首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 743 毫秒
1.
The ocular administration of nerve growth factor (NGF) as eye drops (oNGF) has been shown to exert protective effects in forebrain‐injured animal models, including adult diabetes induced by a single injection of streptozotocin (STZ) (60 mg/kg body weight). This type 1 diabetes model was used in this study to investigate whether oNGF might extend its actions on neuronal precursors localised in the subventricular zone (SVZ). NGF or saline was administrated as eye drops twice daily for 2 weeks in rats with STZ‐induced diabetes and healthy control rats. The expression of mature and precursor NGF and the NGF receptors, tropomyosin‐related kinase A and neurotrophin receptor p75, and the levels of DNA fragmentation were analysed by ELISA and western blotting. Incorporation of bromodeoxyuridine was used to trace newly formed cells. Nestin, polysialylated neuronal cell adhesion molecule (PSA‐NCAM), doublecortin (DCX) and glial fibrillary acidic protein antibodies were used to identify the SVZ cells by confocal microscopy. It was found that oNGF counteracts the STZ‐induced cell death and the alteration of mature/pro‐NGF expression in the SVZ. It also affects the survival and differentiation of SVZ progenitors. In particular, oNGF counteracts the reduction in the number of cells expressing PSA‐NCAM/DCX (neuroblast type A cells) and the related reductions in the number and distribution of nestin/DCX‐positive cells (C‐type cells), or glia‐committed cells (type B cells), observed in the SVZ of diabetic rats. These findings show that oNGF treatment counteracts the effect of type 1 diabetes on neuronal precursors in the SVZ, and further support the neuroprotective and reparative role of oNGF in the brain.  相似文献   

2.
The response of cells localized in the brain subventricular zone (SVZ) to growth factor stimulation has been largely described for development and adult life, whereas no information on their behavior during aging is available. To address the question of whether the cells in the SVZ of old mice respond to the intracerebroventricular administration of epidermal growth factor (EGF) and nerve growth factor (NGF), we studied the distribution of proliferating cells and the effects on ChAT and brain-derived neurotrophic factor (BDNF) synthesis in forebrain and SVZ. It was found that the conjoint administration of EGF + NGF produced a major increase in ChAT expression in both forebrain and SVZ. The ChAT mRNA levels and the number of ChAT positive cells localized in the ventricular border and in the parenchyma of SVZ area were also increased significantly in the mice receiving EGF + NGF. Enhanced numbers of SVZ cells expressing proliferative markers were also discovered in EGF + NGF treated mice and some of these cells expressed cholinergic markers, as demonstrated by double immunostaining. In addition, EGF and NGF treatments significantly upregulate BDNF protein and mRNA levels in this brain region. The present study demonstrates that cells localized in SVZ of aged mouse brain retain the capacity to respond to EGF and NGF and that after stimulation with these two growth factors, the synthesis of ChAT and BDNF also increases. The implication that cells of the SVZ remain a reservoir of cholinergic and BDNF-positive neurons in aged brain opens a new perspective for understanding the role of growth factors during neurodegenerative disorders associated with aging.  相似文献   

3.
Neurogenesis occurs in two regions of the adult brain, namely, the subventricular zone (SVZ) throughout the wall of the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus (DG) in hippocampal formation. Adult neurogenesis requires several neurotrophic factors to sustain and regulate the proliferation and differentiation of the adult stem cell population. In the present review, we examine the cellular and functional aspects of a trophic system mediated by fibroblast growth factor-2 (FGF-2) and its receptors (FGFRs) related to neurogenesis in the SVZ and SGZ of the adult rat brain. In the SVZ, FGF-2 is expressed in GFAP-positive cells of SVZ but is not present in proliferating precursor cells, which instead express FGFR-1 and FGFR-2, but not FGFR-3 mRNA, although expressed in the SVZ, and FGFR-4. Therefore, it seems that in the SVZ FGF-2 may be released by GFAP-positive cells, different from the precursor cell lineage, and via volume transmission it reaches the proliferating precursor cells. FGFR-1 mRNA is also expressed in the SGZ and is localized in BrdU-labeled precursor cells, whereas FGFR-2 and FGFR-3 mRNA, although expressed in the SGZ, are not located within proliferating precursor cells. An aged-related decline of proliferating precursor cells in the SVZ and DG of old rats has been well documented, and there is the suggestion that in part it could be the consequence of alterations in growth factor expression levels. Thus, the old precursors may respond to growth factors, suggesting that during aging the basic components for neuronal precursor cell proliferation are retained and the capacity to increase neurogenesis after appropriate stimulation is still preserved. In conclusion, the trophic system mediated by FGF-2 and its receptors contributes to create an important micro-environmental niche that promotes neurogenesis in the adult and aged brain. This article is dedicated to the special issue Brain Plasticity: Aging and Neuropychiatric Disorders.  相似文献   

