首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
目的:基于IAEA 277和398号报告,分析对比直线加速器FFF模式下绝对剂量的校准结果。方法:利用上海交通大学医学院附属瑞金医院新安装的Varian Edge加速器,根据IAEA 398号报告,测量FFF模式下6X和10X光子线的射线质和百分深度剂量,计算电离室校准因子kQ、极化效应修正因子kpol、复合效应修正因子ks,并对比国内现阶段采用的IAEA 277号报告的校准值。结果:6X-FFF和10X-FFF下,射线质分别为0.629和0.708;校准深度均为10 cm,对应的kQ分别是0.997和0.988,kpol分别是1.000 9和1.001 2,ks分别是1.005 0和1.006 9。FFF模式下复合效应相比较FF模式略高,分别偏高0.36%和0.32%。IAEA 398号报告的校准结果与IAEA 277号报告相比,绝对剂量标准差异分别为-1.0%和-0.7%。结论:在FFF模式下,IAEA 398号报告的绝对剂量校准与现阶段国内采用的IAEA 277号报告相比,结果差异小于2%,且在临床实践中更便捷。  相似文献   

2.
目的:介绍射波刀吸收剂量校准的计算及测量方法。方法:依据IAEA TRS-277、TRS-398及等AAPM TG-513个协议,利用Farmer 2670剂量仪配NE2571电离室测量校准射波刀加速器吸收剂量。结果:TG-51与TRS-398相比,剂量值基本没有差别,TRS-277则比TG-51及TRS-398约高0.4%;射波刀校准程序也给出相同的校准偏差。结论:三个协议得到的剂量值差别不大,而TG-51及TRS-398操作上更容易一些。  相似文献   

3.
目的:基于国际原子能机构(IAEA)398号报告,实践和探索基于水模体吸收剂量校准因子N_W的直线加速器输出量校准。方法:测量每档光子线和电子线辐射质,根据辐射质通过查找IAEA398号报告中的图表,计算出我科加速器各档光子线和电子线K_Q因子、校准深度,并测量校准深度处的PDD值。结果:按照IAEA398号报告,对于光子线6和10 MV,其射线质分别为0.681和0.732,其测量深度均为10 cm,K_Q分别为0.990和0.982,与对应的K_(Q,277)分别相差-0.81%和-0.81%。对于电子线,包括6、8、10、12、15、18 Me V,其射线质分别为2.481、3.225、3.964、4.747、5.959、7.234 cm,测量深度分别为1.39、1.84、2.28、2.75、3.48、4.24 cm,K_Q分别为0.937、0.928、0.920、0.914、0.904、0.897,与对应的K_(Q,277)分别相差0.60%、0.97%、0.43%、0.66%、0.11%、-0.45%。结论:相比IAEA277号报告,IAEA398号报告在实践过程中更直观,更易操作,两个报告剂量标定结果差异小于1%。  相似文献   

4.
目的:通过PTW QUICKCHECK webline晨检仪分析加速器输出稳定性。方法:收集电离室更换前后加速器输出绝对剂量,回顾性分析PTW QUICKCHECK webline晨检仪对加速器的检测情况,并分析不同能量输出剂量的稳定性。结果:6、10 MV X射线以及6、9、12 Me V电子线中心轴输出剂量误差均在3%以内。方差分析显示此加速器不同能量输出稳定性无显著性差异(P0.05)。PTW QUICKCHECK webline晨检仪检测发现每周输出剂量不断偏高,经进一步检测确认为电离室故障。更换电离室后输出剂量在标准值附近极小的范围内波动,保持较高的稳定性能。PTW QUICKCHECK webline晨检仪可以提前发现加速器存在的隐患,帮助物理师及时处理隐患。结论:使用PTW QUICKCHECK webline晨检仪对直线加速器输出剂量进行检测有利于确保直线加速器的准确性与稳定性,可有效地降低加速器系统误差,避免出现严重失误。  相似文献   

