首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To understand neural reorganization of response regulation after stroke, a 54-year-old woman with a chronic left thalamic stroke performed a task requiring decisions about the directionality of an arrow during cerebral functional magnetic resonance imaging. Her performance was compared to 13 matched healthy control subjects. Her behavioral responses were slower but as accurate. Bilateral frontal activations were observed in the right medial frontal gyrus (BA 9), left superior frontal gyrus (BA 45), and left frontal rectus gyrus (BA 11). Activation in the right medial frontal gyrus, along with activity in close proximity to the anterior cingulate cortex, was observed, which may reflect reorganization of activity after the loss of function of the anterior cingulate cortex.  相似文献   

2.
Changes in the organization of the brain after recovery from aphasia were investigated by measuring increases in regional cerebral blood flow (rCBF) during repetition of pseudowords and during verb generation. Six right-handed patients who had recovered from Wernicke's aphasia caused by an infarction destroying the left posterior perisylvian language zone were compared with 6 healthy, right-handed volunteers. In the control subjects, strong rCBF increases were found in the left hemisphere in the posterior part of the superior and middle temporal gyrus (Wernicke's area), and during the generation task in lateral prefrontal cortex (LPFC) and in inferior frontal gyrus (Broca's area). There were some weak right hemisphere increases in superior temporal gyrus and inferior premotor cortex. In the patients, rCBF increases were preserved in the frontal areas. There was clear right hemisphere activation in superior temporal gyrus and inferior premotor and lateral prefrontal cortices, homotopic to the left hemisphere language zones. Increased left frontal and right perisylvian activity in patients with persisting destruction of Wernicke's area emphasizes redistribution of activity within the framework of a preexisting, parallel processing and bilateral network as the central mechanism in functional reorganization of the language system after stroke.  相似文献   

3.
Aims: The aim of the present study was to investigate the relationship between depressive symptoms and cerebral glucose metabolism in pre‐dialytic chronic kidney disease (PDCKD) patients. Methods: Twenty‐one patients with stage 5 CKD and 21 healthy volunteers underwent depressive mood assessment and statistical parametric mapping (SPM) using F‐18‐fluorodeoxyglucose (FDG) positron emission tomography (PET). Results: Several voxel clusters of significantly decreased cerebral glucose metabolism were found in PDCKD patients. The largest cluster was left prefrontal cortex (Brodmann area [BA] 9). The second largest cluster was also left prefrontal cortex (BA 9). The third largest clusters were right prefrontal cortex (BA 10) and right basolateral prefrontal cortex (BA 46). Other brain areas also showed decreased cerebral glucose metabolism including left anterior cingulate gyrus (BA 32), left premotor cortex (BA 6), left transverse temporal gyrus (BA 41), left superior temporal gyrus (BA 42), right basolateral prefrontal cortex (BA 44), right inferior parietal lobule (BA 39), left middle temporal gyrus (BA 19), and left angular gyrus (BA 39). Hypermetabolized brain areas, however, were not found in PDCKD patients compared to normal controls. For the right orbitofrontal cortex there was a negative correlation of cerebral glucose metabolism with Hamilton Depression Rating Scale (HDRS) in PDCKD patients (BA 11). Conclusion: PDCKD patients with depressive symptoms had decreased cerebral glucose metabolism in several brain areas. For the right orbitofrontal cortex there was a negative correlation with HDRS in PDCKD patients. The present findings provide functional neuroimaging support for abnormal cerebral glucose metabolism in PDCKD patients with depressive symptoms.  相似文献   