4.
BRCA-1 is a tumor suppressor gene that plays a role in DNA repair and cellular growth control. Here we show that BRCA-1 mRNA is expressed by embryonic rat brain and is localized to the neuroepithelium containing neuronal precursor cells. The expression of BRCA-1 decreases during rat brain development, but BRCA-1 is expressed postnatally by proliferating neuronal precursor cells in the developing cerebellum. Neural stem cells (NSC) prepared from embryonic rat brain and cultured in the presence of epidermal growth factor were positive for BRCA-1. Induction of NSC differentiation resulted in down-regulation of BRCA-1 expression as shown by RNA and protein analyses. In addition to embryonic cells, BRCA-1 is also present in NSC prepared from adult rat brain. In adult rats, BRCA1 was expressed by cells in the walls of brain ventricles and in choroid plexus. The results show that BRCA-1 is present in embryonic and adult rat NSC and that the expression is linked to NSC proliferation.  相似文献   

5.
Maternal separation in neonatal rodents causes a wide range of behaviouralandmetabolic alterations, affecting the physiological response of theneuro-immune-endocrinesystem. For example, interference with the normal mother-infantinteractions leads to anincreased susceptibility to experimentally-induced allergicencephalomyelitis (EAE) in adult life.Since it has been reported that mast cells (MCs) participatein the pathophysiology of theautoimmune inflammatory disease multiple sclerosis (MS) and alsoEAE and that brain nervegrowth factor (NGF) levels are altered in EAE, we studied whethermaternal separation andgentle manipulation (gentling) of neonatal Lewis rats perturb NGF levelsor MC distribution inthe brain. EAE-induction susceptibility in adult life was also evaluated andNGF levels and mastcell distribution within the hippocampus and thalamus were measured at 0,10, 20 and 60postnatal days. Our results show an exacerbation of clinical signs in rats separatedfrom motherswhere EAE was induced, a general decrease in NGF protein levels and MC numberin thehippocampus during the first developmental period and a significant increase in the numberofMC in the hippocampus and the thalamus at young-adulthood (60 days of age). Theseresultsindicate that disruption of the maternal bond during early infancy may producelong-lastingalterations in the brain cellular and molecular environment, leading to increasedsusceptibility toEAE in adult life.  相似文献   

6.
The subventricular zone (SVZ) bordering the lateral ventricle is one of the few regions of adult brain that contains dividing cells. These cells can differentiate into neurons in vivo after migration into the olfactory bulb and in vitro in the presence of appropriate growth factors. Little is known, however, about the fate of these cells in vivo after brain injury in adults. We examined cell number and expression of differentiation markers in the SVZ of adult rats after cortical lesions. Aspiration lesions of the sensorimotor cortex in adult rats induced a transient doubling of the number of cells in the SVZ at the level of the striatum without consistent increases in bromodeoxyuridine-labeled cells. Immunoreactivity to the polysialylated neural cell adhesion molecule, expressed by the majority of cells of the SVZ during development, increased dramatically after lesion. In contrast, immunolabeling for molecules found in mature neurons and glia did not increase in the SVZ after lesion, and immunoreactivity for growth factors that induce differentiation of SVZ cells in vitro decreased or remained undetectable, suggesting that lack of appropriate growth factor expression may contribute to the lack of differentiation of the newly accumulated cells in vivo. The data reveal that cells of the SVZ are capable of plasticity in the adult rat after brain injury in vivo and that the newly accumulated cells retain characteristics seen during development. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Treatment with bone marrow stromal cells (BMSCs) ameliorates neurological functional deficits after stroke. Nerve growth factor (NGF) is a neurotrophic factor that supports the survival and growth of neural cells. Noggin, an antagonist of bone morphogenetic protein (BMP), promotes the differentiation of stem cells into neurons. In this study, we hypothesize that transfection of NGF and Noggin in BMSC treatment of stroke promotes BMSC neuronal differentiation and improves functional outcome after stroke. Adenovirus was used to trasfect NGF and Noggin and the transfection efficiency was measured by Western blot and immunostaining in vitro. The transfected BMSCs with NGF and/or Noggin were administered intravenously at 5 days after middle cerebral artery occlusion (MCAo) in rats. The neurological functional outcome and BMSC migration and differentiation in the ischemic brain were measured. The transplantation of BMSCs with NGF or Noggin elicited neurological functional improvement, promoted BMSCs present in the ischemic brain, and also up-regulated neuro-like cell differentiation as well as increased synaptophysin expression in the ischemic brain compared with nontreatment control animals (P< 0.05). Treatment of stroke with a combination of transfection of NGF and Noggin in BMSCs induced a synergistic effect on improved neurological functional outcome, BMSCs present in the ischemic brain, and synaptophysin expression in the ischemic brain compared with BMSCs transfected with an NGF- or Noggin-alone group (P < 0.05). These data demonstrate that increasing NGF or Noggin expression in BMSCs contributes to brain plasticity after stroke and that a synergistic effect is induced on the coexistence of NGF and Noggin in BMSCs treatment of stroke.  相似文献   