5.
目的:简要介绍中国计量科学院(NIM)水吸收剂量国际比对结果,基于此实验给出9种常见指形电离室的辐射质转换因子。方法:在NIM~(60)Coγ基准实验室测量9种型号指形电离室的基于~(60)Coγ辐射场的校准因子,在NIM的高能光子水吸收剂量基准实验室测量这9种型号指形电离室的基于6、10 MV高能光子辐射场的校准因子,依据这两种校准因子,计算得到这9种指形电离室的辐射质转换因子。并与IAEA TRS 398报告中提供的数据相比较。结果:NIM水吸收剂量国家基准实验室已经具备水吸收剂量的量传和溯源能力,在此基础上,所测指形电离室的辐射质转换因子均与398报告符合较好,但普遍偏小,相对偏差不超过0.9%。这是由于NIM~(60)Coγ基准实验室给出的校准因子比国际原子能机构给出的值偏大,而高能光子水吸收剂量基准实验室给出的校准因子比国际计量局给出的值偏小所致。结论:NIM的水吸收剂量国家基准实验室可以精确给出用户指形电离室的辐射质转换因子。  相似文献   

6.
目的:分析医用加速器输出剂量长期稳定性及其影响因素。方法:按照IAEA TRS 277技术报告,对武警四川省总队医院医用加速器进行吸收剂量测量,统计分析2012年5月~2017年12月共计240组输出剂量数据,分析医用加速器输出剂量长期稳定性及其影响因素,为加速器剂量质量保证提供方法与措施。结果:6 MV-X输出剂量3组数据K-S检验双尾渐进概率P值分别为0.101、0.269、0.549,均大于显著性水平0.05,符合标准正态分布,且P值逐渐增大,符合程度越来越好;剂量误差≤1%符合率达到91.94%,剂量误差≤2%符合率达到97.92%。结论:武警四川省总队医院医用加速器输出剂量具有很好的正态性和长期稳定性,完全能够满足临床放疗需求;影响加速器输出剂量稳定性的主要因素有加速器硬件自身稳定性、剂量仪电离室稳定性、剂量测量方法准确性、摆位误差等;物理师应按照科室实际情况,制定个体化的加速器剂量质量保证程序,并按照规定频次校准输出剂量,监测输出剂量的稳定性,为精准放疗提供有力保障。  相似文献   

7.
水模体吸收剂量校准因子的比较   总被引:2,自引:1,他引:1  
目的:美国医学物理学家协会(AAPM)TG-51协议和国际原子能结构(IAEA)TRS-398报告分别提出基于水模本吸收剂量校准因子,(N40CoD、W)及(ND、W、Q0)的吸收剂量测定规程,而我国至今没有相应的测定规程.计算三种常用进口指形电离室的(N40CoD、W)/NX和(ND、W、Q0)/NX值,分别为Capintec PR-06C、NE2571及PTW30001,以便用国家计量实验室给出的照射量校准因子NX获得(N40CoD、W)及(ND、W、Q0)方法:根据TG-21和TG-51号协议推导出(N40CoD、W)/NX;根据IAEA TRS-277及398号报告推导出(ND、W、Q0)/NX.结果:Capintec PR-06C的(N40CoD、W)/NX和(N40CoD、W)/NX及值分别为0.949和0.960,单位10-2Gy/R;NE2571,0.956和0.957;PTW 30001,0.954和0.956.结论:(ND、W、Q0)的理论值有可能比(N40CoD、W)的更准确;不同指形电离室的(N40CoD、W)和(ND、W、Q0)的理论值变化并不显著.  相似文献   

