首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
Recent studies have shown that a reverse flow often occurs in a unidirectional airflow in push-pull ventilation and may transport contaminants from the source into a worker's breathing zone. The same problem may arise in local exhaust ventilation when the contaminant source is located in the worker's wake region. In this study, organic solvent work with local exhaust ventilation was duplicated in a laboratory and the details of the reverse flow around the worker's body produced by the ventilation were experimentally investigated. In order to evaluate the influence of the reverse flow on the exposure of the worker, experiments with a mock-up mannequin (dummy worker) and a local ventilation system which was equipped with an exterior type hood and an enclosure type hood were conducted. The exposure level and the contaminant leakage from the hoods in several conditions were measured by means of a smoke test and tracer gas method. Ethanol vapor was used as a tracer gas. With the exterior type hood, the reverse flow visualized by the smoke was observed in front of the standing dummy worker but could not be observed when the dummy worker was seated. From the tracer gas measurements, it was proved that the exposure due to the reverse flow was not so serious at a capture velocity of > 0.4 m/s, but < 10 ppm contaminant leakage from the exterior hood had been recognized independently of the capture velocity. With the enclosure type hood, exposure due to the reverse flow could be controlled with a capture velocity of > 0.8 m/s. Although the contaminant leakage from the hood due to the reverse flow was not obvious with the enclosure type in any condition, caution should be exercised to prevent exposure when the worker is seated. Regardless of the hood type, the increase in the capture velocity was effective in decreasing exposure due to the reverse flow.  相似文献   

2.
A problem may arise in ventilation design when the contaminant source is located in the worker's wake, where turbulence and vortex formation can carry the contaminant into the breathing zone even though the source is downwind. It was found previously that forced directional variations in the flow can reduce or eliminate the vortex formation that causes these local reversals. Reported here is a simple realization of this concept, in which an oscillating jet of air was directed at a mannequin in an otherwise steady flow of air. A 50th percentile male mannequin was placed in a nearly uniform flow of approximately 0.18 m/sec (36 ft/min). A low-velocity tracer gas source (isobutylene) was held in the standing mannequin's hands with the upper arms vertical and the elbows at 90 degrees. Four ventilation scenarios were compared by concentration measurements in the breathing zone, using photoionization detectors: (A) uniform flow; (B) addition of a steady jet with initial velocity 5.1 m/sec (1.0 x 10(3) ft/min) directed at the mannequin's back, parallel to the main flow; (C) making the jet oscillate to 45 degrees on either side of the centerline with a period of 13 sec; and (D) introducing a blockage at the centerline so the oscillating jet never blew directly at the worker. At the 97.5% confidence level the interrupted oscillating jet (case D) achieved at least 99% exposure reduction compared with the uniform flow by itself (case A), at least 93% compared with the steady jet (case B), and at least 45% exposure reduction compared with the unblocked oscillating jet (case C).  相似文献   

3.
Computational fluid dynamics (CFD) and numerical investigations of particle inhalability and contaminant exposure have used simple geometrical surrogates for a breathing human form, but the effect of eliminating facial features has not been investigated. In this work, the velocity field and particle aspiration associated with two differently shaped mannequins were investigated to determine if an elliptical form was sufficient to represent the complexity of fluid flow associated with an inhaling human. Laser Doppler anemometry was used to measure velocity, and both optical sizing and gravimetric analysis were used to measure particle aspiration from an aerosol source. All tests were performed with continuous inhalation through the mouth, with the mannequin facing the 0.3 m s(-1) freestream. Although limitations in the laser Doppler optics prevented velocity measurements at distances <11 mm in front of the mannequin mouth opening, significant velocity differences were identified up to 20 mm in front of the mouth opening. This indicated that facial features affected the flow field near the face only. Owing to these differences, particle aspiration was compared between mannequins for three different velocity ratio conditions using an aerosol source. Even with relatively large variability in the aspirated concentration in this study, the aspirated mass concentration was significantly less for the anatomical mannequin relative to the elliptical form. Thus, the simplified elliptical cylinder does not sufficiently characterize the fluid dynamics near the mouth of an inhaling human form at these limited test conditions. Future CFD and numerical simulations to investigate human aspiration of particles should incorporate the complex features of the human face to investigate adequately particle aspiration in low velocity environments.  相似文献   