4.
Our previous ifndings have demonstrated that acupuncture at the Taixi (KI3) acupoint in healthy youths can activate neurons in cognitive-related cerebral cortex. Here, we investigated whether acupuncture at this acupoint in elderly patients with mild cognitive impairment can also activate neurons in these regions. Resting state and task-related functional magnetic resonance imaging showed that the pinprick senstation of acupuncture at the Taixi acupoint differed signiifcantly between elderly patients with mild cognitive impairment and healthy elderly controls. Results showed that 20 brain regions were activated in both groups of participants, including the bi-lateral anterior cingulate gyrus (Brodmann areas [BA] 32, 24), left medial frontal cortex (BA 9, 10, 11), left cuneus (BA 19), left middle frontal gyrus (BA 11), left lingual gyrus (BA 18), right medial frontal gyrus (BA 11), bilateral inferior frontal gyrus (BA 47), left superior frontal gyrus (BA11), right cuneus (BA 19, 18), right superior temporal gyrus (BA 38), left subcallosal gyrus (BA 47), bilateral precuneus (BA 19), right medial frontal gyrus (BA 10), right superior frontal (BA 11), left cingulate gyrus (BA 32), left precentral gyrus (BA 6), and right fusiform gyrus (BA 19). These results suggest that acupuncture at the Taixi acupoint in elderly patients with mild cogni-tive impairment can also activate some brain regions.  相似文献   

5.
To develop a method to measure the dynamic response of the serotonin system in vivo, the effects of intravenously administered citalopram (the most selective of the serotonin reuptake inhibitors) on cerebral glucose metabolism were evaluated. Cerebral glucose metabolism was measured with positron emission tomography (PET) in 14 normal subjects scanned after administration of saline placebo and citalopram administered on 2 separate days. Citalopram administration resulted in a decrease in metabolism in the right anterior cingulate gyrus (BA 24/32), right superior (BA 9) and right middle frontal gyrus (BA 6), right parietal cortex (precuneus), right superior occipital gyrus, left thalamus, and right cerebellum. Increased metabolism was observed in the left superior temporal gyrus and left occipital cortex. Alterations in metabolism by acute citalopram administration involved the heteromodal association cortices that also show metabolic alterations in patients with geriatric depression and overlap with the regions affected by antidepressant treatment. Future studies will evaluate how the acute metabolic response to citalopram relates to the metabolic response after chronic treatment in patients with geriatric depression.  相似文献   

6.
Developmental phonological dyslexia has been characterized as a deficit in phonological assembly. At a neural level, it is possible that this deficit is represented by weak connectivity between anterior and posterior language systems in the left hemisphere. This study used 3-Tesla functional magnetic resonance imaging to investigate phonological assembly in a developmental phonological dyslexic. The phonological dyslexic showed increased activation in the left hemisphere of the inferior frontal gyrus (BA 44/6) and increased activation in the right hemisphere of the parietal cortex (BA 7), occipital cortex (BA 18), and in the cerebellum, as phonological demands were systematically increased. Converging evidence suggests that the core dysfunction in phonological dyslexia resides in and around the angular gyrus of the left hemisphere. This study supports the compensatory role of posterior regions in the right hemisphere together with the left inferior frontal gyrus.  相似文献   

7.
We speculate that cortical reactions evoked by swallowing activity may be abnormal in patients with central infarction with dysphagia. The present study aimed to detect functional imaging features of cerebral cortex in central dysphagia patients by using blood oxygen level-dependent functional magnetic resonance imaging techniques. The results showed that when normal controls swallowed, primary motor cortex(BA4), insula(BA13), premotor cortex(BA6/8), supramarginal gyrus(BA40), and anterior cingulate cortex(BA24/32) were activated, and that the size of the activated areas were larger in the left hemisphere compared with the right. In recurrent cerebral infarction patients with central dysphagia, BA4, BA13, BA40 and BA6/8 areas were activated, while the degree of activation in BA24/32 was decreased. Additionally, more areas were activated, including posterior cingulate cortex(BA23/31), visual association cortex(BA18/19), primary auditory cortex(BA41) and parahippocampal cortex(BA36). Somatosensory association cortex(BA7) and left cerebellum in patients with recurrent cerebral infarction with central dysphagia were also activated. Experimental findings suggest that the cerebral cortex has obvious hemisphere lateralization in response to swallowing, and patients with recurrent cerebral infarction with central dysphagia show compensatory recombination phenomena of neurological functions. In rehabilitative treatment, using the favorite food of patients can stimulate swallowing through visual, auditory, and other nerve conduction pathways, thus promoting compensatory recombination of the central cortex functions.  相似文献   