8.
三维分析仪与两维矩阵射野测量的比较   总被引:1,自引:0,他引:1  
目的:应用不同仪器与方法测量加速器6 MV X线射野的特性,比较各方法的优劣和局限性,探讨快速简便检测射野特性的方法。材料与方法:分别采用电离室和半导体探头配合三维射野分析仪测量加速器6 MV X线不同射野大小的百分深度剂量曲线PDD和离轴比曲线OCR,并以二维电离室矩阵测量相同条件的OCR。(1)比较采用电离室和半导体探头测量PDD的差别。(2)比较两维矩阵与电离室半导体探头测量射野的对称性、平坦度、射野大小和半影等的差别。结果:对小于15 cm×15 cm照射野,半导体探头和电离室测量PDD的结果一致性较好,两者偏差小于1.3%。对于20 cm×20 cm照射野,半导体探头的测量结果大于电离室,最大差别3.5%,偏差为2.6%。用半导体探头与电离室测量射野的大小,两者的最大差别为0.6 mm,两者有较好的一致性,二维电离室矩阵测量与前两者比较,最大差别为2.9 mm,最小差别0.5 mm。三种方法测量的射野平坦度差别在1.2%~2.6%,矩阵的测量数值在半导体和电离室测量范围之内。结论:在检测加速器射野性能时,二维矩阵可以快速检测射野平坦度、对称性,但测量射野大小时可能有较大误差,不宜用作验收加速器和收集...  相似文献   

9.
目的:分析射野入射方向及加速器治疗床对MatriXX电离室矩阵角度修正因子的影响。方法:获取MatriXX和MultiCube模体所组成的测量装置的CT影像,并将其导入计划系统,以MatriXX有效测量平面中心为计划中心,设置一能量为8 MV X射线、机器跳数为200 MU、20 cm×20 cm的对称方野,在机架角度为0°~180°范围内以5°为间隔定义射野入射方向,分别计算各入射方向的射野在计划中心点的剂量,并与在相同条件下存在加速器治疗床和无加速器治疗床两种情况下的实际剂量测量结果做比值,得出有无加速器治疗床两种情况的MatriXX电离室矩阵的角度修正因子。应用SPSS13.0软件对这两组现场测量计算得到的MatriXX电离室矩阵角度修正因子值及厂家的给定值之间进行t检验比较。结果:实测得到的有无加速器治疗床的两组MatriXX电离室矩阵角度修正因子值比较的t检结果为P<0.005,治疗床的存在对修正因子有显著的影响;实测的8 MV无治疗床的修正因子与厂家给定的6 MV的修正因子进行比较的t检验结果为P<0.005,实测修正因子与厂家给定值之间存在差异。结论:现场测量MatriXX电离室矩阵的角度修正因...  相似文献   

10.
目的:运用统计过程控制(SPC)方法研究医用直线加速器6 MV X射线输出剂量稳定性。方法:使用PTW QUICKCHECK webline晨检仪采集湘雅常德医院Varian Trilogy加速器2019年1月12月257个工作日的6 MVX射线的中心轴输出剂量,使用SPC方法绘制均值-极差控制图(X-R图),将样本大小设定为2,观察129个样本点分布情况并计算过程能力指数(CP和CPK)判断加速器6 MVX射线输出剂量稳定性情况。结果:129个样本点中存在3个超过上控制线的数据异常点(119号、121号以及122号),提示物理师在此时间段内需人为干预调整输出剂量,过程能力指数CP=1.48和CPK=1.35,表明加速器6 MVX射线中心轴输出剂量在整个测量过程中处于稳定可控水平。结论:SPC方法可以实现对医用加速器6 MV X射线输出剂量的日常运行监测评估,为加速器质量管理提供信息参考依据,保证加速器运行处于安全稳定状态。  相似文献   