8.
In rodents, the subventricular zone (SVZ) harbours neural stem cells that proliferate and produce neurons throughout life. Previous studies showed that factors released by the developing cortex promote neurogenesis in the embryonic ventricular zone. In the present report, we studied in the rat the possible involvement of endogenous factors derived from the embryonic cortex in the regulation of the development of postnatal SVZ cells. To this end, SVZ neurospheres were maintained with explants or conditioned media (CM) prepared from embryonic day (E) 13, E16 or early postnatal cortex. We demonstrate that early postnatal cortex-derived factors have no significant effect on SVZ cell proliferation or differentiation. In contrast, E13 and E16 cortex release diffusible, heat-labile factors that promote SVZ cell expansion through increased proliferation and reduced cell death. In addition, E16 cortex-derived factors stimulate neuronal differentiation in both early postnatal and adult SVZ cultures. Fibroblast growth factor (FGF)-2- but not epidermal growth factor (EGF)-immunodepletion drastically reduces the mitogenic effect of E16 cortex CM, hence suggesting a major role of endogenous FGF-2 released by E16 cortex in the stimulation of SVZ cell proliferation. The evidence we provide here for the regulation of SVZ cell proliferation and neuronal differentiation by endogenous factors released from embryonic cortex may be of major importance for brain repair research.  相似文献   

9.
Brain-derived neurotrophic factor (BDNF) plays a major role in regulating the survival and fate of progenitor cells in the adult brain. In order to extend previous observations in the normal adult brain and advance our knowledge regarding the effect of BDNF on neurogenesis in the injured brain, this study directly compared the effect of BDNF on basal and injury-induced neurogenesis in relation to progenitor cell distribution and levels of neuronal differentiation and survival. BDNF was overexpressed in the subventricular zone (SVZ) via recombinant adeno-associated virus (AAV(1/2)) delivery, and newly generated cells were identified using bromodeoxyuridine (BrdU) labelling. Selective striatal cell loss was induced in a subgroup of rats by unilateral striatal injection of quinolinic acid (QA) 21 days after AAV(1/2) injection. In the normal brain, BDNF overexpression significantly increased BrdU-positive cell numbers in the rostral migratory stream, indicating enhanced progenitor cell migration. Following QA lesioning, we observed a reduction in BrdU immunoreactivity in the SVZ. Overexpression of BDNF restored BrdU-positive cell numbers in the QA-lesioned SVZ to that observed in the normal brain. Most significantly, BDNF enhanced the recruitment of progenitor cells to the QA-lesioned striatum and promoted neuronal differentiation in both the normal and QA-lesioned striatum. Our findings indicate that BDNF augments the recruitment, neuronal differentiation and survival of progenitor cells in both neurogenic and non-neurogenic regions of the normal or QA-lesioned brain. Enhanced expression of BDNF may therefore be a viable strategy for augmenting neurogenesis from endogenous progenitor cells.  相似文献   

10.
In this study, experimental allergic encephalomyelitis (EAE) rats and rats exhibiting EAE expressing high circulating anti-nerve growth factor antibody were daily monitored for clinical signs and chronic relapses. Eighty-five days after EAE induction, blood, spinal cord and brain stem were used for histological examination, nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) evaluation. The results showed that NGF-deprived rats display more severe clinical signs of disease. These effects were associated with a significant reduction of NGF in the brain stem and spinal cord but not of BDNF, which decreased only in spinal cord. These observations provide additional support to the hypothesis of a protective NGF role in rats exhibiting EAE.  相似文献   