8.
Habituation of attentional networks during emotion processing   总被引:1,自引:0,他引:1  
Dysfunctional emotion processing is a key aspect of many neuropsychiatric disorders. This dysfunction may be due to an abnormal magnitude of neural substrate activation during emotion processing or due to an altered time course of the neural substrate response. To better understand the temporal characteristics of the neural substrate activation underlying implicit emotion processing, nine healthy female controls were repeatedly exposed to pictures of affective faces while performing a gender identification task in an fMRI. As the salience of the stimuli decreased with repeated exposure, brain areas implicated in a right hemispheric spatial attention network (including the posterior parietal cortex (BA 40) and the frontal eye fields (BA 6)) habituated while brain areas lateralized to the left hemisphere (including the angular gyrus (BA 39), posterior superior temporal gyrus (BA 39) and insula (BA 13)) sensitized. These results provide strong evidence that the time course of activation is a critical component when assessing the function of neural substrates underlying emotion processing (specifically whether habituation is altered) in neuro-psychiatric patients.  相似文献   

9.
Impairment of cognition is common in depression, and many tasks on which depressed patients are impaired are sensitive to frontal lobe dysfunction. Performance on the Tower of London (TOL) task, which includes setting up and maintaining multiple subgoals at the same time, has been shown to depend on intact prefrontal cortices. Single photon emission computed tomography (SPECT) with 99mTc-ethyl cysteinate dimer was used to compare cognitive activation in nine depressed patients and nine normal controls during performance of the TOL task. Planning times and accuracy were measured as performance parameters, and functional imaging data were analysed with statistical parametric mapping (SPM99) to determine significant voxel-wise differences in activation between the two groups. During activation, depressed patients were as accurate as controls but differed in that they spent more thinking time. These findings agree with the results of neuropsychological studies. Compared with the normal controls, depressed patients were characterized by a blunted perfusion response in the right middle frontal cortex [Brodmann area (BA) 6] and the left superior frontal gyrus (BA 9), and by increased perfusion in the right superior temporal gyrus (BA 21) and the insular cortex (BA 13). This study shows that a SPECT activation procedure using the TOL task under classical test conditions is feasible in depressed patients.  相似文献   

10.
We compared the brain activation on functional magnetic resonance imaging (MRI) during word generation with the activation during electrical stimulation of two language-implicated acupoints in 17 healthy, Mandarin-speaking, Chinese male volunteers (age 19-26 years). All subjects were strongly right handed according to a handedness inventory. Using a standard functional MRI procedure and a word-generation paradigm, significant activation was seen in the left and right inferior frontal gyri (BA 44, 45) as well as the left superior temporal gyrus (BA 22, 42). Stronger activation with a larger volume was seen in the left hemisphere. Electrical stimulation of either one of the two language-implicated acupoints, SJ 8 (11 subjects) and Du 15 (6 subjects), without the word-generation paradigm in the same cohort, produced significant activation in the right inferior frontal gyrus (BA 44, 46) and in the left and right superior temporal gyri (BA 22, 42), respectively. Nevertheless, no activation was seen in the left inferior frontal gyrus. In addition, electrical stimulation of the adjacent non-acupoints did not produce any significant brain activation. Although our results support the notion of acupoint-brain activation, applying acupuncture at SJ 8 or Du 15 does not activate the typical language areas in the left inferior frontal cortex.  相似文献   

11.
We investigated plasticity of language networks exposed to slowly evolving brain damage. Single subject 0-15-water language activation positron emission tomography studies were analyzed in 61 right-handed patients with brain tumors of the left hemisphere, and 12 normal controls. In controls, activations were found in left Brodmann's Area (BA)44 and BA45, superior posterior temporal gyrus bilaterally, and right cerebellum. Patients additionally activated left BA46, BA47, anterior insula, and left cerebellum. Superior temporal activation was less frequent, and activations in areas other than posterior temporal gyrus were found bilaterally. Frontolateral activations within the nondominant hemisphere were only seen in patients (63%) with frontal or posterior temporal lesions. Laterality indices of frontolateral cortex showed reversed language dominance in 18% of patients. Laterality indices of the cerebellum were negatively correlated with language performance. Two compensatory mechanisms in patients with slowly evolving brain lesions are described: An intrahemispheric mechanism with recruitment of left frontolateral regions other than classic language areas; and an interhemispheric compensatory mechanism with frontolateral activation in the nondominant hemisphere. The latter one was only found in patients with frontal or posterior temporal lesions, thus supporting the hypothesis that right frontolateral activations are a disinhibition phenomenon.  相似文献   