11.
目的:阐述井型电离室测量后装放射源活度的理论基础和具体测量方法,对所使用的192Ir放射源活度进行验证。方法:首先通过井型电离室系统校准因子计算得出电离室电流与192Ir活度之间的换算系数,然后制定计划寻找192Ir源测量活度的有效驻留点。再利用PTW Unidos E剂量计和PTW SOURCECHECK 4π井型电离室测量192Ir照射电离室后产生的电流并转换为放射源活度。连续测量7个月,测量值与计划系统计算值两组数据进行配对样本t检验,分析两组数据差异。结果:在总共14次的测量计算中,川北医学院附属医院新购进192Ir源活度的测量值与计划系统计算值相对误差均在±1%以内。其最大偏差为0.946%,符合国标WS 262-2017后装γ源近距离治疗质量控制检测规范中源活度稳定性检测±5%内的要求,达到了AAPM临床应用192Ir源活度标定小于±3%的标准。且两组数据配对样本t检验显示,差异无统计学意义(P=0.665>0.05)。结论:井型电离室能够准确测量192Ir源的活度,本院所使用的放射源按照理想的半衰期衰变,放射源杂质少、纯度高。  相似文献   

12.
Task Group 51 (TG-51) of the Radiation Therapy Committee of the American Association of Physicists in Medicine (AAPM) has recently developed a new protocol for the calibration of high-energy photon and electron beams used in radiation therapy. The formalism and the dosimetry procedures recommended in this protocol are based on the use of an ionization chamber calibrated in terms of absorbed dose-to-water in a standards laboratory's 60Co gamma ray beam. This is different from the recommendations given in the AAPM TG-21 protocol, which are based on an exposure calibration factor of an ionization chamber in a 60Co beam. The purpose of this work is to compare the determination of absorbed dose-to-water in reference conditions in high-energy photon beams following the recommendations given in the two dosimetry protocols. This is realized by performing calibrations of photon beams with nominal accelerating potential of 6, 18 and 25 MV, generated by an Elekta MLCi and SL25 series linear accelerator. Two widely used Farmer-type ionization chambers having different composition, PTW 30001 (PMMA wall) and NE 2571 (graphite wall), were used for this study. Ratios of AAPM TG-51 to AAPM TG-21 doses to water are found to be 1.008, 1.007 and 1.009 at 6, 18 and 25 MV, respectively when the PTW chamber is used. The corresponding results for the NE chamber are 1.009, 1.010 and 1.013. The uncertainties for the ratios of the absorbed dose determined by the two protocols are estimated to be about 1.5%. A detailed analysis of the reasons for the discrepancies is made which includes comparing the formalisms, correction factors and quantities in the two protocols, as well as the influence of the implementation of the different standards for chamber calibration. The latter has been found to have a considerable influence on the differences in clinical dosimetry, even larger than the adoption of the new data and recommended procedures, as most intrinsic differences cancel out due to the adoption of the new formalism.  相似文献   

13.
For the vertical beam facility at the 14 MV Munich tandem accelerator, various techniques for dosimetry were tested for radiation fields of low-energy protons and light ions (4He, 12C and 16O). A reference dose was determined from the fluence of particles by counting individual particles. A parallel-plate Markus chamber with a small sensitive air volume was used for beam dosimetry applying the ICRU protocol. The doses measured with the ionization chamber were compared with doses evaluated from the fluence measurements. Alternative dose measurements were performed using MTS-N LiF:Mg, Ti thermoluminescence detectors (TLDs) and a photometrically evaluated Fricke chemical dosimeter. An uncertainty of 8% was found in the determination of the dose relative to the reference method. Effects of an inhomogeneous energy loss and a finite track length of the projectiles in the sensitive detector volume of the dosimeters had to be taken into account.  相似文献   

14.
GE saturne42型直线加速器准直器散射因子的测量   总被引:1,自引:0,他引:1  
对GE公司saturne42型直线加速器对准直器散射校正因子的性质进行研究,用英国NE公司生产的2620测量仪,臂架旋转90°测量了6MV、18MV的源——电离室中心距离1米及3.7米两个条件下的校正因子的数值,结果证实了校正因子只是与准直器有关与源皮距无关的结论。  相似文献   