11.
Neural precursor cells, including neural stem and progenitor cells, in the subventricular zone (SVZ) are the main targets for cytomegalovirus (CMV) infection in developing brains. The neural precursor cells in the SVZ of the adult brain have been reported to respond by proliferating after infusion with epidermal growth factor (EGF). Here we report the susceptibility of the precursor cells in the adult mouse brain to murine CMV (MCMV) infection. Adult mouse brains from 10-, 25-, and 70-week-old (W) mice were infused with either phosphate-buffered saline or EGF into the brain for 3 days, and then intracerebrally infected with MCMV for 5 days. The susceptibility of the adult brains to MCMV was significantly increased by infusion of EGF in terms of viral titers and viral antigen-positive cells. The susceptibility of the young adult brain from 10-week-old mice to MCMV was higher than that of the adult brains from 25-week-old or 70-week-old mice. Both the ependymal and the SVZ cells were susceptible to MCMV infection. The number of virus-infected cells in the SVZ was significantly increased by infusion of EGF, whereas the number of infected ependymal cells was not significantly increased. Among the virus-infected cells in the SVZ, 73% were positive for nestin, 87% were positive for Musashi, 86% were positive for GFAP, and 96% were positive for PCNA. These results indicate that the susceptibility of the adult brain to MCMV is correlated with the proliferative ability of the neural precursor cells in the SVZ of the adult brain.  相似文献   

12.
In the adult mammalian brain, neural stem cells persist in the subventricular zone (SVZ) of lateral ventricles. It is well established that cortical damage leads to SVZ cell proliferation and neuronal differentiation. We have previously demonstrated in rat that, when treated with the apoptosis-inducing agent staurosporine, cortex explants release heat-labile factors that promote SVZ cell culture proliferation. In the present report, we investigated in vitro mechanisms involved in cortex injury-triggered neurogenesis in the rat. We demonstrated, using immunoblotting analysis and fibroblast growth factor (FGF)-2 enzyme-linked sandwich immunosorbent assay, that treatment of cortex explants with apoptosis-inducing agents increases the release of FGF-2. We next determined the effects of apoptotic cortex-released factors in regulating SVZ cell proliferation and neuronal differentiation by using bromodeoxyuridine incorporation and microtubule-associated protein 2 immunostaining assays, respectively. We found that conditioned media derived from staurosporine-treated cortex explants enhanced SVZ cell culture proliferation and differentiation by over 50 and 80%, respectively. Finally, we showed that immunodepletion of FGF-2 or pharmacological blockade of FGF-2 receptor by SU5402 completely abolished staurosporine-treated cortex mitogenic activity on SVZ cultures but did not alter its activity on neuronal cell differentiation. Altogether, the present report establishes that the release of endogenous FGF-2 by apoptotic cortex explants plays a major role in the induction of SVZ cell proliferation but not neuronal differentiation, which probably depends on the release of other as yet unidentified cortical factors.  相似文献   

13.
Ischemic stroke affecting the adult brain causes increased progenitor proliferation in the subventricular zone (SVZ) and generation of neuroblasts, which migrate into the damaged striatum and differentiate to mature neurons. Meteorin (METRN), a newly discovered neurotrophic factor, is highly expressed in neural progenitor cells and immature neurons during development, suggesting that it may be involved in neurogenesis. Here, we show that METRN promotes migration of neuroblasts from SVZ explants of postnatal rats and stroke-subjected adult rats via a chemokinetic mechanism, and reduces N-methyl-D-asparate-induced apoptotic cell death in SVZ cells in vitro. Stroke induced by middle cerebral artery occlusion upregulates the expression of endogenous METRN in cells with neuronal phenotype in striatum. Recombinant METRN infused into the stroke-damaged brain stimulates cell proliferation in SVZ, promotes neuroblast migration, and increases the number of immature and mature neurons in the ischemic striatum. Our findings identify METRN as a new factor promoting neurogenesis both in vitro and in vivo by multiple mechanisms. Further work will be needed to translate METRN's actions on endogenous neurogenesis into improved recovery after stroke.  相似文献   