4.
The effect of worker's location, orientation, and activity on exposure   总被引:1,自引:0,他引:1  
The impact of a worker's location, orientation, and activity was studied in an experimental room (2.86 m x 2.35 m x 2.86 m) at known flow rates of 5.5 m(3)/min and 3.3 m(3)/min. A person in the room, wearing a full-facepiece, air-supplied respirator represented a worker. Propylene tracer gas was emitted at a constant rate from a 1-m pedestal at the center of the room and a continuous air sample was drawn from a point midway between the worker's mouth and nose. Breathing zone concentration (BZC) was monitored at 12 worker locations within the room for a stationary worker. At each location, BZCs were measured separately for four worker orientations: east, west, south, and north. BZCs of a walking worker were also monitored along the path defined by the 12 worker locations used in the stationary experiments. In a separate set of experiments, area concentration was monitored to see whether the worker's activity disturbed the contaminant concentrations at a fixed sampling point located behind the source looking from the direction of air inlet (location: 1.34 m, 1.20 m, 0.45 m). The following average differences in BZC over the 12 fixed locations were observed: 43% higher for near-field than for far-field locations; 20% higher when the worker was facing the source than when facing away (p-values for all four conditions: < 0.033), and 30% higher for a moving worker than for a stationary worker (p-values for all four conditions: < 0.01). When the worker was walking, the concentration at the fixed area sampling point was generally lower than the area concentration when the worker was absent or stationary in the room, possibly due to greater mixing of room air by the worker's movement. Because a worker's activities may be irregular and complicated, incorporating them as parameters in mathematical models is often not feasible. Instead, these findings may be used to assess uncertainty or adjust exposure estimates from simple models.  相似文献   

5.
Computational fluid dynamics (CFD) is potentially a valuable tool for simulating the dispersion of air contaminants in workrooms. However, CFD-estimated airflow and contaminant concentration patterns have not always shown good agreement with experimental results. Thus, understanding the factors affecting the accuracy of such simulations is critical for their successful application in occupational hygiene. The purposes of this study were to validate CFD approaches for simulating the dispersion of gases and vapors in an enclosed space at two air flow rates and to demonstrate the impact of one important determinant of simulation accuracy. The concentration of a tracer gas, isobutylene, was measured at 117 points in a rectangular chamber [1 (L) x 0.3 (H) x 0.7 m (W)] using a photoionization analyzer. Chamber air flow rates were scaled using geometric and kinematic similarity criteria to represent a full-sized room at two Reynolds numbers (Re = 5 x 10(2) and 5 x 10(3)). Also, CFD simulations were conducted to estimate tracer gas concentrations throughout the chamber. The simulation results for two treatments of air inlet velocity (profiled inlet velocity measured in traverses across the air inlet and the assumption that air velocity is uniform across the inlet) were compared with experimental observations. The CFD-simulated 3-dimensional distribution of tracer gas concentration using the profiled inlet velocity showed better agreement qualitatively and quantitatively with measured chamber concentration, while the concentration estimated using the uniform inlet velocity showed poor agreement for both comparisons. For estimating room air contaminant concentrations when inlet velocities can be determined, this study suggests that using the inlet velocity distribution to define inlet boundary conditions for CFD simulations can provide more reliable estimates. When the inlet velocity distribution is not known, for instance for prospective design of dilution ventilation systems, the trials of several velocity profiles with different source, air inlet and air outlet locations may be useful for determining the most efficient workroom layout.  相似文献   