12.
The purpose of this study was to investigate depression-related regions in pre-dialytic patients with chronic kidney disease (CKD) patients. Participants comprised 33 patients with stage 4 and 5 CKD (age, 55 [42–63]) and 32 healthy volunteers (age, 53.5 [49.5–57]). Depressed mood was assessed in the patients, and both groups underwent Tc-99m-labeled ethylcysteinate dimer (Tc-99m ECD) single photon emission computed tomograpy (SPECT). Statistical parametric mapping identified 18 areas of hypoperfusion in the patients in comparison with the normal controls. The largest clusters were areas including left precentral gyrus, right superior and middle temporal gyrus, both cerebellar posterior lobes, both inferior frontal gyrus, right superior and middle frontal gyrus, right cuneus, right inferior parietal lobule, and right putamen. However, there were no specific hypoperfusion areas in CKD patients with depression compared with CKD patients without depression. Interestingly, several hypoperfusion areas in CKD patients (inferior frontal gyrus [BA46], superior temporal gyrus [BA42], anterior cingulate gyrus [BA24]) were concordant with hypoperfusion areas found in patients with major depression who were free of kidney disease. In conclusion, this study did not demonstrate specific depression-related cerebral hypoperfusion areas. However, the cerebral blood flow pattern in CKD patients was similar to that of patients with major depression in some areas. Although further investigations are needed in the future, we suggest that the causes of the higher prevalence of depression in CKD might be associated with this finding.  相似文献   

13.
Constraint-induced movement therapy(CIMT) can promote the recovery of motor function in injured upper limbs following stroke, which may be associated with upregulation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor(AMPAR) at synapses in the ipsilateral sensorimotor cortex in our previous study. However, AMPAR distribution is tightly regulated, and only AMPARs on the postsynaptic membrane can mediate synaptic transmission. We speculated that synaptic remodeling induced by movement-associated synaptic activity can promote functional recovery from stroke. To test this hypothesis, we compared AMPAR expression on the postsynaptic membrane surface in a rat model of ischemic stroke induced by middle cerebral artery occlusion(MCAO) with versus without CIMT, which consisted of daily running wheel training for 2 weeks starting on day 7 after MCAO. The results showed that CIMT increased the number of glutamate receptor(Glu R)2-containing functional synapses in the ipsilateral sensorimotor cortex, and reduced non-Glu R2 AMPARs in the ipsilateral sensorimotor cortex and hippocampal CA3 region. In addition, CIMT enhanced AMPAR expression on the surface of post-synaptic membrane in the ipsilateral sensorimotor cortex and hippocampus. Thus, CIMT promotes the recovery of motor function of injured upper limbs following stroke by enhancing AMPAR-mediated synaptic transmission in the ischemic hemisphere. These findings provide supporting evidence for the clinical value of CIMT for restoring limb movement in stroke patients. All experimental procedures and protocols were approved by the Department of Laboratory Animal Science of Fudan University, China(approval No. 201802173 S) on March 3, 2018.  相似文献   

14.
The specific brain areas required to execute each of three fundamental cognitive tasks - object naming, same-different discrimination, and integer computation - are determined by whole-brain functional magnetic resonance imaging (fMRI) using a novel technique optimized for the isolation of neurocognitive systems. This technique (1) conjoins the activity associated with identical or nearly identical tasks performed in multiple sensory modalities (conjunction) and (2) isolates the activity conserved across multiple subjects (conservation). Cortical regions isolated by this technique are, thus, presumed associated with cognitive functions that are both distinguished from primary sensory processes and from individual differences. The object-naming system consisted of four brain areas: left inferior frontal gyrus, Brodmann's areas (BAs) 45 and 44; left superior temporal gyrus, BA 22; and left medial frontal gyrus, BA 6. The same-different discrimination system consisted of three brain areas: right inferior parietal lobule, BA 40; right precentral gyrus, BA 6; and left medial frontal gyrus, BA 6. The integer computation system consisted of five brain areas: right middle frontal gyrus, BA 6; right precentral gyrus, BA 6; left inferior parietal lobule, BA 40; left inferior frontal gyrus, BA 44; and left medial frontal gyrus, BA 6. All three neurocognitive systems shared one common cortical region, the left medial frontal gyrus, the object-naming and integer computation systems shared the left inferior frontal gyrus, and the integer computation and same-different discrimination systems shared the right precentral gyrus. These results are consistent with connectionist models of cognitive processes where specific sets of remote brain areas are assumed to be transiently bound together as functional units to enable these functions, and further suggest a superorganization of neurocognitive systems where single brain areas serve as elements of multiple functional systems.  相似文献   