14.
We have previously demonstrated a role for the chemokines MCP-1, MIP-1α and GRO-α in directing subventricular zone (SVZ)-derived neural precursor cell migration towards the site of cell death in the adult rodent brain. However the influence of chemokines such as MCP-1, MIP-1α and GRO-α on the differentiation of adult neural precursor cells has not previously been investigated. Further, as the majority of neurological disorders and injuries occur during ageing, it is important to investigate the effect of chemokines on adult neural precursor cell cultures obtained from the ageing brain. This study therefore examined the effect of MCP-1, MIP-1α and GRO-α on SVZ-derived neural precursor cell differentiation in vitro, and assessed whether precursor cells from the middle-aged rat brain (13 months old) follow the same migratory and differential profile as neural precursor cells obtained from the young adult rat brain (2 months old). We observed that each of the chemokines examined generated differing effects in regards to neuronal or glial differentiation. Further, both MIP-1α and GRO-α increased total cell number, suggesting an effect on precursor cell proliferation and/or survival. In agreement with cultures obtained from young adult brains, SVZ-derived neural precursor cells cultured from the middle-aged brain exhibited chemotactic migration in response to a concentration gradient. These results indicate that the chemokines MCP-1, MIP-1α and GRO-α can influence both the migration and fate choice of SVZ-derived neural precursor cells, as well as promoting cell viability. While a response to each of these chemokines is maintained in the middle-aged brain, a distinct age-related alteration in differential fate can be identified.  相似文献   

15.
Experimental autoimmune encephalomyelitis (EAE) is an animal model for the human demyelinating disease multiple sclerosis (MS). EAE and MS are characterized by significant inflammation, demyelination, neuroglial damage, and cell death. Metallothionein-I and -II (MT-I + II) are antiinflammatory and neuroprotective proteins that are expressed during EAE and MS. We have shown recently that exogenous administration of Zn-MT-II to Lewis rats with EAE significantly reduced clinical symptoms and the inflammatory response, oxidative stress, and apoptosis of the infiltrated central nervous system areas. We show for the first time that Zn-MT-II treatment during EAE significantly prevents demyelination and axonal damage and transection, and stimulates oligodendroglial regeneration from precursor cells, as well as the expression of the growth factors basic fibroblast growth factor (bFGF), transforming growth factor (TGF)beta, neurotrophin-3 (NT-3), NT-4/5, and nerve growth factor (NGF). These beneficial effects of Zn-MT-II treatment could not be attributable to its zinc content per se. The present results support further the use of Zn-MT-II as a safe and successful therapy for multiple sclerosis.  相似文献   

16.
Rat forebrain neurogenesis and striatal neuron replacement after focal stroke   总被引:36,自引:0,他引:36  
The persistence of neurogenesis in the forebrain subventricular zone (SVZ) of adult mammals suggests that the mature brain maintains the potential for neuronal replacement after injury. We examined whether focal ischemic injury in adult rat would increase SVZ neurogenesis and direct migration and neuronal differentiation of endogenous precursors in damaged regions. Focal stroke was induced in adult rats by 90-minute right middle cerebral artery occlusion (tMCAO). Cell proliferation and neurogenesis were assessed with bromodeoxyuridine (BrdU) labeling and immunostaining for cell type-specific markers. Brains examined 10-21 days after stroke showed markedly increased SVZ neurogenesis and chains of neuroblasts extending from the SVZ to the peri-infarct striatum. Many BrdU-labeled cells persisted in the striatum and cortex adjacent to infarcts, but at 35 days after tMCAO only BrdU-labeled cells in the neostriatum expressed neuronal markers. Newly generated cells in the injured neostriatum expressed markers of medium spiny neurons, which characterize most neostriatal neurons lost after tMCAO. These findings indicate that focal ischemic injury increases SVZ neurogenesis and directs neuroblast migration to sites of damage. Moreover, neuroblasts in the injured neostriatum appear to differentiate into a region-appropriate phenotype, which suggests that the mature brain is capable of replacing some neurons lost after ischemic injury.  相似文献   