6.
In specifying dilution ventilation flow rate, a safety factor, K, is often used to provide a margin of safety and to compensate for uncertainties and health impact severity. In current practice, the selection of K is very subjective. Here the component of K accounting for imperfect mixing, Km, was studied to develop more effective and efficient design procedures. Air flow and contaminant distribution in a 10 m x 3 m x 7 m room with a single contaminant source on a 1-m high table were simulated for steady, isothermal conditions using computational fluid dynamics. A series of 10 simulations explored factorial combinations of air exchange rates (1, 2,4, 8, 16 ACH) and inlet types (a high wall jet and a ceiling diffuser). Nine additional simulations explored exhaust opening location effects and 13 other simulations investigated source location effects. Km was calculated at each of 25,600 grid locations within the room by linear regression of emission rate/flow rate (G/Q) on concentration (C). The linear relationship between C and G/Q at each of the points was nearly perfect (R2 > 0.97). For the simulations with varying dilution flow rate, Km ranged from 0.19 to 2.86 for the wall jet and from 0.94 to 4.34 for the ceiling diffuser. Holding G/Q at 100 ppm and varying source and exhaust location produced room average concentrations from 55.7 to 173 ppm. Unlike orthodox design approaches, this work suggests that air monitoring data often can be used to calculate dilution flow rate requirements. Also, dilution flow rate requirements may be reduced by enhancing room mixing with fans or altering air inlet configuration. However, mixing should not be increased if the altered room air currents could transport contaminant to an occupant's breathing zone or interfere with other control methods that depend on segregation of incoming air and contaminant.  相似文献   

7.
Two key elements of mathematical exposure models are the contaminant's emission rate and pattern of dispersion in room air. Assuming that the mass emission rate is constant and room air is perfectly mixed affords relative mathematical simplicity. However, treating a highly variable emission rate as constant underestimates peak exposure intensity, which may be toxicologically important, and assuming a well-mixed condition underestimates exposure intensity near the source. In the past decade multizone models and turbulent diffusion models have been used to account for spatial variability in airborne concentrations, and variable emission rate functions have been described for different processes. Due to the greater complexity of these models, closed-form equations for concentration as a function of time may not be available. This article presents a numerical method that combines a variable contaminant emission rate function with the three dispersion constructs most commonly used by industrial hygienists-the well-mixed room, the near field/far field, and hemispherical turbulent eddy diffusion. The article describes how the numerical method is implemented by a computer spreadsheet program, and illustrates the method using a sinusoidal contaminant emission rate function.  相似文献   

8.
Occupational exposure to airborne volatile organic compounds is governed by the source strength and dispersion of the pollutant into workroom air. The purpose of the present test chamber study was to validate suggested models for the prediction of evaporation rates and concentration distributions. The study design was organized into different scenarios to simulate workplace conditions. Evaporation rates of organic compounds of different volatilities were recorded gravimetrically and the corresponding concentrations in air were measured at various locations equally distributed in the test chamber. The evaporation models generally showed a fair agreement with experiments but tended to underestimate the evaporation rate especially at low air velocity. Based on factorial experiments a new simple evaporation model was suggested. The performances of the concentration distribution models were of different quality. The model developed by Roach (Annals of Occupational Hygiene24, 105–132, 1981) cannot be used in predicting the concentration distribution in case of a convective air flow. If knowledge of the evaporation rate and pollutant concentration at some distances from the source were available, the model suggested by Scheff et al. (Applied Occupational and Environmental Hygiene7, 127–134, 1992) generated a concentration distribution in reasonable agreement with the observed data. The box-model (Sinden, Building and Environment13, 21–28, 1978) generally offered a fair performance but tended to underestimate the pollutant concentration in a region close to the source in the direction of the main air flow.  相似文献   