15.
To better understand the functional role of cerebellum within the large-scale cerebellocerebral neural network, we investigated the changes of neuronal activity elicited by cerebellar repetitive transcranial magnetic stimulation (rTMS) using (18)F-fluorodeoxyglucose (FDG) and positron emission tomography (PET). Twelve right-handed healthy volunteers were studied with brain FDG PET under two conditions: active rTMS of 1?Hz frequency over the left lateral cerebellum and sham stimulation. Compared to the sham condition, active rTMS induced decreased glucose metabolism in the stimulated left lateral cerebellum, the areas known to be involved in voluntary motor movement (supplementary motor area and posterior parietal cortex) in the right cerebral hemisphere, and the areas known to be involved in cognition and emotion (orbitofrontal, medial frontal, and anterior cingulate gyri) in the left cerebral hemisphere. Increased metabolism was found in cognition- and language-related brain regions such as the left inferior frontal gyrus including Broca's area, bilateral superior temporal gyri including Wernicke's area, and bilateral middle temporal gyri. Left cerebellar rTMS also led to increased metabolism in the left cerebellar dentate nucleus and pons. These results demonstrate that rTMS over the left lateral cerebellum modulates not only the target region excitability but also excitability of remote, but interconnected, motor-, language-, cognition-, and emotion-related cerebral regions. They provide further evidence that the cerebellum is involved not only in motor-related functions but also in higher cognitive abilities and emotion through the large-scale cerebellocereberal neural network.  相似文献   

16.
Motor function impairment is a common outcome of stroke.Constraint-induced movement therapy(CIMT)involving intensive use of the impaired limb while restraining the unaffected limb is widely used to overcome the effects of‘learned non-use’and improve limb function after stroke.However,the underlying mechanism of CIMT remains unclear.In the present study,rats were randomly divided into a middle cerebral artery occlusion(model)group,a CIMT+model(CIMT)group,or a sham group.Restriction of the affected limb by plaster cast was performed in the CIMT and sham groups.Compared with the model group,CIMT significantly improved the forelimb functional performance in rats.By western blot assay,the expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi of cerebral ischemic rats in the CIMT group was significantly lower than that in the model group,and was similar to sham group levels.These data suggest that functional recovery after CIMT may be related to decreased expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi.  相似文献   

17.
Potential early markers of neurodegeneration such as subtle motor signs, reduced color discrimination, olfactory impairment, and brain perfusion abnormalities have been reported in idiopathic rapid eye movement sleep behavior disorder, a risk factor for Parkinson's disease and Lewy body dementia. The aim of this study was to reproduce observations of regional cerebral blood flow abnormalities in a larger independent sample of patients and to explore correlations between regional cerebral blood flow and markers of neurodegeneration. Twenty patients with idiopathic rapid eye movement sleep behavior disorder and 20 healthy controls were studied by single‐photon emission computerized tomography. Motor examination, color discrimination, and olfactory identification were examined. Patients with rapid eye movement sleep behavior disorder showed decreased regional cerebral blood flow in the frontal cortex and in medial parietal areas and increased regional cerebral blood flow in subcortical regions including the bilateral pons, putamen, and hippocampus. In rapid eye movement sleep behavior disorder, brain perfusion in the frontal cortex and occipital areas was associated with poorer performance in the color discrimination test. Moreover, a relationship between loss of olfactory discrimination and regional cerebral blood flow reduction in the bilateral anterior parahippocampal gyrus, a region known to be involved in olfactory functions, was found. This study provides further evidence of regional cerebral blood flow abnormalities in rapid eye movement sleep behavior disorder that are similar to those seen in Parkinson's disease and Lewy body dementia. Moreover, regional cerebral blood flow anomalies were associated with markers of neurodegeneration. © 2011 Movement Disorder Society  相似文献   