15.
This article is intended to improve the certainty of the absorbed dose determination for reference dosimetry in CyberKnife beams. The CyberKnife beams do not satisfy some conditions of the standard reference dosimetry protocols because of its unique treatment head structure and beam collimating system. Under the present state of affairs, the reference dosimetry has not been performed under uniform conditions and the beam quality correction factor kQ for an ordinary 6 MV linear accelerator has been temporally substituted for the kQ of the CyberKnife in many sites. Therefore, the reference conditions and kQ as a function of the beam quality index in a new way are required. The dose flatness and the error of dosimeter reading caused by radiation fields and detector size were analyzed to determine the reference conditions. Owing to the absence of beam flattening filter, the dose flatness of the CyberKnife beam was inferior to that of an ordinary 6 MV linear accelerator. And if the absorbed dose is measured with an ionization chamber which has cavity length of 2.4, 1.0 and 0.7 cm in reference dosimetry, the dose at the beam axis for a field of 6.0 cm collimator was underestimated 1.5%, 0.4%, and 0.2% on a calculation. Therefore, the maximum field shaped with a 6.0 cm collimator and ionization chamber which has a cavity length of 1.0 cm or shorter were recommended as the conditions of reference dosimetry. Furthermore, to determine the kQ for the CyberKnife, the realistic energy spectrum of photons and electrons in water was simulated with the BEAMnrc. The absence of beam flattening filter also caused softer photon energy spectrum than that of an ordinary 6 MV linear accelerator. Consequently, the kQ for ionization chambers of a suitable size were determined and tabulated as a function of measurable beam quality indexes in the CyberKnife beam.  相似文献   

16.
基于非晶硅电子射野影像装置的剂量响应研究   总被引:1,自引:0,他引:1  
目的:临床条件下研究探讨非晶硅电子射野影像装置(a-Si EPID)的剂量响应特性。方法 :本实验在Elekta Precise直线加速器上X射线能量分别为6 MV和10 MV,采用PTW电离室、等效固体水和不同厚度铜板条件下实施测量。首先,通过EPID信号和模体中电离室的测量比较,确定出EPID剂量响应的建成厚度。其次,临床条件下利用模体的不同厚度测量分析有关剂量、每脉冲剂量和脉冲重复频率(PRF)函数的EPID信号响应情况。结果:在不增加建成材料、10 cm~60cm空气间隙条件下EPID显示了最大11.6%的过响应信号变化。临床上额外将3 mm铜建成区置于EPID上方,空气间隙大于40 cm条件下EPID响应变化将会降至1%以内。在测量范围内随MU数、PRF和每脉冲剂量变化的EPID信号响应是非线性的,最大信号变化接近于3%。因假峰和图像滞后效应等影响,短时间照射EPID会明显地产生出低剂量响应。结论:采用合适的建成层和实施对每脉冲剂量、PRF等校正,非晶硅EPID剂量响应变化可控制在1%以内,从而建立起较为理想的剂量响应曲线。  相似文献   

17.
Plastic scintillators have many advantages for dosimetry in external beam radiotherapy. The current method of transmitting the scintillation light to a remote detector is through a solid core optical fibre. When exposed in a high energy therapeutic radiotherapy beam this fibre is subject to an unwanted background signal from Cerenkov light which can exceed the scintillation signal at characteristic angles. We have constructed a plastic scintillation dosimeter that uses an air core light guide to transport the light from the scintillator to the light detector. We show that there is sufficient signal propagation in the air core light guide to allow the scintillator signal to be carried outside the primary beam of a radiotherapy linear accelerator and for a dosimeter to be constructed using a scintillator inserted into the end of the light guide. Studies of the background light generated in the air core light guide, as a function of the angle between the beam and the fibre axis, show that there is no characteristic Cerenkov peak generated in the air core. Depth dose measurements using the air core scintillation dosimeter with no correction for Cerenkov are compared to ionization chamber measurements for a 6 MV photon beam and a 9 MeV electron beam.  相似文献   