9.
J Ojima 《Industrial health》2012,50(3):236-238
Conventionally, the "breathing zone" is defined as the zone within a 0.3 m (or 10 inches) radius of a worker's nose and mouth, and it has been generally assumed that a contaminant in the breathing zone is homogeneous and its concentration is equivalent to the concentration inhaled by the worker. However, several studies have mentioned that the concentration is not uniform in the breathing zone when a worker is close to the contaminant source. In order to examine the spatial variability of contaminant concentrations in a worker's breathing zone, comparative measurements of personal exposure were carried out in a laboratory. In experiment, ethanol vapor was released in front of a model worker (human subject and mockup mannequin) and the vapor concentrations were measured at two different sampling points, at the nose and at the chest, in the breathing zone. Then, the effects of the sampling location and the body temperature on the exposure were observed. The ratios of nose concentration to chest concentration for the human subject and the mannequin were 0-0.2 and 0.12, respectively. The exposure level of the mannequin was about 5.5-9.3 times higher than that of the human subject.  相似文献   

10.
The presence of airborne pollutants in indoor environments has been associated with occupants' discomfort and/or adverse health effects. This study investigates occupational exposure in relation to indoor air mixing and source location relative to a human body. Experimental and computational methods were used to provide information about the pollutant distribution in the vicinity of the human body for different levels of room air mixing. Study results show that the often used assumption of uniform pollutant distribution in an occupied space is not always appropriate for estimation of inhalation exposure. Results also indicate that an occupant may experience very high acute exposure to airborne pollutants when little air mixing exists in a space and the pollutant source is in the vicinity of the occupant. The buoyancy-driven flow induced by the convective heat transfer from an occupant's body can transport pollutants in the occupant's vicinity to the breathing zone. Specific study results reveal that a source located in the occupant's front chest region makes a relatively large contribution to the breathing zone concentration compared with the other sources in the vicinity of the human body. With the source position in this region, exposure can be nine times greater than that calculated with the uniform mixing assumption. The buoyancy-driven convective plume around a body seems to have a significant influence on pollutant transport and human exposure, especially in the absence of room air mixing.  相似文献   

11.
For many years exposure to airborne contaminants has been estimated by air or biological monitoring. In occupational settings, mathematical models increasingly are employed as adjuncts to monitoring, for instance, during process design or in retrospective epidemiological studies. Models can make predictions in a wide variety of scenarios, can be used for rapid screening, and may reduce the need for monitoring in exposure assessment. However, models make simplifying assumptions regarding air flow and contaminant transport. The errors resulting from these assumptions have not been systematically evaluated. Here we compare exposure estimates from the single-zone completely mixed (CM-1), two-zone completely mixed (CM-2), and uniform diffusivity (UD) models with workroom concentration fields predicted by computational fluid dynamics (CFD). The room air flow, concentration fields, and the breathing zone concentration of a stationary worker were computed using Fluent V4.3 for factorial combinations of three source locations, three dilution air flow rates and two emission rate profiles, constant and time-varying. These numerical experiments were used to generate plausible concentration fields, not to simulate exactly the processes in a real workroom. Thus, "error" is defined here as difference between model and CFD predictions. For both constant and time-varying emission sources, exposure estimates depended on receptor and source location. For the constant source case, ventilation rate was shown to be inconsequential to CM-1 model error. CM-1, CM-2, and UD models differed in their agreement with CFD. UD was closest to CFD for estimating concentration in the simulated breathing zone (BZ) near the source, although large errors resulted when the model was applied to the plane of possible breathing zones. CM-1 performed better for this plane but underestimated the near-source BZ exposure. For the near-source BZ location, CM-2 replicated CFD predictions more closely than CM-1 did, but less closely than UD did. Error in CM-1 model estimation of short-term average exposure to a time-varying source was highly dependent on ventilation rate. Error decreased as ventilation rate increased.  相似文献   

12.
Three-dimensional computational fluid dynamics simulations are used to investigate the distribution and level of contaminant concentrations in the true breathing zone (at the nose and mouth) when toxic airborne contaminants are released within an arm's length in front of the worker who has his back to the airflow. The effects of different body shapes on fluid flow and concentration patterns around the body in a wind tunnel were evaluated and clarified that a sharp body or a block may not be a good surrogate for the human form in consideration of occupational and environmental health studies. The comparison of the concentration field calculated with the Eulerian and Lagrangian methods revealed that the Eulerian method has a more diffusive nature than the Lagrangian method. The concentrations at different locations were also compared to determine the optimum sampling location. It was found that the concentration at the breathing zone may be significantly different from the one at the chest area. The influence of the heat flux from the body was studied at two different Reynolds numbers. Predictions indicate that the heat flux may have a significant impact on exposure especially when the convection induced by buoyancy dominates the flow.  相似文献   