18.
It has been hypothesized that schizophrenia could be due to a defect of neural circuitry, that is a misconnection between different cerebral areas, particularly those involved in language processing and production. A group of 28 patients with chronic schizophrenia were investigated in order to detect differences in locations of white matter voxel signal intensity in comparison with a control group of 28 normal subjects matched for age, gender and educational level. Voxel-based morphometry was used to assess the white matter of the brain. Significant voxel signal hypointensity was identified in schizophrenic patients bilaterally (mainly in the left hemisphere) in the post-central gyrus and superior temporal gyrus and unilaterally (in the left hemisphere) in the inferior frontal gyrus-pars triangularis and pars pretriangularis, the medial orbital gyrus, the lateral orbital gyrus and the rectus gyrus. Thus, the white matters of these cerebral areas were structurally modified particularly in the left hemisphere and in those structures that control language and hearing processes.  相似文献   

19.
Spinal cord stimulation applied at thoracic level 1 (T1) has a neurally mediated anti-anginal effect based on anti-ischaemic action in the myocardium. Positron emission tomography was used to study which higher brain centres are influenced by spinal cord stimulation. Nine patients with a spinal cord stimulator for angina pectoris were studied using H215O as a flow tracer. Relative changes in regional cerebral blood flow related to stimulation compared with non-stimulation were assessed and analysed using the method of statistical parametric mapping. Increased regional cerebral blood flow was observed in the left ventrolateral periaqueductal grey, the medial prefrontal cortex [Brodmann area (BA) 9/10], the dorsomedial thalamus bilaterally, the left medial temporal gyrus (BA 21), the left pulvinar of the thalamus, bilaterally in the posterior caudate nucleus, and the posterior cingulate cortex (BA 30). Relative decreases in rCBF were noticed bilaterally in the insular cortex (BA 20/21 and BA 38), the right inferior temporal gyrus (BA 19/37), the right inferior frontal gyrus (BA 45), the left inferior parietal lobulus (BA 40), the medial temporal gyrus (BA 39) and the right anterior cingulate cortex (BA 24). It is concluded that spinal cord stimulation used as an additional treatment for angina applied at TI modulates regional cerebral blood flow in brain areas known to be associated with nociception and in areas associated with cardiovascular control.  相似文献   

20.
ObjectiveEvidence of the brain network involved in cognitive dysfunction has been inconsistent for major depressive disorder (MDD), especially during early stage of MDD. This study seeks to examine abnormal cognition connectivity network (CCN) in MDD within the whole brain.MethodsSixteen patients with MDD and 16 health controls were scanned during resting-state using 3.0 T functional magnetic resonance imaging (fMRI). All patients were first episode without any history of antidepressant treatment. Both the left and right dorsolateral prefrontal cortex (DLPFC) were used as individual seeds to identify CCN by the seed-target correlation analysis. Two sample t test was used to calculate between-group differences in CCN using fisher z-transformed correlation maps.ResultsThe CCN was constructed by bilateral seed DLPFC in two groups separately. Depressed subjects exhibited significantly increased functional connectivity (FC) by left DLPFC in one cluster, overlapping middle frontal gyrus, BA7, BA43, precuneus, BA6, BA40, superior temporal gyrus, BA22, inferior parietal lobule, precentral gyrus, BA4 and cingulate gyrus in left cerebrum. Health controls did not show any cluster with significantly greater FC compared to depressed subjects in left DLPFC network. There was no significant difference of FC in right DLPFC network between depressed subjects and the health controls.ConclusionThere are differences in CCN during early stage of MDD, as identified by increased FCs among part of frontal gyrus, parietal cortex, cingulate cortex, and BA43, BA22, BA4 with left DLPFC. These brain areas might be involved in the underlying mechanisms of cognitive dysfunction in MDD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号