18.
Low DA  Parikh P  Dempsey JF  Wahab S  Huq S 《Medical physics》2003,30(7):1706-1711
The commercial cylindrical ionization chamber ionization integration accuracy of dynamically moving fields was evaluated. The ionization chambers were exposed to long (14 cm), narrow (0.6, 1.0, 2.0, and 4.0 cm) 6 MV and 18 MV fields. Rather than rely on the linear accelerator to reproducibly scan across the chamber, the chambers were scanned beneath fixed portals. A water-equivalent phantom was constructed with cavities that matched the chambers and placed on a computer-controlled one-dimensional table. Computer-controlled electrometers were utilized in continuous charge integrate mode, with 10 samples of the charge, along with time stamps, acquired for each chamber location. A reference chamber was placed just beneath the linear accelerator jaws to adjust for variations in linear accelerator dose rate. The scan spatial resolution was selected to adequately sample regions of steep dose gradient and second spatial derivative (curvature). A fixed measurement in a 10 x 10 cm2 field was used to normalize the profiles to absolute chamber response. Three ionization chambers were tested, a microchamber (0.009 cm3), a Farmer chamber (0.6 cm3) and a waterproof scanning chamber (0.125 cm3). The larger chambers exhibited severe under-response at the small field's centers, but all of the chambers, independent of orientation, accurately integrated the ionization across the scanned portal. This indicates that the tested ionization chambers provide accurate integrated charges in regions of homogeneous dose regions. Partial integration (less than the field width plus the chamber length plus 2 cm), yielded integration errors of greater than 1% and 2% for 6 MV and 18 MV, respectively, with errors for the Farmer chamber of greater than 10% even for the 4 cm wide field.  相似文献   

19.
Ionization chambers often exhibit a stem effect, caused by interactions of radiation with air near the chamber end, or with dielectric in the chamber stem or cable. These interactions contribute to the apparent measured exposure. To determine the stem efffect for several common ionization chamber systems, exposures were measured with TLD capsules placed at the center of 60Co fields of various sizes. These exposure measurements then were repeated with various ionization chamber systems, including two Victoreen R meters (25- and 100-R chambers), a Capintec 192 dosimeter with a Farmer 0.6-cm3 probe, a PTW transit dose probe, and an EG and G IC-18 probe with a Keithley 610-B electrometer. From a comparison of TLD and ionization chamber measurements of the variation in exposure rate with field size, stem corrections for the different systems were determined within 1%.  相似文献   

20.
This study presents measured neutron dose using a neutron dosimeter in a water phantom and investigates a hypothesis that neutrons in a high-energy photon beam may be responsible for the reported significant dose discrepancies between Monte Carlo calculations and measurements at the build-up region in large fields. Borated polyethylene slabs were inserted between the accelerator head and the phantom in order to remove neutrons generated in the accelerator head. The thickness of the slab ranged from 2.5 cm to 10 cm. A lead slab of 3 mm thickness was also used in the study. The superheated drop neutron dosimeter was used to measure the depth-dose curve of neutrons in a high-energy photon beam and to verify the effectiveness of the slab to remove these neutrons. Total dose measurements were performed in water using a WELLHOFER WP700 beam scanner with an IC-10 ionization chamber. The Monte Carlo code BEAM was used to simulate an 18 MV photon beam from a Varian Clinac-2100EX accelerator. Both EGS4/DOSXYZ and EGSnrc/DOSRZnrc were used in the dose calculations. Measured neutron dose equivalents as a function of depth per unit total dose in water were presented for 10 x 10 and 40 x 40 cm2 fields. The measured results have shown that a 5-10 cm thick borated polyethylene slab can reduce the neutron dose by a factor of 2 when inserted between the accelerator head and the detector. In all cases the measured neutron dose equivalent was less than 0.5% of the photon dose. In order to study if the ion chamber was highly sensitive to the neutron dose, we have investigated the disagreement between the Monte Carlo calculated and measured central-axis depth-dose curves in the build-up region when different shielding materials were used. The result indicated that the IC-10 chamber was not highly sensitive to the neutron dose. Therefore, neutrons present in a high-energy photon beam were unlikely to be responsible for the reported discrepancies in the build-up region for large fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号