17.
In the central nervous system (CNS), p75, or low-affinity nerve growth factor receptor (LNGFR), is assumed to play a critical role in mediating the effects of neurotrophins on neuronal survival. Recent studies have shown that nerve growth factor (NGF) can act also on immune cells through its binding to p75. Using immunohistochemistry, we have investigated the expression of the p75 receptor in the CNS during chronic relapsing experimental allergic encephalomyelitis (EAE) of the Lewis rat, an animal model of multiple sclerosis (MS). We report here a sequential expression of p75, first in Purkinje cells during the first attack, and secondly on both endothelial and perivascular cells in the latter stages of the disease. Moreover, starting from the second attack, p75 was also expressed on glial ensheathing cells, likely myelinating cells, located primarily in the dorsal roots. These data suggest that during EAE, LNGFR may play an important role in leukocyte-endothelial cell interactions and in the maintenance of Purkinje cells survival. J. Neurosci. Res. 52:83–92, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Both pancreatic beta cells (insulin-secreting cells) and neuronal cells express functional receptors for nerve growth factor. However, while the effect of nerve growth factor on neuronal differentiation is well known, its role on pancreatic beta cells is not established. It has been demonstrated that in PC12 cells, a well characterized NGF-responsive cell line, NGF increases the production of nitric oxide by inducing the expression of nitric oxide synthase. Nitric oxide is subsequently responsible for growth arrest, a step necessary for neuronal differentiation, visualized by the extension of neuronal-like processes. In the present study, we studied the effect of nerve growth factor on nitric oxide synthesis in INS-1 cells, an insulin-producing cell line which possesses the machinery necessary to respond to nerve growth factor. It was demonstrated that the expression of none of the three isoforms of nitric oxide was induced by nerve growth factor in INS-1 cells, strongly suggesting that nerve growth factor does not induce an increase in nitric oxide production in this cell line. Finally, we demonstrated that whereas growth arrest occurred in INS-1 cells cultured in the presence of a donor of nitric oxide (SNP), the simultaneous addition of SNP and nerve growth factor is not sufficient to induce the extension of neuronal-like processes in INS-1 cells. These dissimilarities strongly suggest that NGF plays a different role in neuronal and pancreatic beta cells.  相似文献   

19.
We investigated the ability of human bone marrow stromal cell (hBMSC) treatment to reduce axonal loss in experimental autoimmune encephalomyelitis (EAE) mice. EAE was induced in SJL/J mice by injection with proteolipid protein (PLP). Mice were injected intravenously with hBMSCs or PBS on the day of clinical onset, and neurological function was measured daily (score 0-5) until 45 weeks after onset. Mice were sacrificed at week 1, 10, 20, 34, and 45 after clinical onset. Bielshowsky silver was used to identify axons. Immunohistochemistry was performed to measure the expression of nerve growth factor (NGF) and MAB1281, a marker of hBMSCs. hBMSC treatment significantly reduced the mortality, the disease severity, and the number of relapses in EAE mice compared with PBS treatment. Axonal density and NGF(+) cells in the EAE brain were significantly increased in the hBMSC group compared with the PBS group at 1, 10, 20, 34, and 45 weeks. Disease severity was significantly correlated with decreased axonal density and decreased NGF, and increased axonal density was significantly correlated with reduced loss of NGF expression after hBMSC treatment. Most of the NGF(+) cells are brain parenchymal cells. Under 5% of MAB1281(+) cells colocalized with NG2(+), a marker of oligodendrocyte progenitor cells. Nearly 10% of MAB1281(+) cells colocalized with GFAP, a marker of astrocytes, and MAP-2, a marker of neurons. Our findings indicate that hBMSCs improve functional recovery and may provide a potential therapy aimed at axonal protection in EAE mice, in which NGF may play a vital role.  相似文献   

20.
Regional environmental cues present in the adult brain determine the fate of adult neural progenitor cells. To determine whether the growth factors BDNF or FGF2 can create a neurogenic environment outside the SVZ, we used AAV(1/2)-mediated gene transfer to produce ectopic BDNF or FGF2 expression in the normal adult rat striatum and transplanted SVZ-derived progenitor cells into this region. We observed that ectopic expression of BDNF in the striatum promoted neuronal differentiation of transplanted adult neural progenitor cells, while FGF2 expression supported the survival and proliferation of transplanted progenitor cells in the adult striatum. However, region-specific neuronal differentiation of transplanted progenitor cells was not observed in the adult striatum, suggesting ectopic BDNF or FGF2 expression was insufficient for the generation of mature neuronal phenotypes. This study provides direct in vivo evidence that ectopic striatal expression of either BDNF or FGF2 can induce neurogenesis in non-neurogenic regions of the adult brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号