13.
S. A. Roach was a pioneer in the assessment and control of hazardous substances in the working environment during the second half of the 20th century. The two papers discussed in this commentary are generally regarded as his most important scientific contributions. The first paper (Roach, 1977) dealt with the determinants of the body burdens of toxic air contaminants. Using simple kinetic models, he showed how levels of toxicants rise and fall in the body according to the patterns of airborne exposures received during relevant time windows. This led to several useful rules of thumb, including the timing of grab samples for 'fast acting' substances, the appropriate duration of air samples relative to the biological half time, how to deal with unusual work schedules, and how to integrate exposure assessment with control. He also offered sage advice regarding the meaning and interpretation of exposure limits, the importance of repeated monitoring, and the extent to which unacceptable levels of exposure might be reduced. In concluding this work, Roach emphasized that the hygienist can fulfill a central role in occupational health simply by intervening to reduce the body burden. The second paper (Roach, 1981) dealt with the design of effective ventilation systems to control worker exposure to toxic airborne contaminants. By developing a series of simple differential equations, Roach evaluated the impact of turbulent diffusion upon industrial ventilation. He emphasized that the stationary contaminant concentration was proportional to the contaminant generation rate and that velocity alone was not a sufficient design criterion to control exposures. Rather, he argued that the equivalent ventilation rate (the ratio of the contaminant generation rate to the steady concentration in the breathing zone) should be the guiding criterion for ventilation design. Throughout both papers, Roach used fundamental principles to tie together exposure assessment and engineering control, and pointed the way to a science for occupational hygiene. The profession can still learn a great deal from these seminal contributions.  相似文献   

14.
Contaminant concentration estimates from simple models were compared with concentration fields obtained by computational fluid dynamic (CFD) simulations for various room and source configurations under steady-state conditions. Airflow and contaminant distributions in a 10 x 3 x 7-m room with a single contaminant source on a 1-m high table were simulated using CFD for steady, isothermal conditions. For a high wall jet inlet, simulations were performed for nine room air exhaust locations and eight source locations. For a ceiling diffuser inlet the impact of two exhaust locations and eight source locations were investigated. Because CFD treats determinants of contaminant transport explicitly and agreed well with experimental results, it was used as the standard for comparison. Parameters of the one- and two-zone completely mixed models (CM-1 and CM-2) and the uniform turbulent diffusivity model (UD) were determined from CFD simulation results. Concentration estimates from these were compared with CFD results in the breathing zone (BZ) plane (1.5 m above the floor) for the entire BZ, the source "near field," and the source "far field." In the near field the mean percentage difference between the model concentration estimates and the CFD results for all room configurations were -21.9, 32.3, and 126% for the CM-1, CM-2, and UD models, respectively, with standard deviations of 26.8, 111, and 103%. In the far field the mean percentage difference between the model estimates and CFD results were -4.8, -2.3, and -36.3%. The CM-1 model had generally the best performance for applications such as occupational epidemiology for the conditions and configurations studied. However, CM-1 tended to underestimate the near field concentration; thus, CM-2 was judged to be better in the near field when underestimation is undesirable, such as when determining compliance with occupational exposure limits. The agreement of CM-2 estimates with CFD results in the near field was more variable than that of the CM-1. The UD model performed poorly on average in both near and far fields, and the difficulty in accurately estimating the turbulent diffusivity presents a significant impediment to UD model use for exposure estimation.  相似文献   

