responsible for the oxidative metabolism of Syl930. Considerable production of hydroxylated metabolite (Syl930-M1) was found in both rat blood and tissue homogenates in vivo and in vitro. Moreover, another hydroxylated metabolite, Syl930-M2, was detected in human, beagle dog and cynomolgus monkey liver microsomes with significant differences in the Km, Vmax and CLint of the metabolites among species. CYP1A1, CYP2J2, CYP4F2 and CYP3A4 were identified to be the major CYPs mediated in the hydroxylation of Syl930 by using 14 recombinant human CYPs, selective chemical inhibitors and monoclonal antibodies against CYPs. The multiple CYPs mediated oxidation was believed to be one of the reasons for the relatively short elimination half-life of Syl930.  相似文献   

17.
Non-small cell lung cancer (NSCLC) accounts for about 85% of all lung cancers. Traditional chemotherapy for this disease leads to serious side effects. Here we prepared an inhalable oridonin-loaded poly(lactic-co-glycolic)acid (PLGA) large porous microparticle (LPMP) for in situ treatment of NSCLC with the emulsion/solvent evaporation/freeze-drying method. The LPMPs were smooth spheres with many internal pores. Despite a geometric diameter of ~10 µm, the aerodynamic diameter of the spheres was only 2.72 µm, leading to highly efficient lung deposition. In vitro studies showed that most of oridonin was released after 1 h, whereas the alveolar macrophage uptake of LPMPs occurred after 8 h, so that most of oridonin would enter the surroundings without undergoing phagocytosis. Rat primary NSCLC models were built and administered with saline, oridonin powder, gemcitabine, and oridonin-loaded LPMPs via airway, respectively. The LPMPs showed strong anticancer effects. Oridonin showed strong angiogenesis inhibition and apoptosis. Relevant mechanisms are thought to include oridonin-induced mitochondrial dysfunction accompanied by low mitochondrial membrane potentials, downregulation of BCL-2 expressions, upregulation of expressions of BAX, caspase-3 and caspase-9. The oridonin-loaded PLGA LPMPs showed high anti-NSCLC effects after pulmonary delivery. In conclusion, LPMPs are promising dry powder inhalations for in situ treatment of lung cancer.  相似文献   

18.
The aim of the present study was to perform a short-term safety evaluation of dietary mono-conjugated α-linolenic acid isomers (CLNA; c9-t11-c15-18:3 + c9-t13-c15-18:3) using a neonatal pig model. CLNA diet was compared with three other dietary fats: (1) conjugated linoleic acid (CLA; c9-t11-18:2 + t10-c12-18:2), (2) non-conjugated n-3 PUFA and (3) n-6 PUFA. Thirty-two piglets weaned at 3 weeks of age were distributed into four dietary groups. Diets were isoenergetic and food intake was controlled by a gastric tube. Mono-CLNA diet did not significantly change body or organ weight, carcass composition and most biochemical parameters including; glucose, cholesterol, triglycerides, creatinine, blood urea nitrogen, hepatic enzymes and electrolytes levels in blood (P  0.09). Conversely, the n-3 PUFA composition of the brain, liver and heart decreased by 6–21% in the CLNA-fed group compared to animals fed nonconjugated n-3 PUFA (P < 0.01). Responses to dietary treatments were tissue-specific, with the liver and the brain being the most deprived in n-3 PUFA. Our results support that short-term intake of mono-CLNA is safe in neonatal pigs but n-3 PUFA reduction in tissues deserves to be further investigated before using long-term nutritional supplementation in pigs and other animal models and before moving to clinical trials.  相似文献   

19.
Microbial detoxification of deoxynivalenol (DON) represents a new approach to treating DON-contaminated grains. A bacterium Devosia mutans 17-2-E-8 was capable of completely transforming DON into a major product 3-epi-DON and a minor product 3-keto-DON. Evaluation of toxicities of these DON-transformation products is an important part of hazard characterization prior to commercialization of the biotransformation application. Cytotoxicities of the products were demonstrated by two assays: a MTT bioassay assessing cell viability and a BrdU assay assessing DNA synthesis. Compared with DON, the IC50 values of 3-epi-DON and 3-keto-DON were respectively 357 and 3.03 times higher in the MTT bioassay, and were respectively 1181 and 4.54 times higher in the BrdU bioassay. Toxicological effects of 14-day oral exposure of the B6C3F1 mouse to DON and 3-epi-DON were also investigated. Overall, there were no differences between the control (free of toxin) and the 25 mg/kg bw/day or 100 mg/kg bw/day 3-epi-DON treatments in body and organ weights, hematology and organ histopathology. However, in mice exposed to DON (2 mg/kg bw/day), white blood cell numbers and serum immunoglobulin levels were altered relative to controls, and lesions were observed in adrenals, thymus, stomach, spleen and colon. Taken together, in vitro and in vivo studies indicate that 3-epi-DON is substantially less toxic than DON.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号