15.
The effects of the walk-by motion and sash movement on the containment leakage of an air curtain-isolated fume hood were evaluated and compared with the results of a corresponding conventional fume hood. The air curtain was generated by a narrow planar jet issued from the double-layered sash and a suction slot-flow arranged on the floor of the hood just behind the doorsill. The conventional fume hood used for comparison had the major dimensions identical to the air-curtain hood. SF tracer-gas concentrations were released and measured following the prEN 14175-3:2003 protocol to examine the contaminant leakage levels. Experimental results showed that operating the air-curtain hood at the suction velocity above about 6 m/s and jet velocity about 1 m/s could provide drastically high containment performance when compared with the corresponding conventional fume hood operated at the face velocity of 0.5 m/s. The total air flow required for the air-curtain hood operated at 6 m/s suction velocity and 1 m/s jet velocity was about 20% less than that exhausted by the conventional fume hood. If the suction velocity of the air-curtain hood was increased above 8 m/s, the containment leakage during dynamic motions could be reduced to ignorable level (about 10(3) ppm).  相似文献   

16.
A local exhaust hood is one of the most commonly used controls for harmful contaminants in the working environment. In Japan, the performance of a hood is evaluated by hood velocity measurements, and administrative performance requirements for hoods are provided as control velocities by the Japanese Industrial Safety and Health Law. However, it is doubtful whether the control velocity would be the most suitable velocity for any industrial hood since the control velocity is not substantiated by actual measurements of the containment ability of each hood. In order to examine the suitability of the control velocity as a performance requirement, a hood performance test by the tracer gas method, using carbon dioxide (CO(2)), was conducted with an exterior type hood in a laboratory. In this study, as an index of the hood performance, capture efficiency defined as the ratio of contaminant quantity captured by the hood to the total generated contaminant quantity, was determined by measuring the CO(2) concentrations. When the assumptive capture point of the contaminant was located at a point 30 cm from the hood opening, a capture efficiency of >90% could be achieved with a suction velocity of less than the current control velocity. Without cross draft, a capture efficiency of >90% could be achieved with a suction velocity of 0.2 m/s (corresponding to 40% of the control velocity) at the capture point. Reduction of the suction velocity to 0.2 m/s caused an 80% decrease in exhaust flow rate. The effect of cross draft, set at 0.3 m/s, on the capture efficiency differed according to its direction. When the direction of the cross draft was normal to the hood centerline, the effect was not recognized and a capture efficiency of >90% could be achieved with a suction velocity of 0.2 m/s. A cross draft from a worker's back (at an angle of 45 degrees to the hood centerline) did not affect the capture efficiency, either. When the cross draft blew at an angle of 135 degrees to the hood centerline, a capture efficiency of >90% could be achieved with a suction velocity of 0.4 m/s. The reduction of suction velocity would beneficially reduce running costs of local exhaust hoods and air conditioning. Effective and economical exhaustion would be achieved if the minimum velocity obtained by the tracer gas method were to be substituted for the excessive control velocity.  相似文献   

17.
The phenomenon of boundary layer separation can be an important factor in determining a worker's exposure to toxic airborne pollutants. A conceptual model was developed to understand this phenomenon and to predict the average concentration in the reverse flow region downstream of a worker in a uniform freestream. Subsequently, the assumptions of this model were tested experimentally in wind tunnel studies. On the basis of these results, a revised model is presented and validated by using a tracer gas method. The revised model provides a reasonable estimate of the average concentration in the reverse flow region of the mannequin. Empirical models are presented that relate both the average concentration in the reverse flow region and the breathing zone concentration to the body dimensions and the freestream air velocity. Applications and limitations of the results are discussed.  相似文献   

18.
Computational fluid dynamics (CFD) is used increasingly to simulate the distribution of airborne contaminants in enclosed spaces for exposure assessment and control, but the importance of realistic boundary conditions is often not fully appreciated. In a workroom for manufacturing capacitors, full-shift samples for isoamyl acetate (IAA) were collected for 3 days at 16 locations, and velocities were measured at supply grills and at various points near the source. Then, velocity and concentration fields were simulated by 3-dimensional steady-state CFD using 295K tetrahedral cells, the k-ε turbulence model, standard wall function, and convergence criteria of 10(-6) for all scalars. Here, we demonstrate the need to represent boundary conditions accurately, especially emission characteristics at the contaminant source, and to obtain good agreement between observations and CFD results. Emission rates for each day were determined from six concentrations measured in the near field and one upwind using an IAA mass balance. The emission was initially represented as undiluted IAA vapor, but the concentrations estimated using CFD differed greatly from the measured concentrations. A second set of simulations was performed using the same IAA emission rates but a more realistic representation of the source. This yielded good agreement with measured values. Paying particular attention to the region with highest worker exposure potential-within 1.3 m of the source center-the air speed and IAA concentrations estimated by CFD were not significantly different from the measured values (P = 0.92 and P = 0.67, respectively). Thus, careful consideration of source boundary conditions greatly improved agreement with the measured values.  相似文献   

19.
The assessment of human exposure to an environmental contaminant requires the measurement of levels present in each pathway of possible contact. In this paper, the design considerations and Phase I results of a human exposure study focused on Benzo(a)pyrene (BaP) are discussed. This study site, located in Phillipsburg, New Jersey, is a city that contains a metal pipe foundry, which is a suspected major source of BaP. Three outdoor PM-10 samplers (used to collect BaP-containing particles with an aerodynamic size of less than or equal to 10 micron) were located in residential areas surrounding the foundry. Ten homes were sampled indoors for PM-10. Some homes have indoor combustion sources, e.g., cigarette smoke or a coal burning stove. The indoor and outdoor samples were 24 hr in duration. The mean outdoor concentration of BaP was 0.9 ng/m3, and the indoor concentrations ranged from 0.1-8.1 ng/m3. Food samples were acquired from family meals each day. They represented a one-third portion of each meal eaten at home. The range of BaP per gram of wet weight of food was between 0.004 and 1.2 ng/g. Of the 20 wk of exposure (10 x 2 wk), 10 had higher food exposures and the other 10 had higher inhalation exposures. Of the two groups, the higher food exposures usually had a greater number of ng of BaP/wk. The dominance of one or the other pathway appeared to depend upon personal eating habits and indoor combustion source use. In some instances, outdoor air pollution led to a major portion of indoor air BaP exposures. Water appears to be a minor source of BaP exposures in the study area.  相似文献   

20.
Estimating exposure to contaminants emitted into workroom air is essential for worker protection. Although contaminant concentrations are often not spatially uniform within workrooms, many methods for estimating exposure do not adequately account for this variability. Here the impact of temperature differences within a room on spatial contaminant distribution was studied. Tracer gas (99.5% propylene) concentrations were monitored automatically at 144 sampling points with a photoionization detector. One wall was chosen to represent a building's external wall and was heated or cooled to simulate summer or winter conditions. Experiments were preformed at two flow rates (5.5 and 3.3 m(3) min(-1)) and six thermal conditions (isothermal, three summer conditions and two winter conditions). For 5.5 m(3) min(-1) and all thermal conditions, the coefficient of variation (CV) ranged from 0.34 to 0.45 and the normalized average concentrations were similar. For 3.3 m(3) min(-1), winter conditions produced greater spatial variability of concentration (CV = 0.72 and 1.10) than isothermal or summer conditions (CV range = 0.29-0.34). Tests simulating winter conditions suggest that the resulting stable temperature structure inhibited the dilution of the tracer and enhanced its segregation in the lower portion of the room, especially for the lower flow rate (3.3 m(3) min(-1)). Therefore, not explicitly addressing thermal effect in exposure modeling may impact the estimated accuracy and precision when used for rooms that are non-isothermal and not well mixed. These findings also have implications for air monitoring. Dispersion patterns for different thermal conditions were found to be substantially different, even when the mean concentrations were nearly the same. Thus, monitoring data from a single season should not be taken as representative of the entire year, when summer and winter conditions create temperature gradients in a room.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号